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DESIGN OF DUAL-BAND MICROSTRIP REFLECTAR-
RAY USING SINGLE LAYER MULTIRESONANCE DOU-
BLE CROSS ELEMENTS
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Abstract—A multiresonance double cross element is used to design
a dual-band reflectarray with dual linear polarization. The proposed
element has a single conductive layer structure which makes it easy to
manufacture. The results presented in this paper show that the mutual
effect between the elements of the two bands is negligible. Hence, it is
easy to achieve the phase compensation for each band separately. The
simulated and measured results for an element designed to cover the
X- and K-bands have confirmed the suitability of the proposed element
to build a dual-band reflectarray.

1. INTRODUCTION

The microstrip reflectarray is an antenna that consists of a flat
reflecting surface with many microstrip elements and a feed antenna.
It uses a suitable phasing scheme to convert a spherical wave produced
by its feed into a plane wave [1–6]. The microtsrip reflectarray
is a high gain antenna which evolved as an efficient and cost-
effective replacement of the parabolic reflectors and phased arrays:
The parabolic reflector lacks the ability to achieve wide angle beam
scanning, whereas the high gain phased array with electronic scanning
is very expensive due to its complicated beamforming network and
amplifier modules [1].

Some applications have emerged recently; where it is required
to design a reflectarray within a limited certain space to cover two
widely separated bands, such as the X- and K-bands for NASA
space systems [1]. The conventional design of the reflectarray cannot
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accomplish the requirements of such dual-band applications. Hence,
new methods have been proposed by many authors to design a
reflectarray which covers the two bands with a high gain and wide
scanning angle capability. A stacked structure which is formed from
multiple small square loops at the top layer and a large square loop
at the bottom layer were proposed in [7] to achieve a dual band
performance with dual linear polarisation; whereas variable size crossed
dipoles were presented in [8]. For the case of a closely spaced dual
band operation, square loop elements were suggested in [9]. The
phase compensation in this case was achieved by using a variable angle
rotation technique. For linear polarisation, variable size pairs of dipoles
were used for the case of widely or closely separated dual bands [1].

In another important development, the stacked approach was
used as a suitable solution to the requirement of dual band operation
accompanied by a compact size [10]. Two stacked patches with
variable size were used independently for the phase compensation
at the two bands. In another multi-layer configuration, perforated
patches loaded by slots at the ground plane are used as the radiating
elements at C-band and rectangular patches directly loaded by slots
are used at K-band [11]. In a recent design [12], a single-layer dual
closely separated bands (12 GHz and 14 GHz) orthogonal polarisation
reflectarray antenna composed of a combination of split cross and
rectangle rings for one band and double split square rings for the other
band was proposed. A similar combination was also proposed for a
broadband single band operation [13].

In this paper, a single-layer mulitresonance double cross
reflectarray element, which was presented in [14], is modified to achieve
the dual band operation with a dual linear polarisation. The curved
multiresonance cross structure utilized in this paper has a broad
bandwidth compared with the single-resonance elements, such as the
printed dipoles or patches [15], and it is easy to manufacture compared
with the stacked elements. In the presented results, it is shown that
the proposed element can operate efficiently at the dual bands 10 GHz
and 18 GHz with negligible mutual effect between them.

2. DESIGN

To design a dual band reflectarray, a multiresonance double cross-
element shown in Fig. 1 is considered [8]. The microstrip reflectarray
was designed to operate in the X- and K-bands. The reflectarray is
assumed to be formed by many of the elements shown in Fig. 1 arranged
in a square lattice with periodicity of 15 mm, which is equivalent to half
a wavelength at centre of the lower band (X-band), i.e., 10 GHz. They
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(a) (b)

Figure 1. Configuration of the multiresonance double cross element.
(a) Top view, and (b) side view.

are assumed to have a double symmetry as required in dual polarised
applications. It is to be noted that the chosen value for the cell size
prevents the appearance of grating lobes at the higher band, which is
18GHz in this case, as the inter-element separation is less than one
free space wavelength.

The configuration of the chosen element and substrate is shown
in Fig. 1. Lengths of the dual cross elements (L1, L2) were changed to
show their effect on the phase performance at the two assigned bands,
while their widths (W1, W2) were fixed at 0.3 mm. As a general rule,
values of the lengths L1 (and L2) should vary between quarter and half
of the effective wavelength at the lower (and higher) bands in order to
achieve the required 360◦ phase variation across each of the two bands.

The substrate used to support the cross elements is assumed to
consist of a thin laminate of Rogers RT5880 with εr = 2.2, and
thickness h = 0.13mm, in addition to a 6 mm of Foam with a dielectric
constant equal to 1.07. The parametric analysis using the software CST
Microwave Studio has proven that this combination gives a suitable
balance between the required volume occupied by the structure and
the phase performance concerning the slope and range.

3. RESULTS AND DISCUSSIONS

Variation of the return loss’s phase was studied as a function of
frequency. Only the case of a linearly polarised TEM plane wave,
which is normally incident on an infinite periodic array of identical
elements, is considered. In this case, the side walls of the equivalent
TEM waveguide are formed by a perfect magnetic conductor, while its
bottom and top walls are composed of a perfect electric conductor.
Using the equivalent unit cell waveguide approach, phase of the
reflected wave was calculated for the loaded waveguide. The structure
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Figure 2. Variation of phase of the return loss with frequency for
different lengths of the two cross elements.

was modelled using the software CST Microwave Studio.
Figure 2 shows variation of phase of the reflection coefficient with

frequency for different lengths of the two cross elements. It is clear
from this figure that the utilised structure has two resonant frequencies;
one at around 10 GHz, while the other is around 18 GHz. Fig. 2 also
reveals that the phase range for each of the two resonators exceeds
the required 360◦. Effect of varying length of each element on value
of the resonant frequency is also shown in Fig. 2. Increasing length
of the low-band element L1 from 10 mm to 11.5 mm shifts the first
resonant frequency from 10 GHz to 9.5 GHz, while changing length
of the high-band element L2 from 5 mm to 6 mm shifts the second
resonant frequency from 18 GHz to 17.5GHz. It is also clear from
Fig. 2, that changing length of the high-band element has no effect
on the low resonant frequency, and similarly changing length of the
low-band element has no effect on the high resonant frequency. This
means that it is possible to achieve the required phase compensation
for each of the two bands independently by changing length of that
band’s element.

To make sure that the low-band element has a negligible effect on
the phase performance at the high band, the simulation was carried
out for two cases; the first case is when the low-band element has
length = 10 mm, while the second case is when there is no low-
band element, i.e., L1 = 0. The result, which is depicted in Fig. 3,
reveals that the phase performance and value of the high band resonant



Progress In Electromagnetics Research Letters, Vol. 13, 2010 71

frequency is almost constant with or without the presence of the
low-band element. Similarly, the simulation was also performed to
make sure that the high-band element has negligible effect on the low-
band performance. The result shown in Fig. 4 confirms the design

Figure 3. Effect of the low-band element on the phase performance
of the high-band element.

Figure 4. Effect of the high-band element on the phase performance
of the low-band element.
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expectation that there is no mutual effect between the two elements.
As a another step to test the coupling effect on the performance of

the two elements that form the double cross cell, the phase performance
at the two resonant frequencies 10GHz and 18 GHz for different lengths
of the two multiresonant elements is simulated. The result is shown in
Fig. 5 for L1 from 7mm to 12.5mm with L2 = 5 mm, and for L2 from
3mm to 7mm for L1 = 10 mm. It is obvious from Fig. 5 that the two

Figure 5. The phase performance of the proposed unit cell at 10GHz
and 18 GHz as a function of the element lengths (L1 and L2).

Figure 6. The measured and simulated performance of the proposed
unit cell.
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elements operate almost independently at 10GHz and 18 GHz.
As a final step in checking performance of the proposed

reflectarray, a unit cell with L1 = 10 mm, and L2 = 5 mm and a double
layer substrate (RT5880 with h = 0.13mm, in addition to 6mm of
Foam) was manufactured, and tested using the waveguide approach [1].
Performance of the manufactured cell is shown in Fig. 6. It is clear
that the developed cell has two resonant frequencies, which are 11GHz
and 17GHz according to the measured results, and 10GHz and 18 GHz
according to the simulations. The total phase variation across the two
bands is around 800◦, which is more than the minimum value (720◦)
needed for a dual-band operation. Amplitude of the return loss across
the band 8 GHz to 20 GHz was also simulated and measured. The
measured results shown in Fig. 6 reveal that while the return loss is
as low as 0.2 dB across most of the investigated band, it has higher
values (more than 0.4 dB) at the resonant frequencies. This result is
consistent with the simulated results shown in Fig. 6 and with the
previously published findings, which show that the maximum return
loss of the reflectarray occurs at its resonant frequencies [16].

4. CONCLUSION

A single-layer multiresonance curved double cross element, which can
be used to build a dual-band reflectarray with dual linear polarization,
has been presented. The results presented in this paper have shown
that the mutual effect between the cross elements of the two bands
is negligible, which makes it easy to achieve the phase compensation
for each band separately. The simulated and measured results for an
element designed to operate at the X- and K-bands have confirmed the
suitability of the proposed multiresonance cross element for the design
of a dual-band reflectarray.
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