2,089 research outputs found

    OBJECTIVE AND SUBJECTIVE EVALUATION OF DEREVERBERATION ALGORITHMS

    Get PDF
    Reverberation significantly impacts the quality and intelligibility of speech. Several dereverberation algorithms have been proposed in the literature to combat this problem. A majority of these algorithms utilize a single channel and are developed for monaural applications, and as such do not preserve the cues necessary for sound localization. This thesis describes a blind two-channel dereverberation technique that improves the quality of speech corrupted by reverberation while preserving cues that affect localization. The method is based by combining a short term (2ms) and long term (20ms) weighting function of the linear prediction (LP) residual of the input signal. The developed and other dereverberation algorithms are evaluated objectively and subjectively in terms of sound quality and localization accuracy. The binaural adaptation provides a significant increase in sound quality while removing the loss in localization ability found in the bilateral implementation

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    Race classification using gaussian-based weight K-nn algorithm for face recognition

    Get PDF
    One of the greatest challenges in facial recognition systems is to recognize faces around different race and illuminations. Chromaticity is an essential factor in facial recognition and shows the intensity of the color in a pixel, it can greatly vary depending on the lighting conditions. The race classification scheme proposed which is Gaussian based-weighted K-Nearest Neighbor classifier in this paper, has very sensitive to illumination intensity. The main idea is first to identify the minority class instances in the training data and then generalize them to Gaussian function as concept for the minority class. By using combination of K-NN algorithm with Gaussian formula for race classification. In this paper, image processing is divided into two phases. The first is preprocessing phase. There are three preprocessing comprises of auto contrast balance, noise reduction and auto-color balancing. The second phase is face processing which contains six steps; face detection, illumination normalization, feature extraction, skin segmentation, race classification and face recognition. There are two type of dataset are being used; first FERET dataset where images inside this dataset involve of illumination variations. The second is Caltech dataset which images side this dataset contains noises

    Acoustic sensor network geometry calibration and applications

    Get PDF
    In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization and tracking method. In order to localize with respect to the ASN, the relative arrangement of the sensor nodes has to be known. Therefore, different novel geometry calibration methods were developed. Sound classification The first method addresses the task of identification of auditory objects. A novel application of the bag-of-features (BoF) paradigm on acoustic event classification and detection was introduced. It can be used for event and speech detection as well as for speaker identification. The use of both mel frequency cepstral coefficient (MFCC) and Gammatone frequency cepstral coefficient (GFCC) features improves the classification accuracy. By using soft quantization and introducing supervised training for the BoF model, superior accuracy is achieved. The method generalizes well from limited training data. It is working online and can be computed in a fraction of real-time. By a dedicated training strategy based on a hierarchy of stationarity, the detection of speech in mixtures with noise was realized. This makes the method robust against severe noises levels corrupting the speech signal. Thus it is possible to provide control information to a beamformer in order to realize blind speech enhancement. A reliable improvement is achieved in the presence of one or more stationary noise sources. Speaker localization The localization method enables each node to determine the direction of arrival (DoA) of concurrent sound sources. The author's neuro-biologically inspired speaker localization method for microphone arrays was refined for the use in ASNs. By implementing a dedicated cochlear and midbrain model, it is robust against the reverberation found in indoor rooms. In order to better model the unknown number of concurrent speakers, an application of the EM algorithm that realizes probabilistic clustering according to auditory scene analysis (ASA) principles was introduced. Based on this approach, a system for Euclidean tracking in ASNs was designed. Each node applies the node wise localization method and shares probabilistic DoA estimates together with an estimate of the spectral distribution with the network. As this information is relatively sparse, it can be transmitted with low bandwidth. The system is robust against jitter and transmission errors. The information from all nodes is integrated according to spectral similarity to correctly associate concurrent speakers. By incorporating the intersection angle in the triangulation, the precision of the Euclidean localization is improved. Tracks of concurrent speakers are computed over time, as is shown with recordings in a reverberant room. Geometry calibration The central task of geometry calibration has been solved with special focus on sensor nodes equipped with multiple microphones. Novel methods were developed for different scenarios. An audio-visual method was introduced for the calibration of ASNs in video conferencing scenarios. The DoAs estimates are fused with visual speaker tracking in order to provide sensor positions in a common coordinate system. A novel acoustic calibration method determines the relative positioning of the nodes from ambient sounds alone. Unlike previous methods that only infer the positioning of distributed microphones, the DoA is incorporated and thus it becomes possible to calibrate the orientation of the nodes with a high accuracy. This is very important for all applications using the spatial information, as the triangulation error increases dramatically with bad orientation estimates. As speech events can be used, the calibration becomes possible without the requirement of playing dedicated calibration sounds. Based on this, an online method employing a genetic algorithm with incremental measurements was introduced. By using the robust speech localization method, the calibration is computed in parallel to the tracking. The online method is be able to calibrate ASNs in real time, as is shown with recordings of natural speakers in a reverberant room. The informed acoustic sensor network All new methods are important building blocks for the use of ASNs. The online methods for localization and calibration both make use of the neuro-biologically inspired processing in the nodes which leads to state-of-the-art results, even in reverberant enclosures. The high robustness and reliability can be improved even more by including the event detection method in order to exclude non-speech events. When all methods are combined, both semantic information on what is happening in the acoustic scene as well as spatial information on the positioning of the speakers and sensor nodes is automatically acquired in real time. This realizes truly informed audio processing in ASNs. Practical applicability is shown by application to recordings in reverberant rooms. The contribution of this thesis is thus not only to advance the state-of-the-art in automatically acquiring information on the acoustic scene, but also pushing the practical applicability of such methods

    Advanced automatic mixing tools for music

    Get PDF
    PhDThis thesis presents research on several independent systems that when combined together can generate an automatic sound mix out of an unknown set of multi‐channel inputs. The research explores the possibility of reproducing the mixing decisions of a skilled audio engineer with minimal or no human interaction. The research is restricted to non‐time varying mixes for large room acoustics. This research has applications in dynamic sound music concerts, remote mixing, recording and postproduction as well as live mixing for interactive scenes. Currently, automated mixers are capable of saving a set of static mix scenes that can be loaded for later use, but they lack the ability to adapt to a different room or to a different set of inputs. In other words, they lack the ability to automatically make mixing decisions. The automatic mixer research depicted here distinguishes between the engineering mixing and the subjective mixing contributions. This research aims to automate the technical tasks related to audio mixing while freeing the audio engineer to perform the fine‐tuning involved in generating an aesthetically‐pleasing sound mix. Although the system mainly deals with the technical constraints involved in generating an audio mix, the developed system takes advantage of common practices performed by sound engineers whenever possible. The system also makes use of inter‐dependent channel information for controlling signal processing tasks while aiming to maintain system stability at all times. A working implementation of the system is described and subjective evaluation between a human mix and the automatic mix is used to measure the success of the automatic mixing tools

    Super resolution and dynamic range enhancement of image sequences

    Get PDF
    Camera producers try to increase the spatial resolution of a camera by reducing size of sites on sensor array. However, shot noise causes the signal to noise ratio drop as sensor sites get smaller. This fact motivates resolution enhancement to be performed through software. Super resolution (SR) image reconstruction aims to combine degraded images of a scene in order to form an image which has higher resolution than all observations. There is a demand for high resolution images in biomedical imaging, surveillance, aerial/satellite imaging and high-definition TV (HDTV) technology. Although extensive research has been conducted in SR, attention has not been given to increase the resolution of images under illumination changes. In this study, a unique framework is proposed to increase the spatial resolution and dynamic range of a video sequence using Bayesian and Projection onto Convex Sets (POCS) methods. Incorporating camera response function estimation into image reconstruction allows dynamic range enhancement along with spatial resolution improvement. Photometrically varying input images complicate process of projecting observations onto common grid by violating brightness constancy. A contrast invariant feature transform is proposed in this thesis to register input images with high illumination variation. Proposed algorithm increases the repeatability rate of detected features among frames of a video. Repeatability rate is increased by computing the autocorrelation matrix using the gradients of contrast stretched input images. Presented contrast invariant feature detection improves repeatability rate of Harris corner detector around %25 on average. Joint multi-frame demosaicking and resolution enhancement is also investigated in this thesis. Color constancy constraint set is devised and incorporated into POCS framework for increasing resolution of color-filter array sampled images. Proposed method provides fewer demosaicking artifacts compared to existing POCS method and a higher visual quality in final image
    corecore