26 research outputs found

    Foreground-Background Ambient Sound Scene Separation

    Get PDF
    Ambient sound scenes typically comprise multiple short events occurring on top of a somewhat stationary background. We consider the task of separating these events from the background, which we call foreground-background ambient sound scene separation. We propose a deep learning-based separation framework with a suitable feature normaliza-tion scheme and an optional auxiliary network capturing the background statistics, and we investigate its ability to handle the great variety of sound classes encountered in ambient sound scenes, which have often not been seen in training. To do so, we create single-channel foreground-background mixtures using isolated sounds from the DESED and Audioset datasets, and we conduct extensive experiments with mixtures of seen or unseen sound classes at various signal-to-noise ratios. Our experimental findings demonstrate the generalization ability of the proposed approach

    Similarity-and-Independence-Aware Beamformer: Method for Target Source Extraction using Magnitude Spectrogram as Reference

    Full text link
    This study presents a novel method for source extraction, referred to as the similarity-and-independence-aware beamformer (SIBF). The SIBF extracts the target signal using a rough magnitude spectrogram as the reference signal. The advantage of the SIBF is that it can obtain an accurate target signal, compared to the spectrogram generated by target-enhancing methods such as the speech enhancement based on deep neural networks (DNNs). For the extraction, we extend the framework of the deflationary independent component analysis, by considering the similarity between the reference and extracted target, as well as the mutual independence of all potential sources. To solve the extraction problem by maximum-likelihood estimation, we introduce two source model types that can reflect the similarity. The experimental results from the CHiME3 dataset show that the target signal extracted by the SIBF is more accurate than the reference signal generated by the DNN. Index Terms: semiblind source separation, similarity-and-independence-aware beamformer, deflationary independent component analysis, source modelComment: Accepted in INTERSPEECH 202
    corecore