2,319,728 research outputs found

    Probing Plasmodium falciparum sexual commitment at the single-cell level

    Get PDF
    Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign

    Tracing blastomere fate choices of early embryos in single cell culture

    Get PDF
    Blastomeres of early vertebrate embryos undergo numerous fate choices for division, motility, pluripotency maintenance and restriction culminating in various cell lineages. Tracing blastomere fate choices at the single cell level in vitro has not been possible because of the inability to isolate and cultivate early blastomeres as single cells. Here we report the establishment of single cell culture system in the fish medaka, enabling the isolation and cultivation of individual blastomeres from 16- to 64-cell embryos for fate tracing at the single cell level in vitro. Interestingly, these blastomeres immediately upon isolation exhibit motility, lose synchronous divisions and even stop dividing in ≥50% cases, suggesting that the widely accepted nucleocytoplasmic ratio controlling synchronous divisions in entire embryos does not operate on individual blastomeres. We even observed abortive division, endomitosis and cell fusion. Strikingly, ~5% of blastomeres in single cell culture generated extraembryonic yolk syncytial cells, embryonic stem cells and neural crest-derived pigment cells with timings mimicking their appearance in embryos. We revealed the maternal inheritance of key lineage regulators and their differential expression in cleavage embryos. Therefore, medaka blastomeres possess the accessibility for single cell culture, previously unidentified heterogeneity in motility, division, gene expression and intrinsic ability to generate major extraembryonic and embryonic lineages without positioning cues. Our data demonstrate the fidelity and potential of the single cell culture system for tracking blastomere fate decisions under defined conditions in vitro

    Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects.

    Get PDF
    Organogenesis involves integration of diverse cell types; dysregulation of cell-type-specific gene networks results in birth defects, which affect 5% of live births. Congenital heart defects are the most common malformations, and result from disruption of discrete subsets of cardiac progenitor cells1, but the transcriptional changes in individual progenitors that lead to organ-level defects remain unknown. Here we used single-cell RNA sequencing to interrogate early cardiac progenitor cells as they become specified during normal and abnormal cardiogenesis, revealing how dysregulation of specific cellular subpopulations has catastrophic consequences. A network-based computational method for single-cell RNA-sequencing analysis that predicts lineage-specifying transcription factors2,3 identified Hand2 as a specifier of outflow tract cells but not right ventricular cells, despite the failure of right ventricular formation in Hand2-null mice4. Temporal single-cell-transcriptome analysis of Hand2-null embryos revealed failure of outflow tract myocardium specification, whereas right ventricular myocardium was specified but failed to properly differentiate and migrate. Loss of Hand2 also led to dysregulation of retinoic acid signalling and disruption of anterior-posterior patterning of cardiac progenitors. This work reveals transcriptional determinants that specify fate and differentiation in individual cardiac progenitor cells, and exposes mechanisms of disrupted cardiac development at single-cell resolution, providing a framework for investigating congenital heart defects

    A self-driven phase transition drives Myxococcus xanthus fruiting body formation

    Get PDF
    Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body (FB) formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Peclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus take advantage of a self-driven non-equilibrium phase transition that can be controlled at the single cell level

    Interactions of chemostimuli at the single cell level: studies in a model system

    Get PDF
    The responses of afferent chemosensory fibres of the carotid body to individual chemostimuli have long been established. However, the mechanisms underlying the multiplicative interactions of these stimuli (i.e. how the combined effects of hypoxia and hypercapnia exert a greater effect on afferent nerve discharge than the sum of their individual effects) have not been elucidated. Using the membrane hypothesis for carotid body chemoreception, in which chemostimuli inhibit type I cell K+ channels, leading to depolarization, voltage-gated Ca2+ entry and hence the triggering of exocytosis, this article considers data acquired in isolated type I carotid body cells and model chemoreceptor (PC12) cells to attempt to explain stimulus interactions. Whilst stimulus interactions are not clearly evident at the level of K+ channel inhibition or rises of [Ca2+](i), they are apparent at the level of transmitter release. Thus, it is clear that individual chemoreceptor cells can sense multiple stimuli, and that interactions of these stimuli can produce greater than additive effects in terms of transmitter release

    Messenger RNA Fluctuations and Regulatory RNAs Shape the Dynamics of Negative Feedback Loop

    Full text link
    Single cell experiments of simple regulatory networks can markedly differ from cell population experiments. Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such oscillations may appear damped in the population average. In this paper we investigate the role of RNA stochastic fluctuations as a leading force to produce a sustained excitatory behavior at the single cell level. Opposed to some previous models, we build a fully stochastic model of a negative feedback loop that explicitly takes into account the RNA stochastic dynamics. We find that messenger RNA random fluctuations can be amplified during translation and produce sustained pulses of protein expression. Motivated by the recent appreciation of the importance of non--coding regulatory RNAs in post--transcription regulation, we also consider the possibility that a regulatory RNA transcript could bind to the messenger RNA and repress translation. Our findings show that the regulatory transcript helps reduce gene expression variability both at the single cell level and at the cell population level.Comment: 87.18.Vf --> Systems biology 87.10.Mn --> Stochastic models in biological systems 87.18.Tt --> Noise in biological systems http://www.ncbi.nlm.nih.gov/pubmed/20365787 http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevE2010.pd

    A stochastic model dissects cell states in biological transition processes

    Get PDF
    Many biological processes, including differentiation, reprogramming, and disease transformations, involve transitions of cells through distinct states. Direct, unbiased investigation of cell states and their transitions is challenging due to several factors, including limitations of single-cell assays. Here we present a stochastic model of cellular transitions that allows underlying single-cell information, including cell-state-specific parameters and rates governing transitions between states, to be estimated from genome-wide, population-averaged time-course data. The key novelty of our approach lies in specifying latent stochastic models at the single-cell level, and then aggregating these models to give a likelihood that links parameters at the single-cell level to observables at the population level. We apply our approach in the context of reprogramming to pluripotency. This yields new insights, including profiles of two intermediate cell states, that are supported by independent single-cell studies. Our model provides a general conceptual framework for the study of cell transitions, including epigenetic transformations
    corecore