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Experimental Physiology – Hot Topic Review

Festschrift for R. G. O’Regan – Sensing and adaptation to alterations in respiratory gases:

oxygen and carbon dioxide

Interactions of chemostimuli at the single cell level:
studies in a model system

Chris Peers

Institute for Cardiovascular Research, University of Leeds, Leeds LS2 9JT, UK

The responses of afferent chemosensory fibres of the carotid body to individual chemostimuli

have long been established. However, the mechanisms underlying the multiplicative interactions

of these stimuli (i.e. how the combined effects of hypoxia and hypercapnia exert a greater effect on

afferent nerve discharge than the sum of their individual effects) have not been elucidated. Using

the membrane hypothesis for carotid body chemoreception, in which chemostimuli inhibit

type I cell K+ channels, leading to depolarization, voltage-gated Ca2+ entry and hence the

triggering of exocytosis, this article considers data acquired in isolated type I carotid body

cells and model chemoreceptor (PC12) cells to attempt to explain stimulus interactions. Whilst

stimulus interactions are not clearly evident at the level of K+ channel inhibition or rises of

[Ca2+]i, they are apparent at the level of transmitter release. Thus, it is clear that individual

chemoreceptor cells can sense multiple stimuli, and that interactions of these stimuli can produce

greater than additive effects in terms of transmitter release.
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Introduction

For decades the carotid body has been recognized as

the major peripheral arterial chemoreceptor, sensing

changes in blood gas and pH levels and responding,

when appropriate, by altering the firing frequency of

afferent chemoreceptors (Gonzalez et al. 1994; Gonzalez

et al. 1992). In this way, the carotid body informs the

central respiratory centres of arterial blood gas status,

and allows the initiation of corrective cardiorespiratory

reflexes (Marshall, 1994; Lopez-Barneo, 1996). Afferent

chemosensory recordings, performed over many years,

have established the closely controlled relationship

between stimulus intensity and afferent nerve activity,

and have shown that excitation of these nerves can be

brought about by each physiological stimulus (hypoxia,

hypercapnia and acidity) applied independently. More

interestingly, perhaps, these stimuli can interact at the
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level of afferent chemosensory discharge in a multiplicative

manner (Fitzgerald & Parks, 1971; Lahiri & DeLaney,

1975). In other words, the effects of hypoxia and

hypercapnia applied together are greater than the sum of

these two stimuli when applied separately to the carotid

body. This is illustrated in Fig. 1, which plots the frequency

of discharge of afferent chemoreceptor fibres as a function

of CO2 levels, whilst the background O2 levels are varied

from hyperoxia to severe hypoxia. Clearly, as the O2

levels decline, the relationship between nerve activity and

CO2 becomes increasingly steep. This is indicative of

multiplicative stimulus interaction, as if these stimuli were

simply additive, the slope of the relationship between nerve

discharge and CO2 would not be altered.

Carotid body stimulus interactions have intrigued

physiologists since their discovery, yet a mechanistic

explanation has proved elusive. However, our

understanding of the events which occur in chemosensory

type I cells within the carotid body has advanced markedly

over the past 15 years. On the basis of these studies,

and those performed in model chemosensory cells, this
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article is aimed at reviewing available evidence in order to

examine a cellular basis for this phenomenon of stimulus

interactions.

Chemoreception in single type I cells

Since the development of viable preparations of isolated

type I cells, numerous groups have sought to provide

an answer to the question of how type I cells sense and

respond to chemostimuli. Several lines of evidence had

indicated that chemosensing by the carotid body was

totally dependent on the presence of type I cells (reviewed

by Gonzalez et al. 1994), and that neurotransmitter release

from these cells was an absolute requirement for excitation

of afferent nerves of the carotid sinus nerve. The nature of

the neurotransmitters involved has long been contentious,

but the most compelling evidence published in recent

times would indicate that hypoxia releases (amongst

others) excitatory transmitters acetylcholine and ATP

(Zhang et al. 2000), along with dopamine (Obeso et al.

1992). The role of dopamine in chemoreception remains

to be fully established, but it is clear that stimulus evoked

transmitter release from type I cells on to afferent nerve

endings is a key step in carotid body excitation. This

generally accepted mechanism begs the question of how

stimuli cause type I cells to release neurotransmitters, a

question that several groups have approached since the

late 1980s. Whilst there remain some points of contention

(which are outside the scope of this article), it seems

reasonable to assume today that the general consensus of

Figure 1.

Plot of the relationship between afferent chemosensory nerve

discharge and CO2 levels, recorded from the cat carotid body

sinus nerve preparation. CO2 levels were varied at different

background PO2
levels, as indicated. Note the increased slope of

the relationship as background O2 levels decline. Reproduced

with permission from Lahiri & DeLaney, 1975.

opinion is that hypoxia, hypercapnia and acidosis evoke

transmitter release according to what has become known

as the membrane hypothesis for chemotransduction.

The key initial step of the membrane hypothesis for

chemotransduction is the stimulus-induced inhibition

of K+ channels (Lopez-Barneo et al. 1988; Peers, 1990;

Stea & Nurse, 1991; Buckler, 1997). These channels

normally maintain a hyperpolarizing influence on resting

membrane potential and thereby control cell excitability.

Their inhibition therefore leads to cell depolarization. This

in itself is sufficient to open voltage-gated Ca2+ channels,

and the consequent rise of [Ca2+]i (Buckler & Vaughan-

Jones, 1994) is the trigger for transmitter release. Whilst

this mechanism is not the only one to have been proposed

to account for stimulus–secretion coupling in type I cells

(Biscoe & Duchen, 1990; Rocher et al. 1991), it is clearly

the best supported, and it is with this sequential series of

events we can address possible mechanisms to account for

stimulus interactions within the carotid body.

Effects of hypoxia and acidosis on K+ channel activity

Whilst a number of groups have reported that hypoxia and

hypercapnia/acidosis can inhibit K+ channels and cause

depolarization of type I cells, the question of whether

an individual type I cell can respond to both stimuli

remained unanswered until 1997. In that year, Pepper

& Kumar (1997) reported that K+ currents (most likely

high conductance, Ca2+ sensitive (maxiK) currents) in

individual rat type I cells could be inhibited both by

hypoxia and by intracellular acidosis (in this case evoked

by extracellular application of sodium propionate). This

was the first report that a type I cell could respond to both

stimuli. However, coapplication of both stimuli failed to

cause channel inhibition that was quantitatively greater

than either stimulus alone. Thus, stimulus interaction did

not occur at the level of K+ channel activity within type I

cells. To date, this remains the only study aimed directly

at addressing this issue. It will be of interest to examine

whether TASK channels, also present in these cells (Buckler

et al. 2000), or the O2 sensitive, inactivating voltage-gated

K+ channels of rabbit type I cells (Lopez-Lopez & Peers,

1997), respond in a similar manner to those reported by

Pepper and Kumar.

Effects of hypoxia and acidosis on [Ca2+]i

in type I cells

Following K+ channel inhibition caused by hypoxia or

hypercapnia/acidosis in type I cells, a rise of [Ca2+]i

is observed due to Ca2+ entry via voltage-gated Ca2+

channels. The question of whether rises of [Ca2+]i display
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any form of interaction was addressed in detail by Dasso

et al. (2000). Under carefully controlled conditions, these

workers examined the rises of [Ca2+]i in response to

graded hypoxia/anoxia with CO2 levels maintained either

at the normal, eucapnic level of 5% or when raised to

hypercapnic levels of 10% or 20%. The key observations

are summarized in Fig. 2. Whether or not one can conclude

from these data that stimulus interactions occur at the level

of [Ca2+]i is not clear. Using 10% CO2 as the additional

stimulus (Fig. 2A), rises of [Ca2+]i seen in response to

hypoxia are generally elevated, but not in a manner that

could be described as multiplicative. Indeed, some of the

additional rises of [Ca2+]i seen when hypoxia is applied

together with hypercapnia are only slightly greater than

those observed in response to hypoxia alone. Using a

stronger CO2 stimulus of 20% (Fig. 2B), multiplicative

interactions are detectable at some, but not all, levels of

Figure 2.

Plot of the mean relationship between [Ca2+]i (measured

fluorimetrically from type I cells using the [Ca2+]i indicator

Indo-1) and PO2
under eucapnic conditions, and when CO2 was

raised to either 10% (A) or 20% (B). Taken from (Dasso et al.

2000) with permission.

hypoxia. These findings, whilst providing some evidence

for multiplicative stimulus interactions, are not in full

agreement with earlier studies of afferent chemoreceptor

discharge (Fig. 1), which indicate that stimulus interaction

occurs over a wide range of O2 and CO2 levels.

Effects of chemostimuli on catecholamine secretion

Direct measurements of stimulus-evoked transmitter

release from individual type I cells are still in their

infancy, and to date have been confined to the study

of catecholamines released from type I cells (Hatton &

Peers, 1997; Carpenter et al. 2000; Pardal et al. 2000).

This is in large part due to the technical demands of

monitoring release of various transmitters from isolated

cells. Fortunately, catecholamines are amenable to such

studies since they are easily oxidized and so can be

monitored amperometrically (Chow & Von Ruden, 1995).

The technique of amperometry allows placement of

polarized carbon fibre microelectrodes close to individual

cells, so that any released catecholamine diffusing to the

electrode tip is instantly oxidized. This allows detection

of exocytosis as a real-time electrical event. Amperometry

has to date only been used to study catecholamine release

from type I cells in a limited number of reports (see above),

and the question of whether stimulus interaction occurs at

the level of transmitter release from type I cells has yet to

be addressed. However, progress has been made using the

PC12 cell line, pioneered by Millhorn and colleagues as a

model system for studying chemoreception at the single

cell level (Zhu et al. 1996; Conforti & Millhorn, 1997).

PC12 cells are a well-established cell line having

proved useful as a model system for studying a wide

variety of cellular functions. They are derived from rat

adrenal chromaffin tissue and synthesize, store and release

catecholamines. Zhu et al. (1996) first demonstrated

that these cells could be used to study chemoreception

by demonstrating that they possess O2 sensitive K+

channels, and that hypoxia caused cell depolarization and a

subsequent rise of [Ca2+]i. We used these cells to show that

hypoxia could evoke quantal catecholamine release in a

graded manner (Fig. 3, adapted from Taylor & Peers, 1998).

The relationship between PO2
and catecholamine release

was qualitatively reminiscent of the relationship between

PO2
and rises of [Ca2+]i (Fig. 2) and afferent chemosensory

discharge. Subsequent studies established that hypoxia-

evoked catecholamine secretion was entirely dependent on

Ca2+ influx through voltage-gated Ca2+ channels (Taylor

& Peers, 1998). In addition, we demonstrated that acidosis

(caused either by simple reduction of extracellular pH, or

by addition of weak acids to cause intracellular acidosis)

was an effective secretagogue, and that acid-evoked

C© The Physiological Society 2004
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transmitter release was also entirely dependent on voltage-

gated Ca2+ entry (Taylor et al. 1999). Crucially, we also

found evidence that stimulus interactions occurred at

the level of catecholamine release (Fig. 4). Thus hypoxia

was only a weak secretagogue when the background pH

was alkaline, but when pH was reduced, hypoxia was

far more effective. Analysis of exocytotic frequency as a

function of PO2
with varying pH levels indicated that

pH affected the slope of the relationship between PO2

and catecholamine secretion (Taylor et al. 1999). Thus,

evidence of multiplicative stimulus interactions was found

at the single cell level.

Since no compelling evidence for stimulus interactions

was found at the level of K+ channel inhibition or at

the level of rises of [Ca2+]i, the question arises of how

such interactions were apparent at the level of transmitter

release. The answer may lie in two key observations. First,

while interactions were not apparent at the level of [Ca2+]i

Figure 3.

Hypoxia-evoked catecholamine secretion

from a single PC12 cell. Left, upper trace

shows PO2
levels measured in the same

position of a perfusion chamber as where

a PC12 cell was placed for study. Lower

trace shows amperometric recording

from a single cell. Note the appearance of

spike-like events as the PO2
declines. Each

spike corresponds to the oxidation of the

released contents of a single vesicle of

catecholamine. Right, plot of the

relationship between mean spike

frequency and PO2
, determined from

experiments such as those shown on the

left. Taken from (Taylor & Peers, 1998)

with permission.

Figure 4.

Left, upper trace indicates PO2
levels as in

Figure 3. Below are shown two

amperometric traces from individual PC12

cells in response to hypoxia either under

acidic (middle trace) or alkaline (lower

trace) conditions, as indicated. Right, plot

of the relationship between mean spike

frequency and PO2
at three different pH

levels. Note the increased slope of the

relationship as background pH levels

become more acidic. Taken from (Taylor

et al. 1999) with permission.

rises (Fig. 2), there clearly were larger rises of [Ca2+]i in

response to hypoxia when CO2 levels were raised (Dasso

et al. 2000). These larger rises were generally modest,

but the fact that they were seen at all is crucial. The

second observation is not taken from studies of the carotid

body, but instead comes from much earlier work in which

the release of acetylcholine as a function of extracellular

[Ca2+] was examined in motor nerve terminals, using the

classic frog neuromuscular junction preparation (Dodge &

Rahamimoff, 1967). In these studies, it was established that

the relationship between [Ca2+] and acetylcholine release

(measured as an end-plate potential) was not linear, but

was in fact a power relationship (in this case, acetylcholine

release was proportional to [Ca2+]3.9). This means that

only a small additional rise of [Ca2+]i is required to observe

a substantial increase in transmitter release. Such small

additional rises were reported in type I cells when CO2 was

raised during hypoxia (Dasso et al. 2000), and are likely

C© The Physiological Society 2004
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to account for the large rises in catecholamine exocytosis

observed in PC12 cells.

Clearly, much further work is required before these

ideas can be established as accounting for multiplicative

interactions of chemostimuli in the carotid body.

Primarily, the experiments reported in the model

chemoreceptor PC12 cell need to be repeated in type I

cells, and additional mechanisms within the carotid body

(such as, for example, dysinhibition of retrograde tonic

nitric oxide or carbon monoxide release (Prabhakar,

1999)). However, the long-standing possibility that the

relationship between [Ca2+]i and transmitter release is

supralinear in the carotid body type I cell, as it is

in other synaptic preparations, is worthy of further

consideration.
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