95 research outputs found

    Hardware-in-the-Loop Platform for Assessing Battery State Estimators in Electric Vehicles

    Get PDF
    The development of new algorithms for the management and state estimation of lithiumion batteries requires their verification and performance assessment using different approaches and tools. This paper aims at presenting an advanced hardware in the loop platform which uses an accurate model of the battery to test the functionalities of battery management systems (BMSs) in electric vehicles. The developed platform sends the simulated battery data directly to the BMS under test via a communication link, ensuring the safety of the tests. As a case study, the platform has been used to test two promising battery state estimators, the Adaptive Mix Algorithm and the Dual Extended Kalman Filter, implemented on a field-programmable gate array based BMS. Results show the importance of the assessment of these algorithms under different load profiles and conditions of the battery, thus highlighting the capabilities of the proposed platform to simulate many different situations in which the estimators will work in the target application

    Battery Management System for Future Electric Vehicles

    Get PDF
    The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components

    Advanced Battery Technologies: New Applications and Management Systems

    Get PDF
    In recent years, lithium-ion batteries (LIBs) have been increasingly contributing to the development of novel engineering systems with energy storage requirements. LIBs are playing an essential role in our society, as they are being used in a wide variety of applications, ranging from consumer electronics, electric mobility, renewable energy storage, biomedical applications, or aerospace systems. Despite the remarkable achievements and applicability of LIBs, there are several features within this technology that require further research and improvements. In this book, a collection of 10 original research papers addresses some of those key features, including: battery testing methodologies, state of charge and state of health monitoring, and system-level power electronics applications. One key aspect to emphasize when it comes to this book is the multidisciplinary nature of the selected papers. The presented research was developed at university departments, institutes and organizations of different disciplines, including Electrical Engineering, Control Engineering, Computer Science or Material Science, to name a few examples. The overall result is a book that represents a coherent collection of multidisciplinary works within the prominent field of LIBs

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared

    Adaptive Techniques for Estimation and Online Monitoring of Battery Energy Storage Devices

    Get PDF
    The battery management system (BMS) plays a defining role in the safety and proper operation of any battery energy storage system (BESS). Without significant advances in the state-of-the-art of BMS algorithms, the future uptake of high power/energy density battery chemistries by consumers in safety-critical applications, is not feasible. Therefore, this thesis aims to provide a coherent body of work on the enhancement of the most important tasks performed by a modern BMS, that is, the estimation and monitoring of various battery states, e.g. state-of-charge (SOC), state-of-health (SOH) and state-of-power (SOP). The Kalman Filter is an elegant set of robust equations that is often utilised by designers in modern BMS, to estimate the battery states and parameters in real time. A nonlinear version of the KF technique, namely the Extended Kalman Filter (EKF) is applied throughout this thesis to estimate the battery’s states including SOC, as well as the battery’s impedance parameters. To this end, a suitable model structure for online battery modelling and identification is selected through a comparative study of the most popular electrical equivalent-circuit battery models for real-time applications. Then, a novel improvement to the EKF-based battery parameters identification technique is made through a deterministic initialisation of the battery model parameters through a broadband system identification technique, namely the pseudorandom binary sequences (PRBS). In addition, a novel decentralised framework for the enhancement of the EKF-based SOC estimation for those lithium-ion batteries with an inherently flat open-circuit voltage (OCV) response is formulated. By combining these techniques, it is possible to develop a more reliable battery states monitoring system, which can achieve estimation errors of less than 1%. Finally, the proposed BMS algorithms in this thesis are embedded on a low-cost microprocessor hardware platform to demonstrated the usefulness of the developed EKF-based battery states estimator in a practical setting. This a significant achievement when compared to those costly BMS development platforms, such as those based on FPGAs (field-programmable gate arrays)

    Bilinear and parallel prediction methods

    Get PDF
    To make accurate predictions about a system one must develop a model for that system. Bilinear models are often attractive options because they allow the user to model nonlinear interactions between variables in complicated systems with (potentially) millions of variables. In this work we apply bilinear models to two separate domains and present novel models for improved prediction accuracy and novel heuristics for solving the optimization problems that arise from the use of bilinear models. In the first system we use a bilinear model to predict the remaining useful life (RUL) of a rechargeable lithium-ion (Li-ion) battery. The approach used to solve the bilinear model leverages bilinear kernel regression to build a nonlinear mapping between the capacity feature space and the RUL state space. Specific innovations of the approach include: a general framework for robust sparse prognostics that effectively incorporates sparsity into kernel regression and implicitly compensates for errors in capacity features; and two numerical procedures for error estimation that efficiently derives optimal values of the regression model parameters. Second, we apply a bilinear model to the matrix completion problem, where one seeks to recover a data matrix from a small sample of observed entries. We assume the matrix we wish to recover is low-rank (the rank of the matrix is much less than either dimension) and model it as the product of two low-rank matrices. We then adapt existing parallel solutions to this bilinear model for use on a graphics processing unit (GPU). Additionally, we introduce a novel method for inductive matrix completion on a GPU
    corecore