914 research outputs found

    Human factors in space telepresence

    Get PDF
    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing

    Autonomous robot manipulator-based exploration and mapping system for bridge maintenance

    Full text link
    This paper presents a system for Autonomous eXploration to Build A Map (AXBAM) of an unknown, 3D complex steel bridge structure using a 6 degree-of-freedom anthropomorphic robot manipulator instrumented with a laser range scanner. The proposed algorithm considers the trade-off between the predicted environment information gain available from a sensing viewpoint and the manipulator joint angle changes required to position a sensor at that viewpoint, and then obtains collision-free paths through safe, previously explored regions. Information gathered from multiple viewpoints is fused to achieve a detailed 3D map. Experimental results show that the AXBAM system explores and builds quality maps of complex unknown regions in a consistent and timely manner. © 2011 Elsevier B.V. All rights reserved

    A sliding window approach to exploration for 3D map building using a biologically inspired bridge inspection robot

    Full text link
    © 2015 IEEE. This paper presents a Sliding Window approach to viewpoint selection when exploring an environment using a RGB-D sensor mounted to the end-effector of an inchworm climbing robot for inspecting areas inside steel bridge archways which cannot be easily accessed by workers. The proposed exploration approach uses a kinematic chain robot model and information theory-based next best view calculations to predict poses which are safe and are able to reduce the information remaining in an environment. At each exploration step, a viewpoint is selected by analysing the Pareto efficiency of the predicted information gain and the required movement for a set of candidate poses. In contrast to previous approaches, a sliding window is used to determine candidate poses so as to avoid the costly operation of assessing the set of candidates in its entirety. Experimental results in simulation and on a prototype climbing robot platform show the approach requires fewer gain calculations and less robot movement, and therefore is more efficient than other approaches when exploring a complex 3D steel bridge structure

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Toward Robots with Peripersonal Space Representation for Adaptive Behaviors

    Get PDF
    The abilities to adapt and act autonomously in an unstructured and human-oriented environment are necessarily vital for the next generation of robots, which aim to safely cooperate with humans. While this adaptability is natural and feasible for humans, it is still very complex and challenging for robots. Observations and findings from psychology and neuroscience in respect to the development of the human sensorimotor system can inform the development of novel approaches to adaptive robotics. Among these is the formation of the representation of space closely surrounding the body, the Peripersonal Space (PPS) , from multisensory sources like vision, hearing, touch and proprioception, which helps to facilitate human activities within their surroundings. Taking inspiration from the virtual safety margin formed by the PPS representation in humans, this thesis first constructs an equivalent model of the safety zone for each body part of the iCub humanoid robot. This PPS layer serves as a distributed collision predictor, which translates visually detected objects approaching a robot\u2019s body parts (e.g., arm, hand) into the probabilities of a collision between those objects and body parts. This leads to adaptive avoidance behaviors in the robot via an optimization-based reactive controller. Notably, this visual reactive control pipeline can also seamlessly incorporate tactile input to guarantee safety in both pre- and post-collision phases in physical Human-Robot Interaction (pHRI). Concurrently, the controller is also able to take into account multiple targets (of manipulation reaching tasks) generated by a multiple Cartesian point planner. All components, namely the PPS, the multi-target motion planner (for manipulation reaching tasks), the reaching-with-avoidance controller and the humancentred visual perception, are combined harmoniously to form a hybrid control framework designed to provide safety for robots\u2019 interactions in a cluttered environment shared with human partners. Later, motivated by the development of manipulation skills in infants, in which the multisensory integration is thought to play an important role, a learning framework is proposed to allow a robot to learn the processes of forming sensory representations, namely visuomotor and visuotactile, from their own motor activities in the environment. Both multisensory integration models are constructed with Deep Neural Networks (DNNs) in such a way that their outputs are represented in motor space to facilitate the robot\u2019s subsequent actions

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom
    corecore