3,688 research outputs found

    Noise-Constrained Performance Optimization by Simultaneous Gate and Wire Sizing Based on Lagrangian Relaxation

    Get PDF
    Noise, as well as area, delay, and power, is one of the most important concerns in the design of deep sub-micron ICs. Currently existing algorithms can not handle simultaneous switching conditions of signals for noise minimization. In this paper, we model not only physical coupling capacitance, but also simultaneous switching behavior for noise optimization. Based on Lagrangian relaxation, we present an algorithm that can optimally solve the simultaneous noise, area, delay, and power optimization problem by sizing circuit components. Our algorithm, with linear memory requirement overall and linear runtime per iteration, is very effective and efficient. For example, for a circuit of 6144 wires and 3512 gates, our algorithm solves the simultaneous optimization problem using only 2.1 MB memory and 47 minute runtime to achieve the precision of within 1% error on a SUN UltraSPARC-I workstation

    Crosstalk-driven interconnect optimization by simultaneous gate and wire sizing

    Full text link

    Fast and exact simultaneous gate and wire sizing by Lagrangian relaxation

    Full text link

    Performance and power optimization in VLSI physical design

    Get PDF
    As VLSI technology enters the nanoscale regime, a great amount of efforts have been made to reduce interconnect delay. Among them, buffer insertion stands out as an effective technique for timing optimization. A dramatic rise in on-chip buffer density has been witnessed. For example, in two recent IBM ASIC designs, 25% gates are buffers. In this thesis, three buffer insertion algorithms are presented for the procedure of performance and power optimization. The second chapter focuses on improving circuit performance under inductance effect. The new algorithm works under the dynamic programming framework and runs in provably linear time for multiple buffer types due to two novel techniques: restrictive cost bucketing and efficient delay update. The experimental results demonstrate that our linear time algorithm consistently outperforms all known RLC buffering algorithms in terms of both solution quality and runtime. That is, the new algorithm uses fewer buffers, runs in shorter time and the buffered tree has better timing. The third chapter presents a method to guarantee a high fidelity signal transmission in global bus. It proposes a new redundant via insertion technique to reduce via variation and signal distortion in twisted differential line. In addition, a new buffer insertion technique is proposed to synchronize the transmitted signals, thus further improving the effectiveness of the twisted differential line. Experimental results demonstrate a 6GHz signal can be transmitted with high fidelity using the new approaches. In contrast, only a 100MHz signal can be reliably transmitted using a single-end bus with power/ground shielding. Compared to conventional twisted differential line structure, our new techniques can reduce the magnitude of noise by 45% as witnessed in our simulation. The fourth chapter proposes a buffer insertion and gate sizing algorithm for million plus gates. The algorithm takes a combinational circuit as input instead of individual nets and greatly reduces the buffer and gate cost of the entire circuit. The algorithm has two main features: 1) A circuit partition technique based on the criticality of the primary inputs, which provides the scalability for the algorithm, and 2) A linear programming formulation of non-linear delay versus cost tradeoff, which formulates the simultaneous buffer insertion and gate sizing into linear programming problem. Experimental results on ISCAS85 circuits show that even without the circuit partition technique, the new algorithm achieves 17X speedup compared with path based algorithm. In the meantime, the new algorithm saves 16.0% buffer cost, 4.9% gate cost, 5.8% total cost and results in less circuit delay

    An efficient routing tree construction algorithm with buffer insertion, wire sizing and obstacle considerations

    Get PDF
    In this thesis, we present a fast algorithm to construct a performance driven routing tree with simultaneous buffer insertion and wire sizing in the presence of wire and buffer obstacles. Recently several algorithms like Ptree, Stree, Sptree, and graph-RTBW have been published addressing the routing tree construction problem. But all these algorithms are slow and not scalable. Here we present an algorithm which is fast and scalable with problem size. The main idea of algorithm is to specify some important high-level features of the whole routing tree so that it can be broken down into several components. We apply stochastic search to find the best specification. Since we need very few high-level features to evaluate a routing tree, the size of stochastic search space is small which can be searched in very less time. The solutions for the components are either pre-generated and stored in lookup tables, or generated by extremely fast algorithms whenever needed. Since, the solutions of the components can be constructed efficiently, we can construct and evaluate the whole routing tree efficiently for each specification. Experimental results show that, for trees of moderate size, our algorithm is at least several hundred times faster than the recently proposed algorithms, Sptree and graph-RTBW, with not much difference in delay and resource consumption

    An Improved Lagrangian Relaxation Method for VLSI Combinational Circuit Optimization

    Get PDF
    Gate sizing and threshold voltage (Vt) assignment are very popular and useful techniques in current very large scale integration (VLSI) design flow for timing and power optimization. Lagrangian relaxation (LR) is a common method for handling multi-objectives and proven to reach optimal solution under continuous solution space. However, it is more complex to use Lagrangian relaxation under discrete solution space. The Lagrangian dual problem is non-convex and previously a sub-gradient method was used to solve it. The sub-gradient method is a greedy approach for substituting gradient method in the deepest descent method, and has room for further improvement. In addition, Lagrangian sub-problem cannot be solved directly by mathematical approaches under discrete solution space. Here we propose a new Lagrangian relaxation-based method for simultaneous gate sizing and Vt assignment under discrete solution space. In this work, some new approaches are provided to solve the Lagrangian dual problem considering not only slack but also the relationship between Lagrangian multipliers and circuit timing. We want to solve the Lagrangian dual problem more precisely than did previous methods, such as the sub-gradient method. In addition, a table-lookup method is provided to replace mathematical approaches for solving the Lagrangian sub-problem under discrete size and Vt options. The experimental results show that our method can lead to about 50 percent and 58 percent power reduction subject to the same timing constraints compared with a Lagrangian relaxation method using sub-gradient method and a state-of-the-art previous work. These two methods are implemented by us for comparison. Our method also results in better circuit timing subject to tight timing constraints

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    Effective network grid synthesis and optimization for high performance very large scale integration system design

    Get PDF
    制度:新 ; 文部省報告番号:甲2642号 ; 学位の種類:博士(工学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新480
    corecore