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Abstract

This paper studiesthe problemof transistorsizing of
CMOScircuits optimizedfor enegy-delayefiiciencyi.e.,
for optimal Et™ wheee E is the enegy consumptiorand
t is thedelayof the circuit, while n is a fixedpositiveop-
timizationindex that reflectshe chosentrade-of between
enegy anddelay

We proposea setof analyticalformulasthat closelyap-
proximatethe optimal transistorsizes. We thenstudyan
efficientiteration procedue that can further improve the
original analytical solution. Basedon theseresults,we
introducea novel transistorsizingalgorithm for enegy-
delayefficiency

1. Intr oduction

The rapidly increasingcompleity of VLSI systems
hasmadeit necessaryo pay ever more attentionto de-
sign issuesthat affect enegy consumption. One of the
original motivationsfor CMOStechnologywasits low en-
ergy consumptionandtoday therearestill noalternatves
thatapproacht in enegy efficiency. Neverthelessenegy
consumptioris moreandmoreoftenthefactorthatlimits
the performancef contemporanfCMOS systems.

In orderto comparalesignghatrun atdifferentspeeds
and consumedifferent amountsof enegy, we have to
combinetheenepy, E, andthedelay, ¢, into asinglemet-
ric 8. The authorshave previously proposeds = Et?
asan enegy-delay—eficiency metric for VLSI computa-
tion [1, 2, 17]. The main reasonfor choosingthis met-
ric over othersis that¢ is to first orderconstantvhenwe
varythesupplyvoltageof aCMOSsystem:ithedelayfalls
roughlylinearly with supplyvoltage,andthe enegy con-
sumptionincreasesoughly quadratically;therefore, Et2
staysroughly constantHence the § metricallows the de-
signerto factor“runtime” voltagescalingout of consider
ation. The authorshave arguedthat, owing to its voltage
independencehe é metricis superiorto otherefficiency
metricsfoundin theliterature,suchasE or Et [3].

In practice we canachiese ary desiredtargetspeedor
target enegy consumptionby adjustingthe supply volt-
age. If we desireto changeto a particulardelaytargett,
we adjustthe voltageto meetit, anda circuit optimized

for 6 would have thebestE for thatt. Likewise,we may
chooseanenepgy target £ andgetthe bestt instead.

The Et? metricis a specialcaseof a wider classof
enegy metrics,whichincludesE and Et, amongothers.
Theauthorshave shavn thata metricof themoregeneral
form Et™ for n > 0 characterizeany feasibletrade-of,
notonly thetrade-of throughvoltagescaling betweerthe
enegy andthe delayof a computation4]. For example,
ary problemof minimizing the enegy of a circuit for a
giventargetdelaycanbe restatecas minimizing Et™ for
acertainn. We call n theenegy-delayefficiencyindex.

In this paper we study the problemof transistorsiz-
ing for enegy-delayefficient circuits. Given a transistor
netlistwhereeachtransistor; haswidth w; andlengthl;,
transistorsizingfindsthevaluesof w; andl; thatoptimize
thetargetfunction—inour caseEt™. While it is truethat
mostlayoutsystemslemandhattransistorsizesbe quan-
tizedto somegrid, we ignorethis constraint.

Also, we canremove the [;s from consideratiorsince
thereis usually no reasonto setthe lengthsof transis-
torsin a digital circuit to anything other than the mini-
mum allowed by the fabricationtechnology: increasing
the length increaseshoth the resistanceand the capaci-
tanceandhenceworsenshoththeenegy anddelay

The sizedtransistorsf a circuit areconnectedo each
otherthroughwires. The capacitancef thesewiresleads
to additionalenegy and delay (We ignore wire resis-
tancein this paper) For delay-onlyoptimization,which
canbe phrasedasthe minimizationof the metric E¢™ for
verylargen, thewire capacitanceanbe overcomeby in-
creasingtransistorsizeswhere appropriate. Corversely
for enegy-only optimization,whenn = 0, the transistor
widths canbe choserto be minimumsize,independently
of thewire capacitanceln contrastio thesespecialcases,
for n small but nonzero,wire capacitanceannotbe ig-
noredor overcomen astraightforvardway, andthe opti-
maltransistorsizesdependstronglyon this capacitance.

In this paper we proposean analyticformulafor tran-
sistorsizing. If theapproximatesolutionis acceptablédor
the given application,the formula can be usedasis (no
numericaloptimizationis thenneeded)however, if more
accurag is required,the formula canbe usedto provide
agoodstartingpoint for numericaloptimization.Laterin
the paperwe proposeanefficient iterationprocedurehat



canfurtherimprove the accurayg of the original analyti-
cal solution. Basedon theseresults we introducea novel
transistorsizing algorithmfor enegy-delayefficient cir-
cuits.

Theproofsof propertiesandtheoremsave beenomit-
ted owing to spacdimitations. They canbefoundin the
firstauthors Ph.D.dissertatiorj16].

2. PreviousWork

Classical numerical methods, such as the conju-
gate gradientdescentmethod,have beenappliedto the
transistorsizing problem: there exist several transistor
sizing programsthat minimize power consumptiorwhile
maintaining performancespecificationd5, 6, 7]. More
recently several specializednumericaltechniqueshave
beenproposed[8, 9, 10]. On the analyticalside, Cong
and Koh have studiedthe related problem of simulta-
neousgateand wire optimizationfor optimal delay and
power [13]. Cong and Koh'’s solution spaceand opti-
mization metric are differentfrom what we shall seein
the presentpaper A differentanalytic approachto the
transistorsizing problem,for the performancenetric Et,
is givenby Hu [11] andanotherby Horowitz, Indermauy
andGonzaleZ12]. Both Hu andHorowitz etal. present
gualitative results;they only analyzebasicinvertergates.
To thebestof theauthors’knowledge thepresenpaperis
thefirst onethatgoesbeyondsucha qualitatve approach,
bothin termsof the generalityof the optimizationmetric
andin termsof the generalityof the consideredircuits.

3. Et"-optimal circuits

Lett bethecycletime of thecritical cycle of the circuit
whosetransistorsizeswe wish to optimize. We assume
that the circuit is designedso that all cyclesare critical;
this is true in mary well designeccircuits, andit is true
for any optimally sizedcircuit in theabsencef additional
constraintontransistosizes(suchasminimum-sizecon-
straintsor slew-rateconstraints)Let E betheenegy con-
sumptionof the critical cycle. Let usfurtherassumehat
E is a constantproportionof the total enegy consump-
tion; in this case,optimizing the enegy E of the critical
cycle optimizesthe total enegy of the circuit, andvice-
versa.

Usingther-model[14, 15], we canwrite theenegy as

m—1
E= Z (wnz + Wpi +pi)a (1)
i=0
andthedelayas
B "= Fni fir 1 (Wn(ig1) + Wp(it1) + Pit1)
>
. Wni
=0
m—1

)u'kpifi+1(wn(i+1) + Wpit1) + Dit1)
Wpi

,(2)
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wherew,,; andw,,; arethe nFET andpFET (hMOS and
pMOS transistor)widths of logic gatei; ky;, kp; > 0 are
the numbersof nFETsandpFETsin seriesin logic gate
i; piv1 > 0 representshewire parasiticsat the outputof

logic gatei; f;+1 > 0 is thefanoutof logic gatei; i is the

ratio of electronmobility to hole mobility; m is thelength
of thecycle,andi € 0..m — 1 with all indicesmodulom.

In writing Equationsl and2 we have madeseveralsimpli-

fying assumptions.We ignoredthe enegy consumption
dueto short-circuitandleakagecurrents Furthermorewe

have constraineall devicesin a seriestransistometwork

to havethesamewidth. Finally, we have ignoredthewire

RC andtime-of-flight delays.

4. Propertiesof transistor sizesin
Et"-optimal circuits

Property 1 If w; are the valuesthat minimizeEt™ for a
givensetof wire parasiticsp; andgatetopologiesk;, then
aw;, a > 0 are the valuesthat minimizeEt™ for the set
of wire parasiticsap; andgatetopolagiesk;.

Property 2 If w; are the valuesthat minimizeEt™ for a
givensetof wire parasiticsp; andgatetopologiesk;, then
w; alsominimizeEt™ for the setof wire parasiticsp; and
gatetopolagiesak;.

If weignorespeciakonstraint®ntransistorsizes such
as minimum-size and minimum-slev-rate constraints,
andif we further assumethat every transitionon every
circuit node mattersto the circuit's overall speed(this
lastassumptioris especiallyrelevantin asynchronousir-
cuits),thenwe canshaw that,whena systemis optimized
for Et™, thewidths of thenFETsandpFETsof eachgate
1 arerelatedasfollows[16]:
kpi
e 3
Equation3is alocalrelationshipijt doesnotdepencdn ei-
ther E, t or n. Equation3 allows usto eliminateeitherthe
nFETsor the pFETsfrom the transistorsizing problem.
In particular with the notation

Wpi = WniA[ K

Wi = Wpj + Wpi = Wnp; (1 + l;kpz> (4)
and
)
ki = fi-{-lkni (]_ + l;’c P.’ ) , (5)

by eliminatingthepFET sizesfrom Equationsl and2, we
get

m—1
E=Y (wi+p) (6)
=0
and
= wipt +pin
t= ZO k*T (7)
7=

We shallusethesesimplerformulasin the expressiongor
Et™,



5. Preliminaries for Et"-optimal transistor
sizing
We formalizethe sizing problemof a transistometlist

for minimal Et™ astheminimization,overthew;s, of Et™
whereE andt aregivenby Equationss and7.

m—1
Et" = (Z (wi + pi) ) <Z ki 1w’+p’> ®)
i=0

Notethat Equation8 holdsnot only for aring, but also
for achainof gatesaslongasthewidthsandparasitic§or
theinputof thechainareequalto thewidthsandparasitics
for the outputof the chain(sincein this casethe £ andt
for a chain have the sameform as the onesfor a ring).
This is animportantobsenation, asit makesour results
for transistorsizing applicablebothto latengy andcycle-
time minimization.

Et™ is a posynomiafunction of the transistorwidths.
A posynomialin variableslwi is a function of the form
> o<i<q a,wg()wfl...wf;,l wherea; > 0. A posyno-
mial problemis the minimizationof oneposynomialvhile
simultaneouslgatisfyinga setof upperboundconstraints
onotherposynomialsWith thesubstitutionw; = e*¢, ary
posynomialcan be transformedinto a corvex function;
thereforethe unique optimum of Et" is achiezed when
Vi - 8Et" =0.

ThIS |mpI|esthattheopt|mum|s achievedwhen

ki1 ki(wirr + piv1)

Vi : -
! Wi;—1 U)iZ
B 12 - ‘f;'i’f __11

whereP = E/t is the power consumptiorof the chosen

cycle. If Vi : p; = 0 (no wire parasitics)andn is very
large (delay-onlyoptimization),Equation9 reducego
kiwiﬂ =ki1 i ,
w; Wi—1

which is the known condition of equalstagedelaysfor

delay-onlytransistorsizing[14]. If we wereableto solve
Equation9 analytically for ary p;s and k;s, we could
computethe optimalw;s directly andour transistorsizing
problemwould be solved. Unfortunately this is not the
case. We can computean exact analytical solution of

Equation9 only for a restrictedclassof p;s andk;s [16].

In particulay we canshow thatif Vi : k; = k, i.e.,thecase
of homogeneousircuits,andVi : p; = p then

Vi:w; =np Vp, k> 0. (10)
Equation10 stateghatthetransistomwidthsw; of ahomo-

geneougircuit with equalwire parasitic, optimizedfor
Et™, areall equalto np, independentlyf & [17, 18].

6. FEt"-optimal transistor sizes

So far we have explored somegeneralpropertiesof
transistorsizesfor circuits optimizedfor Et™. Basedon
thesepropertieswe now develop a simpleanalyticalfor-
mula that approximategshe transistorsizesof an Et"-
optimalcircuit.

We start by finding an approximateformula for the
transistorsizesw; thatoptimize Et™, in Equation8, when
Vi : k; = k. Wethenextendthisformulato thecasewhen
the k;s arenolongerequalto eachother

6.1. Homogeneou<Cir cuits

For thecasewhenVi : k; = k, we proposeanapproxi-
matesolutionof thew;s, of thefollowing form:

W; = A1Pi+1 + Q2PAvg (11)

where .
—> pi (12)
m

anda; anday areconstantdo be determinedater. First,
let us motivate Equation11. Basedon Property2, we
know that finding the w;s whenVi : k; = k is equva-
lentto finding the w;swhenVi : k; = 1. In otherwords,
thevalueof thew;sis independentf thek;s,whenall k;s
areequal.Corversely basedn Propertyl, we know that
thew;s scalelinearly with the p;s. This suggestshatthe
w;S shouldnot have termsthatareindependensf the p;s.
Basedon our experienceof sizing, we know that—while
the transistorsizesof gatei dependmostly on p;1—the
effect of a particularp; getsdistributedto somedegreeto

all othergates. As a consequenceaye would like Equa-
tion 11 to dependinearly on bothp;; andsomeaverage
of all otherp;s andonesuchchoiceis oy pi+1 + a2pavg.

We usethe arithmetic meanfor pa,y sincethe p;s cor

respondphysicallyto wire capacitancethat are manipu-
lated additively bothin termsof delayandenegy. With

theseclarificationsin mind, we statethe following:

Theorem1 For a neighborhoodV, = [p — n,p + 7] of
p > 0,n > 0, thevaluesof a; anda, that minimizeEt"
giventhe w;s of the form definedby Equation11, whele
Vi:p; € Vp, ki =k >0andn — 0, are

DAvg =

1 1
2

2
a; = g and a =n — )
ot wt
If the problemis large,i.e., m — oo, -7 ~ 1 =
a1 = gty anday = T;((llfn")), thus &2 = 1 + 2n.

Whatis partlcularlysurprlsmgaboutEquatlonll is that
thestrengthof agivengatedependd$ar morestrongly(5 x
for Et? optimization)on theaverage parasitidoad (as =
5/3) thanit doesontheloadonthatparticular gate(a; =
1/3). Furthermorelim,,,¢ a1 = limp o2 = 0= Vi :
w; = 0forn = 0 regardlesof thep;s. In otherwords,for
enegy-only optimization, Equation11 yields minimum-
sizetransistorsasonemight expect.
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Figure 1. Accuracy in E, t and Et™ of Equation 11 with
a1 and as given by Theorem 1.

Theoreml yieldsthe optimalvaluesof a; andas in a
closeneighborhoof p, or equivalentlywhenthep;s are
closeto eachother We wantto checknow if the form of
thew;sgivenby Equationl1andTheoreml yieldsaprac-
tical approximationof the w;s whenVi : k; = k but the
p;sareno longercloseto eachother We usea numerical
optimizerto computethe error betweenthe optimal and
the predictedEt™ for a givenn, m anda setof p;s. We
variedm € [2,1000], n € [1,10] andusedthreediffer-
entdistributions(uniform, uniform-squaredanduniform-
cubed)for p; € [1,100]. The obserederrorsarepracti-
cally independentf the problemsizem andthedistribu-
tion choserfor the p;s; theerrorsonly dependon n. Fig-
urelshovstherelatveerrorin E, t andEt™ form = 31,
n € [1,10], k; = 1 andp; € [1,100] chosenrandomly
throughauniform-squarediistribution. Theaverageerror
in E is betweend.1%and5.5%,the averageerrorin ¢ is
between3.0%and-0.3%,andtheaverageerrorin Et™ is
betweenl.0%and1.7%.

6.2. Non-homogeneou<£ir cuits (first form)

Theformularesultingfrom Theoreml yieldsexcellent
resultswhenall ;s are equal. We would like to extend
it to incorporatethe casewhenthe k;s areno longerall
equal. To do this, we assumehat the cumulative effect
of the p;s andthe k;s on the w;s can be viewed asthe
productbetweentheindividual effect of the p;s (wire ca-
pacitancespn thew;s andtheindividual effect of the k;s
(gatetopologies)on the w;s. Hence,we proposean ap-
proximatesolutionof thew;s of thefollowing form:

ykm—1) (13)

wherea; andas aregivenby Theoremil, while functions
r; will be determinedater Whenall gatesareidentical,
i.e.,Vi: k; = k, we know from Equation10 thatthe w;s
are independenbf the k;s. For this reason,we choose
Ti(k‘(), ki,..., km_1) suchthatVk : Tz'(k‘, k..., k) =1
Basedon our experienceon delay-onlytransistorsiz-
ing, we know that—while the transistorsizesof gatei
dependstrongly on k;—the effect of a particulark; gets

w; = (1pit1 + a2pavg) Ti(ko, k1, - -
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Figure 2. Accuracy in E, t and Et™ of Equation 13 with
a1, ag, and r;s given by Theorem 2.

distributed to somedegreeto all othergates. As a con-
sequencewe would like r; to dependon both k; and
some averageof all other k;s. We use the geometric
meanka,, = %/]] ki asanaverageof the k;s, sinceit

hasphysicalmeaning—itis proportionalto thetheoretical
minimal delayof the cycle. In this context, we introduce
thefollowing

Theorem?2 For a neighborhoodV,, = [p — n,p + 7] of
p > 0,7 > 0, anda neighborhoodV, = [k — n, k + 7]
of k > 0, thevaluesof a1, as, 81 and By that minimize
Et™ giventhew;s of theform definedoy Equation13with

’I“i(ko,kl, .. -:kmfl) = [ ki:'/g +,32,Whe|eVz' 1 pi € Vp,
k; € Vi, andn — 0, are
1 1 1
2 2
o =g, =N—5 ", and Br=02==.
E+m721 E+mrzl 2

Theorem? yieldsthe optimalvaluesof a;, az, 1 and
B> whenthe p;s arein a closeneighborhooaf p, andthe
k;s arein a closeneighborhoodf k. We would like to
verify now how goodthesevaluesarein minimizing Et™
whenthe p;sandthek;s arenolongercloseto eachothet
We useagaina numericaloptimizerto computethe error
betweenthe optimal and the estimatedEt™ for a given
n, m anda setof p;s andk;s. We vary m € [2,1000],
n € [1,10] andusethreedifferentdistributions (uniform,
uniform-squaredand uniform-cubed)for p; € [1,100]
andk; € [1,3.3] (if we assumek,; € [1,6] andk,; €
[1,2], thenwith 4 = 2.5 we getk; € [6.66,21.95] or
equialently, usingProperty2, k; € [1,3.3]). Asfor Equa-
tion 11, theobsenederrorsarepracticallyindependenof
theproblemsizem andthedistribution choserfor thep;s
andthe k;s; the errorsonly dependon n. Figure2 shovs
therelative errorin E, t andE¢™ for m = 31, n € [1,10]
andp; € [1,100], k; € [1,3.3] choserrandomlythrough
auniform-squaredlistribution. The averageerrorin E is
betweenl.7%and6.1%,theaverageerrorin ¢ is between
-3.4%and1.7%,while the averageerrorin Et™ is about
3.3%for n = 2, butincreasingaboutlinearly with n, ow-



ingto theerroramplifyingartifactof Et™ (if t = to(1+A)
= t" = tf(1 + nA) for small A).

6.3. Non-homogeneou<£ir cuits (secondform)

Themainintendeduseof Equation13in enegy-delay
efficient designis to find approximatetransistorsizes
whenn = 2, i.e.,whenvoltagescalingis adesignparame-
ter. As Figure2 shaws, the equatiorstatedby Theorem2,
i.e.,aparticularcaseof Equationl3, doesthis reasonably
well—i.e., within a few percentof the optimum. On the
otherhand,one might wantto usesucha sizing formula
for largen aswell—i.e., predominantlydelay-onlyopti-
mization. Gettinga closeapproximationof £t™ whenn
is large requiresa very gooddelayestimate sinceevena
smallerror A in t getslinearly amplifiedto nA in Et™.
For thisreasonwe studythe behavior of Equation13and
the delayestimateresultingfrom it, whenn — oc.

For now, considera simpler problem,namelyfinding
thetransistowidthsw.; thatminimizet givenby Equa-
tion 7. Thisis aspecialcaseof the Et™ optimizationprob-
lem for n — oo. In [16] we have shovn thatthe optimal
delayt, = mka,, is reachedor transistorwidths that
have the property

Woo(i+1) _ Kavg

Wooi ki
We would like thew;s givenby Equation13to have prop-
erty (14)for largen. More precisely

Vi :

(14)

. Wi+41
lim —*t1
n—oo 11]1'

Weo(i41)
— Doolitl) 15
- (15)

or equialently, usinga; andas givenby Theoren2,

. Wi+ Tit+1 (k(); kl: -y kmfl) woo(i+1)
1 —— = lim = .
nl{rolo W; n—oo T; (kO; k,‘l, . km—l) Wooi
(16)

Condition 16 guaranteesthat the delay estimate re-
sulting from Equation 13 is optimal for large n. An
obvious choice of the r;s that fulfills (16) is Vi
ri(ko,k1,-..,km—1) = Bweoi, Wheres > 0 is a con-
stantscalingfactor Therole of 5 is to normalizethe w;s
to theright enegy level; its optimal valueis statedby the
following

Theorem3 For a neighborhoodV, = [p — n,p + n] of
p > 0,n > 0, anda neighborhoodVy, = [k — n, k + 7]
of k > 0, the valuesof a;, as, § that minimize Et"
given the w;s of the form definedby Equation 13 with

T,‘(ko,kl,...,km_l) = Bwes;, Whee Vi : p; € Vp,
k; € Vg, andn — 0, are
1
So 1 1
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Figure 3. Accuracy in E, t and Et™ of the approximation
given by Theorem 3.

AssumingVi : p; = p, andthew;s givenby Theorem3,
Equations and?7 yield

S.
E=(1+nSf)F and t=(1+ é)to@,
where E, is the theoreticalminimal enepgy (i.e. total
switchedwire parasitic)andt, is the theoreticalmini-
maldelay In [16, 17] we have shovn thatfor awide class
of circuits

1
Ex(14+n)Ey and t= (1+ﬁ)t°°

Giventhevalueof g from Theorem3, we have thatvn >
0: 5% < B < Sywith g = lifn—>0andﬂ Sy if
n — oo. If wechooses = 5 ,theerrorm FE isreduced
by bringing E closeto (1 + n)Eg, while if we choose
B = S, theerrorin ¢t is reducedby bringing ¢ closeto
(14 2o

The formula resulting from Theorem 3 works ex-
tremelywell in practicefor smallm, i.e.,it keepgheerror
in Et™ very low for the entirerangeof n, including large
n. However, for m largethe accuray of the formulade-
terioratessomeavhat dueto the factthat £ becomeson-
sistentlyoverestimatedwhile the estimatein ¢ staysvery
accurate.This is a consequencef the choiceof the r;s,
wherewe have intentionally favoredthe accurag of the
delayestimation.For largems, thedlfferencebetween—
andsS, becomedargeenoughsothattheresultings puIIs
E noticeablyaway from the optimum(1 + n) E,.

Figure 3 shows therelative errorin E, t and Et™ for
the approximatiorgivenby Theorem3 for m = 9 (an18
transitiongercyclecircuit),n € [1,10] andp; € [1,100],
k; € [1, 3.3] choserrandomlythrougha uniform-squared
distribution. The averageerrorin E is betweem.4%and
6.7%,the averageerrorin t is between0.2%and-2.8%,
andthe averageerrorin Et™ is betweenl.4%and2.3%.
It is interestingto point out thatfor n = 100, the average
errorin E is about1.2%,the averageerrorin ¢ is about
-0.003%,andtheaverageerrorin Et™ is about0.5%.



For clarity, Theoremsl, 2, and 3 were formulatedto
referto thetransistorsizingproblemof asingle-g/cle sys-
tem. However, thesetheoremscanbe easily extendedto
multi-cycle systemsWe extendformulall,andasacon-
sequencéheoreml, to multi-cycle systemsby redefin-
iNng payy for eachgatei to be the averageparasiticof
all simplecyclesgate: is partof. Theorem2 extendsto
multi-cycle systemsby substitutingmk 4,4 With ¢, (the
minimum achievabledelayof thecircuit). Giventhe defi-
nition of ws;S andp 4,4, Theorem3 generalizestraight-
forwardly to multi-cycle systems,with the only remark
that m—in the expressionof S; and S,—representshe
total numberof transistorsn the considerectircuit, not
justtheonesonagivencycle.

Rememberinghederivationof Sectior4, thevaluesof
the w;s are per gatei; but they canbe transformednto
the effective NFET and pFET sizesdirectly, using Equa-
tions 3, 4 and5.

7. An iterative approachto Et"-optimal
transistor sizing

With the help of Theorems2 and 3, we cancompute
approximatdransistoisizesof an Et™-optimalcircuit. As
we have seenthe approximatesolutionyieldsenegy and
delayvalueswithin a few percentof the optimum. How-
ever, if the accurag of sucha solutionis not acceptable
for thegivenapplication,onemightwishto employ anit-
eratve procedurdo “fine tune” theinitial transistorsizes.

Using Equation9, we cancomputew;—for afixedi—
asafunctionof the otherws. More preciselyif we call

4 = b1 + nbobs ar = (—n+1)b3 and an = —nbobs
T n+ Dby T (n+1)by T (n+1)by’
where
m m
o= Y wi+) P
i=1,i#j i=1
- wj + pj i
D DR
i=1,i, i i+ i1 Wit
ki_
by = ——L
Wi—1

and
b3 = ki(wit1 + pit1);

we cancomputew; asthe positive solutionto the cubic
equation
w? + ang2 +a1w; +ag = 0. a7

(Equationl7 hasasinglepositive rootfor n > 1; thiscan
befoundusingCardans method.)

The iterative procedurestartswith an initial solution
andthenrepetitvely computesachw; asthe positive so-
lution of Equationl7 with coeficientscomputedrom the
currentvalue of all otherws. It is easyto seethatsuch
a procedurecorvergesto the Et™-optimal solution. First,
the recomputedralue of w; yields a better Et™ thanthe

180000+ error in Et"2 (onglnal sizing formula + one step of iteration)—
er

ror in Et"2 (original sizing formula)-"--
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Figure 4. Error in Et?> when exhaustively simulating an
entire class of circuits.

pre-iterationvalue. This is becausea— = 0, i.e., the
new w; is Et™-optimalwhenall otherws arefixedattheir
currentvalue. Secondlythe Et™ optimizationproblemis
corvex in thews, hencealocal minimumreachedy the
iterationprocedures indeedthe global minimum.

To fully appreciatethe benefitof the proposeditera-
tion procedurewhenappliedto the initial solutiongiven
by Theoremg or 3, we exhaustizely analyzea particular
caseof Equation8 withn =2, m =5, p; € {1,2,3,4,5}
andk; € {1,2,3}. Figure4 shaws a histogramof therel-
ative errorin Et? betweerthe optimal values(computed
with an optimizationalgorithm)andthe estimatedvalues
basedon Theorem3, and also betweenthe optimal val-
uesandthe valuescomputedby onestepof theiteration
procedurestartingwith theapproximatesolutiongivenby
Theorenm3. Onestepof iterationassignonenew valueto
eachw;. We obsene thatthealreadysmallmaximalerror
of theoriginal sizingformulais reducecaboutten-fold by
asinglestepof theiterationprocedure Of coursepnecan
repeatthe sameprocedureandgetan even smallererror.
However, this secondstepdoesnot have the sameimpact
onreducingthe error asthefirst stephad. Giventhatthe
transistorsizesof areal circuit areinteger multiplesof a
technologydependentonstantthereis not muchpointin
trying to find the zero-errorsolution. Thatsolutionis un-
likely to beimplementablén practice,sinceit will likely
have non-integercomponents.

We have doneseveral experimentsin which we tested
the dependenc®f the iteration procedureon the initial
startingpoint. We have foundthatthe applicability of the
methodstronglydepend®n theinitial solution’s proxim-
ity to theoptimalsolution. Withouta goodinitial solution
like the one given by Theorem2 or 3, the methodstill
convergeseventuallyto the optimum. However, the first
stepof iterationyields a solutionthathasan error spread
two ordersof magnitudegreaterthanthe solutionresult-
ing from thefirst stepof theiterationexecutecdbnthegood
initial solution.



8. An algorithm for Et™-optimal sizing

As we have seen,the transistorsizesw; of a system
optimizedfor Et™ dependstronglyon the wire parasitics
p;. Unfortunately theseparasiticaarenot known a priori,
sincethey areattributesof wires that connecttransistors
whosedimensionsave notyet beenfound.

A two-phasealgorithm solvesthe problemof the un-
known parasitics. In the first phase given the transistor
netlist, eachwire is assignedan initial wiring cost. The
moreis known aboutthe structureof the transistometlist
and abouta future floorplan, the more accuratesuchan
assignmentvill be. Basedon theseinitial wire parasitics,
we canthencomputeaninitial estimatefor the w;s with
theformulasestablishedy Theorem< and3.

In the secondphasewe wire up the pre-sizedransis-
torsandextractthe actualwire capacitancefom thelay-
out. With thesenew parasiticswe recomputehetransis-
tor widths w;. Finally, we may fine-tunethe solution by
iteratingonceasdescribedn Section?.

If the accurag of the final solution should not be
deemedacceptablewe canadda passthrougha classi-
cal numericaloptimizer Giventhe proximity of the cur-
rent solutionto the optimum, suchan optimizationwill
corvergequickly. In thislastphasea moreaccurateran-
sistormodel(e.g.,aBSIM model)canbeemployed,soas
to bridgethe gapbetweerthe simplified transistormodel
usedin this paperandthe actualtransistotbehaior.

9. Conclusions

We have proposeda set of analytical formulas that
closely approximatethe optimal transistorsizesfor cir-
cuitsoptimizedfor Et™. We have justifiedthe validity of
theseformulas both mathematicallyand experimentally
We have proposedaniterative procedurehat canfurther
improve the accurag of the original analyticalsolution.
Experimentshav that,whenthe proceduras appliedon
the analyticalsolution, it convergesmuch more quickly
thenwith an arbitrary startingpoint. Basedon thesere-
sults, we have introduceda novel transistorsizing algo-
rithm for enegy-delayefficiency.
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