5 research outputs found

    Simultaneous prediction of RNA secondary structure and helix coaxial stacking

    Get PDF
    BACKGROUND: RNA secondary structure plays a scaffolding role for RNA tertiary conformation. Accurate secondary structure prediction can not only identify double-stranded helices and single stranded-loops but also help provide information for potential tertiary interaction motifs critical to the 3D conformation. The average accuracy in ab initio prediction remains 70%; performance improvement has only been limited to short RNA sequences. The prediction of tertiary interaction motifs is difficult without multiple, related sequences that are usually not available. This paper presents research that aims to improve the secondary structure prediction performance and to develop a capability to predict coaxial stacking between helices. Coaxial stacking positions two helices on the same axis, a tertiary motif present in almost all junctions that account for a high percentage of RNA tertiary structures. RESULTS: This research identified energetic rules for coaxial stacks and geometric constraints on stack combinations, which were applied to developing an efficient dynamic programming application for simultaneous prediction of secondary structure and coaxial stacking. Results on a number of non-coding RNA data sets, of short and moderately long lengths, show a performance improvement (specially on tRNAs) for secondary structure prediction when compared with existing methods. The program also demonstrates a capability for prediction of coaxial stacking. CONCLUSIONS: The significant leap of performance on tRNAs demonstrated in this work suggests that a breakthrough to a higher performance in RNA secondary structure prediction may lie in understanding contributions from tertiary motifs critical to the structure, as such information can be used to constrain geometrically as well as energetically the space of RNA secondary structure

    Simultaneous prediction of RNA secondary structure and helix coaxial stacking

    No full text
    Abstract Background RNA secondary structure plays a scaffolding role for RNA tertiary conformation. Accurate secondary structure prediction can not only identify double-stranded helices and single stranded-loops but also help provide information for potential tertiary interaction motifs critical to the 3D conformation. The average accuracy in ab initio prediction remains 70%; performance improvement has only been limited to short RNA sequences. The prediction of tertiary interaction motifs is difficult without multiple, related sequences that are usually not available. This paper presents research that aims to improve the secondary structure prediction performance and to develop a capability to predict coaxial stacking between helices. Coaxial stacking positions two helices on the same axis, a tertiary motif present in almost all junctions that account for a high percentage of RNA tertiary structures. Results This research identified energetic rules for coaxial stacks and geometric constraints on stack combinations, which were applied to developing an efficient dynamic programming application for simultaneous prediction of secondary structure and coaxial stacking. Results on a number of non-coding RNA data sets, of short and moderately long lengths, show a performance improvement (specially on tRNAs) for secondary structure prediction when compared with existing methods. The program also demonstrates a capability for prediction of coaxial stacking. Conclusions The significant leap of performance on tRNAs demonstrated in this work suggests that a breakthrough to a higher performance in RNA secondary structure prediction may lie in understanding contributions from tertiary motifs critical to the structure, as such information can be used to constrain geometrically as well as energetically the space of RNA secondary structure.</p

    Engineering protein biosynthesis apparatus, advanced design and screening strategies for small and fluorinated substrates in orthogonal translation

    Get PDF
    Protein engineering is a comprehensive toolbox for the chemical modification of enzymes in particular, and for the expansion of molecular functional diversity in general. In recent decades, two different categories have become established for the engineering of proteins. These include the approach of directed evolution approaches on the one hand and the strategies of rational protein design on the other hand. In particular, the use of noncanonical amino acids to introduce new functionalities has gained importance in the engineers’ toolbox. These include isostructural analogues of canonical amino acids as well as molecules with reactivities that can provide sites for further protein modifications. In this study, we have presented a strategy for manipulating the protein biosynthesis machinery towards the incorporation of noncognate fluorinated substrates. In general, fluorinated amino acids are not genetically encoded. These mainly synthetic building block are valuable for the design of particularly stable protein folds and for targeting highly specific protein-protein interactions. Fluorine is small and has a very low polarizability and the strongest inductive effect among the chemical elements found on earth. Due to these unique stereoelectronic properties, fluorine substitution is advantageously used in protein and peptide design. In this context, the strategy of directed evolution was applied to construct isoleucyl-transfer ribonucleic acid synthetase libraries for the isoleucine AUA rare codon reassignment with small aliphatic fluorinated amino acids, such as L-trifluoroethylglycine, by random mutagenesis. A suitable screening plasmid containing a mutant of superfolder green fluorescent protein (sfGFP) as reporter protein and a modified isoleucine transfer ribonucleic acid (tRNA_UAU) from Escherichia coli was produced to create an enhanced molecular adaptor level for gene expression. However, the required selection strain could not be constructed by genome editing due to the complexity of essential gene modification. In the second part of the study, different reporter proteins were used in advanced design with noncanonical amino acids for improvement of their biophysical, chemical, and biological properties. A robust alkene-tagged sfGFP variant was obtained, which is a valuable target in medicinal chemistry. In addition, the residue-specific incorporation of proline analogues into green fluorescent protein (GFP) derivates ─ enhanced green fluorescent protein (EGFP), NowGFP, and KillerOrange ─ enables the study of the role of prolines in the typical ÎČ-barrel structure organization

    Étude du ribozyme SOFA-HDV comme outil molĂ©culaire : application et optimisation

    Get PDF
    Les avancĂ©es en biologie molĂ©culaire et cellulaire des derniĂšres dĂ©cennies ont permis de redĂ©finir le rĂŽle de l’ARN au sein des cellules de tous les domaines du vivant. Initialement cantonnĂ© dans un rĂŽle de support transitoire de l’information gĂ©nĂ©tique du gĂ©nome (ADN) en direction des effecteurs ou molĂ©cules actives (protĂ©ines et mĂ©tabolites), l’ARN est maintenant associĂ© Ă  toutes les sphĂšres de la biologie. Les molĂ©cules d’ARN peuvent agir autant comme gĂ©nome (virus), comme molĂ©cules adaptatrices (ARNt), comme messager de l’information gĂ©nĂ©tique (ARNm), comme enzyme (ribozyme) ou encore comme molĂ©cules rĂ©gulatrices en cis (riboswitch) ou en trans (miARN). Nous savons aussi que la grande majoritĂ© du gĂ©nome des cellules eucaryotes est transcrite Ă  un moment ou un autre. Ces implications de l’ARN en font une cible de choix pour la recherche en gĂ©nomique fonctionnelle, ainsi que pour des applications thĂ©rapeutiques. C’est pourquoi, depuis la dĂ©couverte des ARN catalytiques et de l’interfĂ©rence Ă  l’ARN, beaucoup d’efforts ont Ă©tĂ© consacrĂ©s pour dĂ©velopper un Ă©ventail d’outils molĂ©culaires permettant d’inhiber l’expression de gĂšnes d’intĂ©rĂȘt. Le dĂ©fi qui se dessine aujourd’hui est le dĂ©veloppement d’outils plus spĂ©cifiques et plus efficaces, entre autres parce que la variĂ©tĂ© d’ARN qu’un inhibiteur peut rencontrer est beaucoup plus grande qu’initialement estimĂ©e. De plus, les donnĂ©es recueillies lors d’essais cliniques montrent la nĂ©cessitĂ© de combiner un trĂšs grand potentiel avec une spĂ©cificitĂ© accrue. Les travaux de cette thĂšse se concentrent sur un outil molĂ©culaire qui a le potentiel de rĂ©pondre positivement Ă  ce dĂ©fi : le ribozyme SOFA-HDV. Mon projet de recherche visait Ă  dĂ©montrer le potentiel de cet ARN catalytique pour le ciblage de gĂšnes in cellulo et de dĂ©velopper son application. Tout d’abord, j’ai dĂ©montrĂ© que le ribozyme SOFA-HDV pouvait ĂȘtre utilisĂ© pour inhiber la fonction d’un ARN in cellulo. Cette Ă©tude a Ă©galement mis en Ă©vidence l’usage de ce ribozyme comme agent antiviral, avec le virus de l’hĂ©patite C comme modĂšle. Le dĂ©veloppement de nouvelles thĂ©rapies plus performantes avec peu d’effets secondaires demeure un enjeu important. Au moment de publier ces travaux, en plus d’ĂȘtre le premier exemple exhaustif de l’utilisation du ribozyme SOFA-HDV in cellulo, notre Ă©tude contenait le plus grand nombre de ribozymes jamais testĂ©s contre le VHC en une seule publication. Bien que modeste, l’effet observĂ© dĂ©montre que ce ribozyme peut inhiber la rĂ©plication d’un virus dans un modĂšle in cellulo. Nos rĂ©sultats exposent aussi la diffĂ©rence d’accessibilitĂ© entre les ARN de polaritĂ©s positive et nĂ©gative du VHC in cellulo. Par la suite, j’ai participĂ© au dĂ©veloppement de ribozymes SOFA-HDV ciblant le virus de l'immunodĂ©ficience humaine (VIH) dans le cadre d’une collaboration. Parmi les ribozymes testĂ©s, nous en avons identifiĂ© un dont l’activitĂ© catalytique rĂ©duit la rĂ©plication du VIH de plus de 50 % dans un modĂšle cellulaire. Dans le cadre de cette Ă©tude, nous avons identifiĂ© un site hautement favorable pour le ciblage par un ribozyme SOFA-HDV ou par un shARN. Des donnĂ©es suggĂšrent aussi une spĂ©cificitĂ© Ă©levĂ©e du ribozyme SOFA-HDV. Des tests d’inhibition avec diffĂ©rentes souches du VIH montrent que l’activitĂ© du ribozyme est affectĂ©e avec un seul mĂ©sappariement entre le biosenseur (Ă©lĂ©ment du module SOFA resposable de reconnaissance du substrat) et son site de liaison. Finalement, dans un esprit d’intĂ©gration des connaissances recueillies au fil des diffĂ©rents projets impliquant le ribozyme SOFA-HDV, je me suis intĂ©ressĂ© Ă  leur processus de sĂ©lection pour le ciblage gĂ©nique. J’ai dĂ©montrĂ© l’impact de la sĂ©quence du biosenseur sur l’activitĂ© du ribozyme. J’ai Ă©galement illustrĂ© l’autocoupure possible lorsque la sĂ©quence du biosenseur crĂ©e un prolongement du bloqueur (Ă©lĂ©ment du module SOFA agissant comme verrou) ainsi que l’impact de la structure du substrat autant au niveau des sites de liaison du domaine de reconnaissance que du biosenseur. Ces nouveaux Ă©lĂ©ments combinĂ©s aux donnĂ©es antĂ©rieures sur le ribozyme HDV original m’ont permis d’élaborer une marche Ă  suivre pour la prĂ©sĂ©lection des ribozymes SOFA-HDV selon leur potentiel comme ciseaux molĂ©culaires. En conclusion, ces travaux ont contribuĂ© Ă  mettre de l’avant le potentiel du ribozyme SOFA-HDV pour des applications de ciblage de gĂšnes, plus particuliĂšrement pour des cibles virales. De ce fait, il existe maintenant des exemples concrets de l’utilisation de ce ribozyme en cellules humaines. Tout indique que la spĂ©cificitĂ© du module SOFA est prĂ©servĂ©e in cellulo et serait avantageusement comparable Ă  d’autres technologies. Globalement, cette thĂšse devrait rendre l’utilisation du ribozyme SOFA-HDV plus accessible et favoriser son dĂ©veloppement comme outil molĂ©culaire
    corecore