184 research outputs found

    Planning, Estimation and Control for Mobile Robot Localization with Application to Long-Term Autonomy

    Get PDF
    There may arise two kinds of challenges in the problem of mobile robot localization; (i) a robot may have an a priori map of its environment, in which case the localization problem boils down to estimating the robot pose relative to a global frame or (ii) no a priori map information is given, in which case a robot may have to estimate a model of its environment and localize within it. In the case of a known map, simultaneous planning while localizing is a crucial ability for operating under uncertainty. We first address this problem by designing a method to dynamically replan while the localization uncertainty or environment map is updated. Extensive simulations are conducted to compare the proposed method with the performance of FIRM (Feedback-based Information RoadMap). However, a shortcoming of this method is its reliance on a Gaussian assumption for the Probability Density Function (pdf) on the robot state. This assumption may be violated during autonomous operation when a robot visits parts of the environment which appear similar to others. Such situations lead to ambiguity in data association between what is seen and the robot’s map leading to a non-Gaussian pdf on the robot state. We address this challenge by developing a motion planning method to resolve situations where ambiguous data associations result in a multimodal hypothesis on the robot state. A Receding Horizon approach is developed, to plan actions that sequentially disambiguate a multimodal belief to achieve tight localization on the correct pose in finite time. In our method, disambiguation is achieved through active data associations by picking target states in the map which allow distinctive information to be observed for each belief mode and creating local feedback controllers to visit the targets. Experiments are conducted for a kidnapped physical ground robot operating in an artificial maze-like environment. The hardest challenge arises when no a priori information is present. In longterm tasks where a robot must drive for long durations before closing loops, our goal is to minimize the localization error growth rate such that; (i) accurate data associations can be made for loop closure, or (ii) in cases where loop closure is not possible, the localization error stays limited within some desired bounds. We analyze this problem and show that accurate heading estimation is key to limiting localization error drift. We make three contributions in this domain. First we present a method for accurate long-term localization using absolute orientation measurements and analyze the underlying structure of the SLAM problem and how it is affected by unbiased heading measurements. We show that consistent estimates over a 100km trajectory are possible and that the error growth rate can be controlled with active data acquisition. Then we study the more general problem when orientation measurements may not be present and develop a SLAM technique to separate orientation and position estimation. We show that our method’s accuracy degrades gracefully compared to the standard non-linear optimization based SLAM approach and avoids catastrophic failures which may occur due a bad initial guess in non-linear optimization. Finally we take our understanding of orientation sensing into the physical world and demonstrate a 2D SLAM technique that leverages absolute orientation sensing based on naturally occurring structural cues. We demonstrate our method using both high-fidelity simulations and a real-world experiment in a 66, 000 square foot warehouse. Empirical studies show that maps generated by our approach never suffer catastrophic failure, whereas existing scan matching based SLAM methods fail ≈ 50% of the time

    Coverage & cooperation: Completing complex tasks as quickly as possible using teams of robots

    Get PDF
    As the robotics industry grows and robots enter our homes and public spaces, they are increasingly expected to work in cooperation with each other. My thesis focuses on multirobot planning, specifically in the context of coverage robots, such as robotic lawnmowers and vacuum cleaners. Two problems unique to multirobot teams are task allocation and search. I present a task allocation algorithm which balances the workload amongst all robots in the team with the objective of minimizing the overall mission time. I also present a search algorithm which robots can use to find lost teammates. It uses a probabilistic belief of a target robot’s position to create a planning tree and then searches by following the best path in the tree. For robust multirobot coverage, I use both the task allocation and search algorithms. First the coverage region is divided into a set of small coverage tasks which minimize the number of turns the robots will need to take. These tasks are then allocated to individual robots. During the mission, robots replan with nearby robots to rebalance the workload and, once a robot has finished its tasks, it searches for teammates to help them finish their tasks faster

    Differentiable world programs

    Full text link
    L'intelligence artificielle (IA) moderne a ouvert de nouvelles perspectives prometteuses pour la création de robots intelligents. En particulier, les architectures d'apprentissage basées sur le gradient (réseaux neuronaux profonds) ont considérablement amélioré la compréhension des scènes 3D en termes de perception, de raisonnement et d'action. Cependant, ces progrès ont affaibli l'attrait de nombreuses techniques ``classiques'' développées au cours des dernières décennies. Nous postulons qu'un mélange de méthodes ``classiques'' et ``apprises'' est la voie la plus prometteuse pour développer des modèles du monde flexibles, interprétables et exploitables : une nécessité pour les agents intelligents incorporés. La question centrale de cette thèse est : ``Quelle est la manière idéale de combiner les techniques classiques avec des architectures d'apprentissage basées sur le gradient pour une compréhension riche du monde 3D ?''. Cette vision ouvre la voie à une multitude d'applications qui ont un impact fondamental sur la façon dont les agents physiques perçoivent et interagissent avec leur environnement. Cette thèse, appelée ``programmes différentiables pour modèler l'environnement'', unifie les efforts de plusieurs domaines étroitement liés mais actuellement disjoints, notamment la robotique, la vision par ordinateur, l'infographie et l'IA. Ma première contribution---gradSLAM--- est un système de localisation et de cartographie simultanées (SLAM) dense et entièrement différentiable. En permettant le calcul du gradient à travers des composants autrement non différentiables tels que l'optimisation non linéaire par moindres carrés, le raycasting, l'odométrie visuelle et la cartographie dense, gradSLAM ouvre de nouvelles voies pour intégrer la reconstruction 3D classique et l'apprentissage profond. Ma deuxième contribution - taskography - propose une sparsification conditionnée par la tâche de grandes scènes 3D encodées sous forme de graphes de scènes 3D. Cela permet aux planificateurs classiques d'égaler (et de surpasser) les planificateurs de pointe basés sur l'apprentissage en concentrant le calcul sur les attributs de la scène pertinents pour la tâche. Ma troisième et dernière contribution---gradSim--- est un simulateur entièrement différentiable qui combine des moteurs physiques et graphiques différentiables pour permettre l'estimation des paramètres physiques et le contrôle visuomoteur, uniquement à partir de vidéos ou d'une image fixe.Modern artificial intelligence (AI) has created exciting new opportunities for building intelligent robots. In particular, gradient-based learning architectures (deep neural networks) have tremendously improved 3D scene understanding in terms of perception, reasoning, and action. However, these advancements have undermined many ``classical'' techniques developed over the last few decades. We postulate that a blend of ``classical'' and ``learned'' methods is the most promising path to developing flexible, interpretable, and actionable models of the world: a necessity for intelligent embodied agents. ``What is the ideal way to combine classical techniques with gradient-based learning architectures for a rich understanding of the 3D world?'' is the central question in this dissertation. This understanding enables a multitude of applications that fundamentally impact how embodied agents perceive and interact with their environment. This dissertation, dubbed ``differentiable world programs'', unifies efforts from multiple closely-related but currently-disjoint fields including robotics, computer vision, computer graphics, and AI. Our first contribution---gradSLAM---is a fully differentiable dense simultaneous localization and mapping (SLAM) system. By enabling gradient computation through otherwise non-differentiable components such as nonlinear least squares optimization, ray casting, visual odometry, and dense mapping, gradSLAM opens up new avenues for integrating classical 3D reconstruction and deep learning. Our second contribution---taskography---proposes a task-conditioned sparsification of large 3D scenes encoded as 3D scene graphs. This enables classical planners to match (and surpass) state-of-the-art learning-based planners by focusing computation on task-relevant scene attributes. Our third and final contribution---gradSim---is a fully differentiable simulator that composes differentiable physics and graphics engines to enable physical parameter estimation and visuomotor control, solely from videos or a still image

    HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and Sensing

    Full text link
    Autonomous robots can benefit greatly from human-provided semantic characterizations of uncertain task environments and states. However, the development of integrated strategies which let robots model, communicate, and act on such 'soft data' remains challenging. Here, the Human Assisted Robotic Planning and Sensing (HARPS) framework is presented for active semantic sensing and planning in human-robot teams to address these gaps by formally combining the benefits of online sampling-based POMDP policies, multimodal semantic interaction, and Bayesian data fusion. This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments by sketching and labeling arbitrary landmarks across the environment. Dynamic updating of the environment model while during search allows robotic agents to actively query humans for novel and relevant semantic data, thereby improving beliefs of unknown environments and states for improved online planning. Simulations of a UAV-enabled target search application in a large-scale partially structured environment show significant improvements in time and belief state estimates required for interception versus conventional planning based solely on robotic sensing. Human subject studies in the same environment (n = 36) demonstrate an average doubling in dynamic target capture rate compared to the lone robot case, and highlight the robustness of active probabilistic reasoning and semantic sensing over a range of user characteristics and interaction modalities
    • …
    corecore