7 research outputs found

    Where to Map? Iterative Rover-Copter Path Planning for Mars Exploration

    Full text link
    In addition to conventional ground rovers, the Mars 2020 mission will send a helicopter to Mars. The copter's high-resolution data helps the rover to identify small hazards such as steps and pointy rocks, as well as providing rich textual information useful to predict perception performance. In this paper, we consider a three-agent system composed of a Mars rover, copter, and orbiter. The objective is to provide good localization to the rover by selecting an optimal path that minimizes the localization uncertainty accumulation during the rover's traverse. To achieve this goal, we quantify the localizability as a goodness measure associated with the map, and conduct a joint-space search over rover's path and copter's perceptual actions given prior information from the orbiter. We jointly address where to map by the copter and where to drive by the rover using the proposed iterative copter-rover path planner. We conducted numerical simulations using the map of Mars 2020 landing site to demonstrate the effectiveness of the proposed planner.Comment: 8 pages, 7 figure

    Fundamental Science and Engineering Questions in Planetary Cave Exploration

    Get PDF
    32 páginas.- 3 figuras.- 2 tablas.- 260 referenciasNearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.The following funding sources are recognized for supporting several of the contributing authors: Human Frontiers Science Program grant #RGY0066/2018 (for AAB), NASA Innovative Advanced Concepts Grant #80HQTR19C0034 (HJ, UYW, and WLW), and European Research Council, ERC Consolidator Grant #818602 (AGF), the Spanish Ministry of Science and Innovation (project PID2019-108672RJ-I00) and the "Ramon y Cajal" post-doctoral contract (grant #RYC2019-026885-I (AZM)), and Contract #80NM0018D0004 between the Jet Propulsion Laboratory, California Institute of Technology and the National Aeronautics and Space Administration (AA, MJM, KU, and LK).Peer reviewe

    Planning, Estimation and Control for Mobile Robot Localization with Application to Long-Term Autonomy

    Get PDF
    There may arise two kinds of challenges in the problem of mobile robot localization; (i) a robot may have an a priori map of its environment, in which case the localization problem boils down to estimating the robot pose relative to a global frame or (ii) no a priori map information is given, in which case a robot may have to estimate a model of its environment and localize within it. In the case of a known map, simultaneous planning while localizing is a crucial ability for operating under uncertainty. We first address this problem by designing a method to dynamically replan while the localization uncertainty or environment map is updated. Extensive simulations are conducted to compare the proposed method with the performance of FIRM (Feedback-based Information RoadMap). However, a shortcoming of this method is its reliance on a Gaussian assumption for the Probability Density Function (pdf) on the robot state. This assumption may be violated during autonomous operation when a robot visits parts of the environment which appear similar to others. Such situations lead to ambiguity in data association between what is seen and the robot’s map leading to a non-Gaussian pdf on the robot state. We address this challenge by developing a motion planning method to resolve situations where ambiguous data associations result in a multimodal hypothesis on the robot state. A Receding Horizon approach is developed, to plan actions that sequentially disambiguate a multimodal belief to achieve tight localization on the correct pose in finite time. In our method, disambiguation is achieved through active data associations by picking target states in the map which allow distinctive information to be observed for each belief mode and creating local feedback controllers to visit the targets. Experiments are conducted for a kidnapped physical ground robot operating in an artificial maze-like environment. The hardest challenge arises when no a priori information is present. In longterm tasks where a robot must drive for long durations before closing loops, our goal is to minimize the localization error growth rate such that; (i) accurate data associations can be made for loop closure, or (ii) in cases where loop closure is not possible, the localization error stays limited within some desired bounds. We analyze this problem and show that accurate heading estimation is key to limiting localization error drift. We make three contributions in this domain. First we present a method for accurate long-term localization using absolute orientation measurements and analyze the underlying structure of the SLAM problem and how it is affected by unbiased heading measurements. We show that consistent estimates over a 100km trajectory are possible and that the error growth rate can be controlled with active data acquisition. Then we study the more general problem when orientation measurements may not be present and develop a SLAM technique to separate orientation and position estimation. We show that our method’s accuracy degrades gracefully compared to the standard non-linear optimization based SLAM approach and avoids catastrophic failures which may occur due a bad initial guess in non-linear optimization. Finally we take our understanding of orientation sensing into the physical world and demonstrate a 2D SLAM technique that leverages absolute orientation sensing based on naturally occurring structural cues. We demonstrate our method using both high-fidelity simulations and a real-world experiment in a 66, 000 square foot warehouse. Empirical studies show that maps generated by our approach never suffer catastrophic failure, whereas existing scan matching based SLAM methods fail ≈ 50% of the time
    corecore