8,400 research outputs found

    Wire-Speed Implementation of Sliding-Window Aggregate Operator over Out-of-Order Data Streams

    Get PDF
    This paper shows the design and evaluation of an FPGA-based accelerator for sliding-window aggregation over data streams with out-of-order data arrival. We propose an order-agnostic hardware implementation technique for windowing operators based on a one-pass query evaluation strategy called Window-ID, which is originally proposed for software implementation. The proposed implementation succeeds to process out-of-order data items, or tuples, at wire speed due to the simultaneous evaluations of overlapping sliding-windows. In order to verify the effectiveness of the proposed approach, we have also implemented an experimental system as a case study. Our experiments demonstrate that the proposed accelerator with a network interface achieves an effective throughput around 760 Mbps or equivalently nearly 6 million tuples per second, by fully utilizing the available bandwidth of the network interface

    Control versus Data Flow in Parallel Database Machines

    Get PDF
    The execution of a query in a parallel database machine can be controlled in either a control flow way, or in a data flow way. In the former case a single system node controls the entire query execution. In the latter case the processes that execute the query, although possibly running on different nodes of the system, trigger each other. Lately, many database research projects focus on data flow control since it should enhance response times and throughput. The authors study control versus data flow with regard to controlling the execution of database queries. An analytical model is used to compare control and data flow in order to gain insights into the question which mechanism is better under which circumstances. Also, some systems using data flow techniques are described, and the authors investigate to which degree they are really data flow. The results show that for particular types of queries data flow is very attractive, since it reduces the number of control messages and balances these messages over the node

    Astral: An algebraic approach for sensor data stream querying

    No full text
    The use of sensor based applications is in expansion in many contexts. Sensors are involved at several scales ranging from the individual (e.g. personal monitoring, smart homes) to regional and even world wide contexts (i.e. logistics, natural resource monitoring and forecast). Easy and efficient management of data streams produced by a large number of heterogeneous sensors is a key issue to support such applications. Numerous solutions for query processing on data streams have been proposed by the scientific community. Several query processors have been implemented and offer heterogeneous querying capabilities and semantics. Our work is a contribution on the formalization of queries on data streams in general, and on sensor data in particular. This paper proposes the Astral algebra; defining operators on temporal relations and streams which allow the expression of a large variety of queries. This proposal extends several aspects of existing results: it presents precise formal definitions of operators which are (or may be) semantically ambiguous and it demonstrates several properties of such operators. Such properties are an important result for query optimization as they are helpful in query rewriting and operator sharing. This formalization deepens the understanding of the queries and facilitates the comparison of the semantics implemented by existing systems. This is an essential step in building mediation solutions involving heterogeneous data stream processing systems. Cross system data exchange and application coupling would be facilitated. This paper discusses existing proposals, presents the Astral algebra, several properties of the operators

    Multiple Media Correlation: Theory and Applications

    Get PDF
    This thesis introduces multiple media correlation, a new technology for the automatic alignment of multiple media objects such as text, audio, and video. This research began with the question: what can be learned when multiple multimedia components are analyzed simultaneously? Most ongoing research in computational multimedia has focused on queries, indexing, and retrieval within a single media type. Video is compressed and searched independently of audio, text is indexed without regard to temporal relationships it may have to other media data. Multiple media correlation provides a framework for locating and exploiting correlations between multiple, potentially heterogeneous, media streams. The goal is computed synchronization, the determination of temporal and spatial alignments that optimize a correlation function and indicate commonality and synchronization between media objects. The model also provides a basis for comparison of media in unrelated domains. There are many real-world applications for this technology, including speaker localization, musical score alignment, and degraded media realignment. Two applications, text-to-speech alignment and parallel text alignment, are described in detail with experimental validation. Text-to-speech alignment computes the alignment between a textual transcript and speech-based audio. The presented solutions are effective for a wide variety of content and are useful not only for retrieval of content, but in support of automatic captioning of movies and video. Parallel text alignment provides a tool for the comparison of alternative translations of the same document that is particularly useful to the classics scholar interested in comparing translation techniques or styles. The results presented in this thesis include (a) new media models more useful in analysis applications, (b) a theoretical model for multiple media correlation, (c) two practical application solutions that have wide-spread applicability, and (d) Xtrieve, a multimedia database retrieval system that demonstrates this new technology and demonstrates application of multiple media correlation to information retrieval. This thesis demonstrates that computed alignment of media objects is practical and can provide immediate solutions to many information retrieval and content presentation problems. It also introduces a new area for research in media data analysis
    corecore