39 research outputs found

    CMOS systems and circuits for sub-degree per hour MEMS gyroscopes

    Get PDF
    The objective of our research is to develop system architectures and CMOS circuits that interface with high-Q silicon microgyroscopes to implement navigation-grade angular rate sensors. The MEMS sensor used in this work is an in-plane bulk-micromachined mode-matched tuning fork gyroscope (M² – TFG ), fabricated on silicon-on-insulator substrate. The use of CMOS transimpedance amplifiers (TIA) as front-ends in high-Q MEMS resonant sensors is explored. A T-network TIA is proposed as the front-end for resonant capacitive detection. The T-TIA provides on-chip transimpedance gains of 25MΩ, has a measured capacitive resolution of 0.02aF /√Hz at 15kHz, a dynamic range of 104dB in a bandwidth of 10Hz and consumes 400μW of power. A second contribution is the development of an automated scheme to adaptively bias the mechanical structure, such that the sensor is operated in the mode-matched condition. Mode-matching leverages the inherently high quality factors of the microgyroscope, resulting in significant improvement in the Brownian noise floor, electronic noise, sensitivity and bias drift of the microsensor. We developed a novel architecture that utilizes the often ignored residual quadrature error in a gyroscope to achieve and maintain perfect mode-matching (i.e.0Hz split between the drive and sense mode frequencies), as well as electronically control the sensor bandwidth. A CMOS implementation is developed that allows mode-matching of the drive and sense frequencies of a gyroscope at a fraction of the time taken by current state of-the-art techniques. Further, this mode-matching technique allows for maintaining a controlled separation between the drive and sense resonant frequencies, providing a means of increasing sensor bandwidth and dynamic range. The mode-matching CMOS IC, implemented in a 0.5μm 2P3M process, and control algorithm have been interfaced with a 60μm thick M2−TFG to implement an angular rate sensor with bias drift as low as 0.1°/hr ℃ the lowest recorded to date for a silicon MEMS gyro.Ph.D.Committee Chair: Farrokh Ayazi; Committee Member: Jennifer Michaels; Committee Member: Levent Degertekin; Committee Member: Paul Hasler; Committee Member: W. Marshall Leac

    Degree-per-hour mode-matched micromachined silicon vibratory gyroscopes

    Get PDF
    The objective of this research dissertation is to design and implement two novel micromachined silicon vibratory gyroscopes, which attempt to incorporate all the necessary attributes of sub-deg/hr noise performance requirements in a single framework: large resonant mass, high drive-mode oscillation amplitudes, large device capacitance (coupled with optimized electronics), and high-Q resonant mode-matched operation. Mode-matching leverages the high-Q (mechanical gain) of the operating modes of the gyroscope and offers significant improvements in mechanical and electronic noise floor, sensitivity, and bias stability. The first micromachined silicon vibratory gyroscope presented in this work is the resonating star gyroscope (RSG): a novel Class-II shell-type structure which utilizes degenerate flexural modes. After an iterative cycle of design optimization, an RSG prototype was implemented using a multiple-shell approach on (111) SOI substrate. Experimental data indicates sub-5 deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 30,000 at 23ºC (in vacuum). The second micromachined silicon vibratory gyroscope presented in this work is the mode-matched tuning fork gyroscope (M2-TFG): a novel Class-I tuning fork structure which utilizes in-plane non-degenerate resonant flexural modes. Operated under vacuum, the M2-TFG represents the first reported high-Q perfectly mode-matched operation in Class-I vibratory microgyroscope. Experimental results of device implemented on (100) SOI substrate demonstrates sub-deg/hr Allan deviation bias instability operating under a mode-matched operating Q of 50,000 at 23ºC. In an effort to increase capacitive aspect ratio, a new fabrication technology was developed that involved the selective deposition of doped-polysilicon inside the capacitive sensing gaps (SPD Process). By preserving the structural composition integrity of the flexural springs, it is possible to accurately predict the operating-mode frequencies while maintaining high-Q operation. Preliminary characterization of vacuum-packaged prototypes was performed. Initial results demonstrated high-Q mode-matched operation, excellent thermal stability, and sub-deg/hr Allan variance bias instability.Ph.D.Committee Chair: Dr. Farrokh Ayazi; Committee Member: Dr. Mark G. Allen; Committee Member: Dr. Oliver Brand; Committee Member: Dr. Paul A. Kohl; Committee Member: Dr. Thomas E. Michael

    Design and Implementation of a Z-Axis MEMS Gyroscope with a Symmetric Multiple-Mass Mechanical Structure

    Get PDF
    This thesis presents a z-axis MEMS gyroscope with a symmetric mechanical structure. The multiple-mass design prioritizes the sense-mode Quality Factor (Q) and thus improves its scale factor. The proposed mechanically coupled, dynamically balanced anti-phase sense-mode design minimizes energy dissipation through the substrate in order to maximize the Q. Numerical simulation is implemented in a finite element analysis software, COMSOL, to identify the two operation modes of the gyroscope: drive-mode and sense-mode. The multiple-mass gyroscope design is further fabricated using a one-mask process. Experimental characterization of frequency response in both drive-mode and sense-mode of the device are conducted, proving the design concept for improving the Q in the sense-mode

    Phase differential angular rate sensor-concept and analysis

    Get PDF
    This paper proposes and analyzes a new differential phase angular rate (AR) sensor employing a vibrating beam mass structure that traces an elliptical path when subject to rotation due to Coriolis force. Two sensing elements are strategically located to sense a combination of drive and Coriolis vibration to create a phase differential representative of the input rotation rate. A general model is developed, describing the device operation. The main advantages of the phase detection scheme are explored, including removing the need to maintain constant drive amplitude, independence of sensing element gain factor, and advantageous response shapes. A ratio of device parameters is defined and shown to dictate the device response shape. This ratio can be varied to give an optimally linear phase difference output over a set input range, a high sensitivity around zero input rate, or a response shape not seen before, that can give maximum sensitivity around an offset from the zero-rate input. This may be exploited in an array configuration for a highly accurate device over a wide input range. A worked example shows how the developed equations can be used as design tools to achieve a desired response with low sensitivity to variation in device parameters

    Fabrication, Testing and Characterization of MEMS Gyroscope

    Get PDF
    This thesis presents the design, fabrication and characterization of two Micro-Electro-Mechanical Systems (MEMS) vibratory gyroscopes fabricated using the Silicon-On-Insulator-Multi-User-MEMS Process (SOIMUMPs) and Polysilicon Multi-User-MEMS-Process (Poly-MUMPs). Firstly, relevant literature and background on static and dynamic analysis of MEMS gyroscopes are described. Secondly, the gyroscope analytical model is presented and numerically solved using Mathematica software. The lumped mass model was used to analytically design the gyroscope and predict their performance. Finite element analysis was carried out on the gyroscopes to verify the proposed designs. Thirdly, gyroscope fabrication using MEMSCAP's SOIMUMPs and PolyMUMPs processes is described. For the former, post-processing was carried out at the Quantum Nanofab Center (QNC) on a die-level in order to create the vibratory structural elements (cantilever beam). Following this, the PolyMUMPs gyroscopes are characterized optically by measuring their resonance frequencies and quality factor using a Laser Doppler Vibrometer (LDV). The drive resonance frequency was measured at 40 kHz and the quality factor as Q = 1. For the sense mode, the resonance frequency was measured at 55 kHz and the unity quality factor as Q = 1. The characterization results show large drive direction motions of 100 um/s in response to a voltage pulse of 10 V. The drive pull-in voltage was measured at 19 V. Finally, the ratio of the measured drive to sense mode velocities in response to a voltage pulse of 10 V was calculated at 1.375

    Interface Circuit for a Multiple-Beam Tuning-Fork Gyroscope with High Quality Factors

    Get PDF
    This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement this MB-TFG design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface electronics and a thorough comparison between the experimental results and a theoretical analysis is conducted to verify the MB-TFG design and accurately interpret the measured performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0μm, the measured rate sensitivity is 80μVpp/°/s with an equivalent impedance of 6MΩ. The calculated overall rate resolution of this device is 0.37/°hr/√Hz, while the measured Angle Random Walk (ARW) and bias instability are 6.67°/\u27√hr and 95°/hr, respectively

    Design of a tri-axial surface micromachined MEMS vibrating gyroscope

    Get PDF
    Gyroscopes are one of the next killer applications for the MEMS (Micro-Electro-Mechanical-Systems) sensors industry. Many mature applications have already been developed and produced in limited volumes for the automotive, consumer, industrial, medical, and military markets. Plenty of high-volume applications, over 100 million per year, have been calling for low-cost gyroscopes. Bulk silicon is a promising candidate for low-cost gyroscopes due to its large scale availability and maturity of its manufacturing industry. Nevertheless, it is not suitable for a real monolithic IC integration and requires a dedicated packaging. New designs are supposed to eliminate the need for magnets and metal case package, and allow for a real monolithic MEMS-IC (Integrated Circuit) electronic system. In addition, a drastic cost reduction could be achieved by utilizing off-the-shelf plastic packaging with lead frames for the final assembly. The present paper puts forward the design of a novel tri-axial gyroscope based on rotating comb-drives acting as both capacitive sensors and actuators. The comb-drives are comprised of a single monolithic moving component (rotor) and fixed parts (stators). The former is made out of different concentrated masses connected by curved silicon beams in order to decouple the motion signals. The sensor was devised to be fabricated through the PolyMUMPs® process and it is intended for working in air in order to semplify the MEMS-IC monolithic integration

    耐衝撃性を有する音叉型ジャイロスコープ設計のための結合共振子の加速度感度に関する研究

    Get PDF
    京都大学0048新制・課程博士博士(工学)甲第18588号工博第3949号新制||工||1607(附属図書館)31488京都大学大学院工学研究科マイクロエンジニアリング専攻(主査)教授 田畑 修, 教授 西脇 眞二, 准教授 土屋 智由, 教授 引原 隆士学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    Thermomechanical and mechanical characterization of a 3-axial MEMS gyroscope

    Get PDF
    Työn tavoitteena oli automaattisten, tehokkaiden ja edullisten testauslaitteistojen ja -menetelmien kehittäminen kolmiakselisten mikroelektromekaanisten (MEMS) gyroskooppien mekaaniseen ja termomekaaniseen karakterisointiin. Työn painotuksena oli testausmenetelmien ja -laitteistojen kehittäminen ja gyroskooppien vaurioanalyysit jäävät tämän työn ulkopuolelle. Gyroskooppi on kulmanopeuden mittaamiseen ja asennon aistimiseen käytettävä anturi. Mekaaninen karakteristointi kattaa gyroskooppien korkean G-arvon iskumaiset kuormitukset ja tärinäkuormitukset. Lämpömekaaninen karakterisointi kattaa gyroskooppien ympäristöolojen kontrolloimista lämpö-, kosteus- tai monikaasu -kaapissa. Tässä työssä kehitettiin menetelmä kolmiakselisten MEMS-gyroskooppien karakterisointiin lämpö- ja kosteuskaapissa. Menetelmä koostuu yksiakselisesta servomoottorista, servo-ohjaimesta ja ohjaussovelluksesta, jonka avulla voidaan samanaikaisesti mitata ja tallentaa gyroskooppien kulmanopeus kaikilta kolmelta (X, Y ja Z) akselilta sekä mitata ympäristön lämpötilaa. Korkean G-arvon iskumaisiin kuormituksiin tarkoitettu laitteisto koostuu pneumaattisesta iskutestauslaitteesta, jossa käytetään mekaanista iskua korkean G-arvon saavuttamiseen. Olemassa olevaa laitteistoa muutettiin siten että sillä voidaan saavuttaa suurempia G-arvoja (aina 80 000G:hen asti) ja mahdollistaa gyroskooppien tutkiminen eri asennoissa. Tärinäkuormituslaittesto koostuu signaaligeneraattorista ja täristinmoottorista, joka soveltuu gyroskooppien tärinätestaukseen. Signaaligeneraattoria käytetään eri taajuisten signaalimuotojen syöttämiseen täristinmoottorille, joka tärisee annetun syötteen mukaisesti. Pyörityslaitteen toiminnallisuutta testattiin yhdellä gyroskoopilla huoneenlämmössä. Gyroskoopin X, Y ja Z-akselien kulmanopeuksien keskiarvot sekä -hajonta mitattiin. Korkean g-arvon iskutestauslaitteistoa testattiin kuudella mittauksella, jossa gyroskoopit rikkoutuivat ensimmäisellä iskulla. Tärinätestauslaitteistoa testattiin yhdellä gyroskooppi-piirilevyllä. Gyroskooppi-piirilevyn päälle asetettiin kiihtyvyysanturi, jolla mitattiin tärinästä aiheutuvan kiihtyvyyden RMS-arvo, huippuarvo ja kokonaisenergia. Tulevat jatkotutkimukset keskittyvät pyöritys-, isku- ja tärinälaitteistoilla testattujen MEMS-gyroskooppien vaurioanalyysiin.The purpose of this thesis was to develop automated, efficient and economical methods for the mechanical and thermomechanical characterization of a digital 3-axial microelectromechanical systems (MEMS) gyroscope. The development of the test equipment and methods was the emphasis of this thesis, but the failure analyses of MEMS gyroscopes are beyond the scope of this work. A gyroscope is a device for measuring angular velocity and sensing change in orientation around its X, Y and Z-axis. The experimental part is divided into two sections, of which the first one is focused on high-G shock impact and vibration loading and the second on thermomechanical characterization. A rotation device was developed for the characterization of the MEMS gyroscopes in a temperature and humidity chamber. The rotation device consists of a oneaxial servo-motor, a servo-drive and a control program for the readout of angular velocity. The device is capable of simultaneously recording the angular velocities of the gyroscopes from all three axes while rotating the gyroscopes around a single axis. The device also records the temperature of the environment. The high-G shock impact equipment consists of a pneumatically assisted shock tester that relies on mechanical impact to generate the high-G shock pulse. An existing mechanical shock impact system was modified to gain higher G-values (up to 80 000G) and to enable the inspection of gyroscopes in different orientations. The vibration test equipment consists of a waveform generator and a vibration shaker, for the vibration testing of gyroscopes. The waveform generator is capable of outputting different waveforms with different frequencies to the shaker that vibrates with the given output. The functionality of the rotation device was tested with rotating one gyroscope board at room temperature. Respective averages and standard deviations of angular velocities were measured in the direction of X, Y and Z axes. The functionality of the high-G shock impact test equipment was verified with six measurements where all of the gyroscopes failed on first impact. The vibration test equipment was tested with one gyroscope board. Root mean square (RMS), peak value and total energy of acceleration were measured with an accelerometer placed on top of the vibrating gyroscope board

    System and circuit design for a capacitive MEMS gyroscope

    Get PDF
    In this thesis, issues related to the design and implementation of a micro-electro-mechanicalangular velocity sensor are studied. The work focuses on a system basedon a vibratory microgyroscope which operates in the low-pass mode with a moderateresonance gain and with an open-loop configuration of the secondary (sense) resonator.Both the primary (drive) and the secondary resonators are assumed to have a high qualityfactor. Furthermore, the gyroscope employs electrostatic excitation and capacitivedetection. The thesis is divided into three parts. The first part provides the background informationnecessary for the other two parts. The basic properties of a vibratory microgyroscope,together with the most fundamental non-idealities, are described, a shortintroduction to various manufacturing technologies is given, and a brief review of publishedmicrogyroscopes and of commercial microgyroscopes is provided. The second part concentrates on selected aspects of the system-level design of amicro-electro-mechanical angular velocity sensor. In this part, a detailed analysis isprovided of issues related to different non-idealities in the synchronous demodulation,the dynamics of the primary resonator excitation, the compensation of the mechanicalquadrature signal, and the zero-rate output. The use of ΣΔ modulation to improveaccuracy in both primary resonator excitation and the compensation of the mechanicalquadrature signal is studied. The third part concentrates on the design and implementation of the integratedelectronics required by the angular velocity sensor. The focus is primarily on the designof the sensor readout circuitry, comprising: a continuous-time front-end performingthe capacitance-to-voltage (C/V) conversion, filtering, and signal level normalization;a bandpass ΣΔ analog-to-digital converter, and the required digital signal processing(DSP). The other fundamental circuit blocks, which are a phase-locked loop requiredfor clock generation, a high-voltage digital-to-analog converter for the compensationof the mechanical quadrature signal, the necessary charge pumps for the generationof high voltages, an analog phase shifter, and the digital-to-analog converter used togenerate the primary resonator excitation signals, together with other DSP blocks, areintroduced on a more general level. Additionally, alternative ways to perform the C/Vconversion, such as continuous-time front ends either with or without the upconversionof the capacitive signal, various switched-capacitor front ends, and electromechanicalΣΔ modulation, are studied. In the experimental work done for the thesis, a prototype of a micro-electro-mechanicalangular velocity sensor is implemented and characterized. The analog partsof the system are implemented with a 0.7-µm high-voltage CMOS (ComplimentaryMetal-Oxide-Semiconductor) technology. The DSP part is realized with a field-programmablegate array (FPGA) chip. The ±100°/s gyroscope achieves 0.042°/s/√H̅z̅spot noise and a signal-to-noise ratio of 51.6 dB over the 40 Hz bandwidth, with a100°/s input signal. The implemented system demonstrates the use of ΣΔ modulation in both the primaryresonator excitation and the quadrature compensation. Additionally, it demonstratesphase error compensation performed using DSP. With phase error compensation,the effect of several phase delays in the analog circuitry can be eliminated, andthe additional noise caused by clock jitter can be considerably reduced
    corecore