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ABSTRACT 

INTERFACE CIRCUIT FOR A MULTIPLE-BEAM TUNING-FORK 

GYROSCOPE WITH HIGH QUALITY FACTORS 

Ren Wang 
Old Dominion University, 2011 

Director: Dr. Julie Hao 

This research work presents the design, theoretical analysis, fabrication, interface 

electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-

Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-

Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed 

with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical 

analysis of the MB-TFG design is conducted to relate the design parameters to its 

operation parameters and further performance parameters. In conjunction with a mask 

that defines the device through trenches to alleviate severe fabrication effect on anchor 

loss, a simple one-mask fabrication process is employed to implement this MB-TFG 

design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface 

electronics and a thorough comparison between the experimental results and a theoretical 

analysis is conducted to verify the MB-TFG design and accurately interpret the measured 

performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 

255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. 

Under a frequency difference of 4Hz between the two modes (operation frequency is 

16.8kHz) and a drive-mode vibration amplitude of 3.0um, the measured rate sensitivity is 

80nVpp/°/s with an equivalent impedance of 6MQ. The calculated overall rate resolution 

of this device is 0.37°/hr/VHz, while the measured Angle Random Walk (ARW) and bias 



instability are 6.67%/hr and 95°/hr, respectively. 
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CHAPTER I 

INTRODUCTION TO MEMS GYROSCOPES 

A gyroscope, by definition, is a sensor that can measure an angular rate or velocity. 

Traditional spinning wheel gyroscopes that are based on the conservation of angular 

momentum were widely used in the past century. Optical gyroscopes, which are most 

commonly ring laser gyroscopes, are a great improvement to the spinning gyroscopes 

because of their great reliability, relatively small size and weight, as well as no wear [1]. 

In more recent years, with the advent of the micromachining technology, Micro-

Electromechanical System (MEMS) gyroscopes have emerged and proven to be 

advantageous over traditional macro-scale gyroscopes. 

The technology used to implement the MEMS gyroscope is crucial considering a 

MEMS gyroscope system needs to combine the mechanical element with its interface 

circuit in a compact way. Since there are no rotating parts or bearings in a MEMS 

gyroscope, it can be inexpensively batch-fabricated for potential integration with 

Complementary Metal-Oxide-Semiconductor (CMOS) electronics [2], thus making a 

MEMS gyroscope sensor possible. In this work, a MEMS gyroscope with its interface 

circuit is designed and the implemented angular rate senor is evaluated for its 

performance. 

1.1 Applications of MEMS Gyroscopes 

MEMS gyroscopes are an important type of silicon-based sensors used for angular 

velocity measurement. Because of their small size, low cost, low power consumption and 
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the capability of integration with electronics, they have been used in a wide range of 

applications, and therefore become one of the fastest growing market segments in the 

micro-sensor industry. 

Micromachined gyroscopes are traditionally used in the automobile industry for anti

skid control, rollover detection and Anti-lock Brake Systems (ABS). Applications in the 

consumer electronics field include Global Positioning System (GPS) navigation, image 

stabilization in digital cameras, gaming and inertial pointing devices. The consumer 

electronics is a field with great potential and some of the major commercial 

manufacturers are ST Microelectronics, Analog Devices, InvenSense and Honeywell. 

Fig. 1.1 illustrates a MEMS gyroscope from ST Microelectronics and its size comparing 

to a quarter dollar. 

Figure 1.1: A commercial MEMS gyroscope from ST Microelectronics 

Ever since its invention, the gyroscope has always been an integral part of all the 

Inertial Measurement Units (IMU) and Inertial Navigation Systems (INS). Inertial 

navigation is performed to determine the space position of a subject by using 
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accelerometers and gyroscopes installed on the subject. The measured acceleration and 

rotation rate can be combined to yield the accurate position of the subject in space [3]. 

The IMU is an independent system that can perform accurate short-term navigation of an 

object in the absence of GPS assisted inertial navigation [4]. It typically contains three 

accelerometers and three gyroscopes that are placed along their respective sensitive axes 

to gather information about the object's direction and heading. IMUs are very important 

components in aircraft's, unmanned vehicles, GPS augmented navigation, etc. In the 

petroleum industry, a high precision IMU is needed in down-hole electronics for real

time monitoring and correction of drilling in offshore rigs. 

In general, MEMS gyroscopes can be classified into three different categories based 

on their performance: rate-grade, tactical grade, and inertial-grade gyroscopes. Table 1.1 

summarizes the requirements for each of these categories. In the past, much effort had 

been dedicated to developing micromachined silicon gyroscopes of the rate-grade, 

primarily because of their use in automotive applications. Nowadays, the majority of 

applications in consumer electronics also fall into this category, while the higher 

precision tactical-grade and inertial-grade devices are needed in aerospace, military and 

petroleum industry. 

Table 1.1: Performance requirements for gyroscopes of different categories 

Parameter 
Angle Random Walk, °/Vh 

Bias Drift, 7h 
Scale Factor Accuracy, % 
Full Scale Range (7sec) 

Max. Shock in 1msec, g's 
Bandwidth, Hz 

Rate Grade 
>0.5 

10-1000 
0.1-1 

50-1000 
10J 

>70 

Tactical Grade 
0.5-0.05 
0.1-10 

0.01-0.1 
>500 

10J-104 

-100 

Inertial Grade 
<0.001 
<0.01 

<0.001 
>400 

10j 

-1-100 



4 

The most commonly used high precision (tactical-grade and inertial-grade) 

gyroscopes are Fiber-Optic Gyroscopes (FOG), Ring-Laser Gyroscopes (RLG) and the 

Hemispherical Resonator Gyroscope (HRG). Although FOGs and RLGs have higher 

accuracy, they are comparatively bulky and expensive gyroscopes that rely on optical 

means to detect rotation. Thus, they cannot be micromachined or integrated with CMOS 

ICs, which makes them inappropriate for small form-factor sensors. HRGs use 

mechanical means for rotation detection, but have a bulky quartz-based structure which is 

not suitable in ultra low-power applications [3]. Given all these limitations of the above-

mentioned high precision gyroscopes, ongoing research has been conducted to investigate 

low-cost and low-power MEMS gyroscopes targeting at tactical or inertial grade 

performance. The work done at Georgia Institute of Technology in 2007 showed a mode-

matched tuning-fork gyroscope with a 0.1 Thr bias stability, which was two orders of 

magnitude better than commercially available MEMS gyroscopes at that time. 

1.2 Coriolis Effect 

Known as the Coriolis Vibratory Gyroscopes (CVG) [5], MEMS gyroscopes are based on 

the Coriolis Effect, where vibration energy of a microstructure is transferred from one 

vibration mode (drive mode) to another (sense mode) in response to an input rotation rate 

signal. The two vibration modes are orthogonal to the axis of rotation and to each other. 

Fig. 1.2 illustrates the Coriolis Effect conceptually. Coriolis Acceleration arises in a 

rotating reference frame and is proportional to the rate of rotation. In the example of a 

simple tuning fork, as shown in Fig. 1.3, the tines of the tuning fork are driven into 

resonance along the x-axis and this vibration mode is called as the drive mode. At the 
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same time when the tuning fork is rotated around the z-axis with a rotation rate of Clz, 

there will be a force applied on the tines causing them to deflect along the y-axis with an 

acceleration equal to 2vx
x Q,z, where vx is the velocity of the tines along the x-axis. This 

force is referred to as the Coriolis Force and the resulting deflection of the tines along the 

y-axis is referred to as the sense mode. The deflection in the sense mode is proportional 

to the input rotation rate and it will lead to an output voltage signal, based on which the 

input rotation rate can be told. 

Rate <rf ^T 
Riit.jtiun ™ 

xm 

4 7. 

' / 
-M«nmg 
Object 

acor = 2V x Q 

fc v 

E.TFoEY--

Figure 1.2 [6]: Concept of Coriolis Effect 
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Figure 1.3: Tuning fork demonstration of Coriolis Force 

Vibratory gyroscopes can work either in matched-mode or split-mode condition [7]. 

In this work, only matched-mode gyroscopes are investigated because in a matched-mode 

condition, the resonant frequencies of the drive mode and the sense mode are identical or 

in close proximity so that the rotation-induced Coriolis Signal can be amplified by the 

mechanical Quality (Q) factor of the sense mode, resulting in higher rate sensitivity and 

better resolution than in the split-mode condition. 

1.3 Motivation 

While the MEMS gyroscopes have smaller size and weight and are much more cost-

effective, they have yet to break into the high-precision market currently dominated by 

the bulky mechanical and optical gyroscopes. The survey in Table 1.2 demonstrates the 

performance differences between two categories of gyroscopes manufactured by 

Honeywell. The GG1320AN [8] is a single-axis RLG with a variety of military 
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applications, while the GG5300 [9] is a three-axis MEMS rate gyroscope for pointing, 

stabilization and guidance applications. 

Table 1.2: Performance comparison between Honeywell's RLG and MEMS gyroscopes 

Specifications 
Size 

Weight 
Start-up time 
Bias stability 
Angle random walk (Noise) 
Bandwidth 

GG1320AN (RLG) 
Height: 4.5cm 
Diameter: 8.8cm 
454g 
l-4s 
0.0035deg/hr 
0.003 5deg/roothr 
1000Hz 

GG5300 (MEMS) 
Height: 3.3cm 
Diameter: 5.1cm 
136g 
<ls 
<70deg/hr 
<0.2deg/root hr 
100Hz 

Apparently, the performance of the MEMS gyroscope GG5300 is a few orders of 

magnitude away from that of the RLG GG1320AN in terms of bias stability and noise, 

which dictates their different application fields. One objective of this research work is to 

present a comprehensive theoretical and practical analysis of the design and performance 

evaluation of a MEMS gyroscope system, which lays the foundation and provides some 

insight on how to improve MEMS gyroscopes so as to approach high precision 

performances. 

Among various kinds of MEMS gyroscopes, the tuning-fork gyroscope has drawn a 

lot of interest because of its promising design features for high precision performance and 

relative ease with fabrication [2, 10]. One of the first micromachined tuning-fork 

gyroscopes was demonstrated by Draper Laboratory in the early 1990s [11], which had a 

resolution of 50007hrand a rate sensitivity of 1.57mV/7sec. In 1997, Draper Lab 

improved the resolution to 257hr [12]. Analog Devices Inc. developed a single-chip 

integrated tuning-fork gyroscope in 2002. Its measured results showed a resolution of 
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507hr and a rate sensitivity of 12.5mV/7sec [13]. Since 2004, the Integrated MEMS 

laboratory at Georgia Institute of Technology has reported a series of works on the 

silicon-on-insulator (SOI) mode-matched tuning-fork gyroscope with the device 

thickness varying from 40um to 60um [14-16]. The highest rate sensitivity and the best 

bias stability reported from these were 88mV/7sec and 0.157hr, respectively, in 2008. 

The key performance parameters of a MEMS gyroscope include the rate resolution, 

rate sensitivity (or scale factor), bias drift (or bias stability), and operation bandwidth. 

Many tradeoffs exist in a gyroscope design for these parameters. For instance, high 

Quality factors in the two vibration modes and matched-mode operation are critical for a 

tuning-fork gyroscope to achieve high performance [10, 17-19], including high rate 

sensitivity, improved rate resolution, and lower bias drift. Therefore, tuning-fork 

gyroscopes with high Qs and matched-mode operation have been pursued. However, 

such high performance is typically obtained with a narrow operation bandwidth [17]. In 

contrast, a tuning-fork gyroscope with a wide operation bandwidth usually needs to 

sacrifice its rate sensitivity and bias drift [19, 20]. 

In pursuit of high performance, another objective of this research work is to fabricate 

tuning-fork gyroscopes with ultra-high Qs, and to design and implement the interface 

electronics for operating them. Comparing to the reported drive-mode Q of 81k and 

sense-mode Q of 64k in [14], and drive-mode Q of 67k and sense-mode Q of 125k in [19], 

the quality factors in this work are expected to be typically over 200k for drive mode and 

100k for sense mode. In conjunction with its interface circuit, the fabricated tuning-fork 

gyroscope makes an angular rate sensor, of which the overall performance is 

characterized in detail. 
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1.4 Dissertation Organization 

The remainder of this dissertation is organized as follows. 

Chapter 2 presents an overview of the MEMS tuning-fork gyroscope itself. It 

provides fundamentals of this gyroscope device including its operation principle, 

performance specifications and theoretical model analysis. Design challenges such as 

quadrature error and mode-matching are also elaborated. 

Chapter 3 focuses on the fabrication process of the tuning-fork gyroscope. Only a 

single mask is used and the fabricated devices prove to be very robust. The simple two-

step process, namely DRIE and HF acid etching, is discussed in detail. One noteworthy 

improvement of the fabrication mask is to add a trench feature surrounding the gyroscope 

in order to significantly increase its quality factors in both operation modes. 

Chapter 4 discusses the interface circuit design for the tuning-fork gyroscope. The 

interface circuit consists of a drive loop for electrostatic actuation of the gyroscope, and a 

sense channel for capacitive sensing of the gyroscope output. In the context of gyroscope 

interfacing, the Transimpedance Amplifier (TIA) is proposed as a low-noise front-end for 

motional current detection in this gyroscope. The drive loop circuitry is based on a series 

resonant electromechanical oscillator approach and the sense channel utilizes a 

synchronous demodulator. 

Chapter 5 presents Printed Circuit Board (PCB) implementation of the drive and 

sense electronics for the tuning-fork gyroscope. A gyro-mounted PCB in vacuum is 

evaluated for its performance as an angular rate sensor. Frequency characterization 

results are provided to confirm the ultra-high Qs in both operation modes of the 
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gyroscope. The rate sensitivity measurement is then performed to demonstrate this 

important behavior of the gyroscope. 

Chapter 6 provides a detailed analysis of bias drift in micromachined gyroscopes. 

Bias drift and angle random walk, which represent the overall system resolution, have 

become the two vital performance parameters in MEMS-based Inertial Measurement 

Units (IMU) such as gyroscopes. An important technique for characterizing the bias drift, 

Allan Variance, is introduced. The bias drift of the micro-system implemented here is 

compared with results from other research work. 

At last, Chapter 7 concludes this work with an overview of the contributions of this 

research and proposes possible future directions in performance optimization of this 

tuning-fork gyroscope. 
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CHAPTER II 

TUNING-FORK GYROSCOPE FUNDAMENTALS 

This chapter discusses the basics of the tuning-fork gyroscope including its operation 

principle and performance parameters. Since the fundamental knowledge for any Coriolis 

Vibratory Gyroscope (CVG) remains the same [3], the analyses here for tuning-fork 

gyroscopes, with slight modifications if any, can be applied to other CVGs as well. 

2.1 Operation Principle 

Fig. 2.1 shows a SEM picture of the multiple-beam tuning-fork gyroscope (MB-TFG) 

design for z-axis rotation detection. The multiple-beam tuning-fork structure (MB-TFS) 

consists of two large proof masses and a fiexural structure of four beams in parallel. The 

flexural structure functions as mechanical springs along the x-axis and the y-axis. The 

whole structure is fixed on the substrate through the anchor located at its center. A 

collection of electrodes is distributed around the proof masses for operating this device. 

The MB-TFG here uses electrostatic actuation and capacitive sensing. Comb-drive 

electrodes are placed at both sides of the MB-TFS for electrostatic actuation, while 

parallel-plate sense electrodes surround the two proof-masses for capacitive sensing. In 

addition, tuning electrodes are also incorporated like in the micromachined gyroscope 

reported in [14]. The tuning electrodes are exactly the same in size, but serve a different 

purpose as the sense electrodes, as will be explained later. 
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Figure 2.1: A SEM picture of the multiple-beam tuning-fork gyroscope (MB-TFG) 
design 

As previously mentioned, the operating principle of this gyroscope is based on 

Coriolis Effect and the two proof-masses function as the tines of a tuning fork, hence the 

name "tuning-fork gyroscope". The MB-TFS is operated in two in-plane vibration 

modes: one along the x-axis (drive-mode) and the other along the y-axis (sense-mode). A 

constant DC polarization voltage, Vp, is applied to the anchor and the whole MB-TFS. 

This DC voltage is the bias voltage for the gyroscope. Comb-drive electrodes are 

employed to establish in-plane vibrations in the drive-mode, while a rotation rate signal, 

Q.z, normal to the device plane (z-axis) induces a Coriolis Acceleration along the y-axis 

and excites in-plane vibrations in the sense-mode. Fig. 2.2 illustrates the two vibration 

modes simulated in COMSOL Multiphysics. Note that the two vibration modes are 

orthogonal and the two proof-masses vibrate in opposite directions in both vibration 

modes. 
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(a) (b) 

Figure 2.2: COMSOL simulation of two vibration modes of a multiple-beam tuning-fork 
structure (MB-TFS) (a) drive-mode and (b) sense-mode 

Mathematically, the magnitude of the Coriolis Acceleration is given by the cross 

product of the velocity of the proof-masses in the drive-mode and the input rotation rate. 

If the proof-masses, when driven into resonance in the drive-mode, are in sinusoidal 

oscillation, which is given by qdSin(coxt), then the Coriolis Acceleration is 

ay = 2nz(t)vx(t) = mz{t)qd(nx cos(<oxt) (2.1) 

where Qz is the z-axis input rotation rate, vx is the drive-mode velocity of the proof-

masses, qa is the amplitude of oscillation in the drive-mode and cox is the drive-mode 

resonant frequency. This expression shows that the Coriolis Acceleration generated in the 

CVG is an Amplitude Modulated (AM) sinusoid signal in which the drive-mode velocity 

serves as the carrier signal and the rotation rate signal is the modulating signal. 

The rotation-induced vibration in the sense-mode causes the gap between the parallel-

plate electrode and the proof-mass to change. This capacitive gap change is proportional 

to the input rotation rate and can be detected by measuring the generated current as a 
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result of this parallel-plate capacitance change. Because of its amplitude-modulated 

characteristic, the measured output from the four parallel-plate sense electrodes along the 

y-axis needs to be demodulated in the sense channel in order to extract the final output 

that is proportional to the input rotation rate Qz. 

As will become clear later on, the MB-TFG has maximum rate sensitivity when it is 

working under perfect matched-mode condition, that is, the resonant frequencies of the 

drive-mode and sense-mode are identical. Although these frequencies are designed to be 

the same or very close to each other, due to fabrication variations, there always exists a 

frequency difference between the two, which usually ranges from 100Hz to 300Hz. To 

compensate for fabrication variations a nd increase the ra te sensitivity, a DC tuning 

voltage is applied on the four parallel-plate tuning electrodes shown in Fig. 2.1 to reduce 

this frequency difference between the drive-mode and the sense-mode, so that the rate 

sensitivity can be significantly increased, roughly by a factor of the Q in the sense-mode. 

2.2 Performance Specifications 

A number of different parameters are used to specify the performance of a MB-TFG 

system. The main performance parameters include resolution, sensitivity (scale factor), 

bias stability and operation bandwidth. 

2.2.1 Resolution 

The resolution of a gyroscope is the minimum detectable input rotation rate that can be 

distinguished from the noise floor of the system per square root of bandwidth of 

detection. It is usually expressed in units of 7sec/VHz or Thr/VHz. The overall resolution 
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of a MEMS gyroscope system, which is given by the total noise equivalent rotation 

(TNEfi), is determined by two uncorrelated components: the mechanical (Brownian) 

noise equivalent rotation (MNEQ) and the electronic noise equivalent rotation (ENEQ). 

Their relation is given by Eq. 2.2. 

TNEil = y/MNED.2 + ENEtt2 (2.2) 

The mechanical noise source for the gyroscope is the Brownian Motion of the tuning-

fork structure caused by molecular collisions from the surrounding medium [2]. It can be 

found by equating the displacement caused by the Brownian Motion to the displacement 

caused by the Coriolis Force. The mechanical resolution of the gyroscope is given by 

[21] 

1 4kBT , 180° 
MNED. = — - 2 ^/BWx (2.3) 

2qdJo)0MQEFF n 

where qd is still the amplitude of oscillation in the drive-mode, ks is the Boltzmann 

Constant (1.38><10"23Joules/K), T is the absolute temperature, coo is the resonant 

frequency of the sensor, M is the effective mass of the tuning-fork structure, QEFF is the 

effective quality factor of the gyroscope system and BW is the measurement bandwidth. 

Obviously, large oscillation amplitudes in the drive-mode, large effective mass and high 

effective quality factors would all benefit the mechanical resolution. For a given MB-

TFS, QEFF can be maximized by matching the resonant frequencies of the drive-mode and 

sense-mode. When the two frequencies are very close to each other, the Q in the sense-

mode is used as the QEFF for theoretical performance estimation. 
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The electronic noise floor depends on the minimum detectable capacitance change of 

the sense channel interface electronics and the sense capacitive sensitivity to the rotation 

rate. For a parallel-plate capacitive transducer, the minimum detectable capacitance 

change is proportional to the input-referred current noise of the interface electronics 

integrated over the bandwidth of interest [21]. Assuming that a Transimpedance 

Amplifier (TLA) with feedback impedance RTu is employed as the front-end interface in 

the sense channel, then the ENEft of the MB-TFG is calculated as 

ENECl = ds°^r
kByi™jBW (2.4) 

^•vPCS0QEFFqd 

where VP is the bias voltage for the MB-TFS, dSo and CSo are the static sense gap and 

static sense capacitance, respectively. It is evident that oscillation amplitude of the drive-

mode, effective quality factor and static sense gap all affect the electronic noise floor. 

Angle Random Walk (ARW) is more often used to represent the noise floor of a 

gyroscope. Typically expressed in unit of %/hr, it is a measure of the angular error 

buildup with time that is due to the white noise in the angular rate. The ARW and the 

noise floor per unit bandwidth are related by [3] 

ARW(°/yfhr) x 60 = Noise floor(°/hr/y[Hz) (2.5) 

2.2.2 Sensitivity 

Coriolis-induced sense-mode deflections of the proof-masses can be detected through 

capacitive, piezoresistive, piezoelectric or optical means. The sensitivity, also known as 

scale factor, of a gyroscope is the ratio of the change in the output to a unit change in the 
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input that is to be measured, typically expressed in volts/7sec. It measures how sensitive 

the device is in response to an input rotation rate signal. The MB-TFG in this work uses 

capacitive detection and the direct output generated at a sense electrode is a motional 

current given by 

_ 2VPCS0 
1sense ~ j ^dQEFF^-z (2-6) 

"SO 

where the meanings of the parameters in Eq. 2.6 are the same as above. Note that the 

input rotation rate information £lz is incorporated in this output signal and will be 

extracted at a later stage. 

As mentioned above, in order to amplify and convert the current output from the 

sense electrodes to a voltage signal, TIA is chosen as the front-end interface in the sense 

channel for the MB-TFG, primarily because of its immunity to parasitic capacitances at 

its inverting input and hence reduction of signal loss. The rate sensitivity of the MB-TFG 

can be calculated as 

Vsense _ 2VpCS0 

ftz "SO 

where RTIA is the feedback resistance of the TIA. 

Intuitively, for a given input rotation rate, larger deflection in the sense-mode causes 

larger change in the sense capacitances, generating larger electrical output which leads to 

higher sensitivity. The sense-mode deflection of the proof-masses is proportional to the 

oscillation amplitude in the drive-mode qd and the effective quality factor QEFF-

Furthermore, a high aspect ratio of the capacitive sensing gap allows for large changes in 
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the sense capacitances. Therefore, all these factors would contribute to a high rate 

sensitivity, according to Eq. 2.7. 

2.2.3 Zero Rate Output and Bias Stability 

Zero Rate Output (ZRO) is the output signal from the gyroscope system when there is no 

input rotation, in other words, zero rate input. The drift of this ZRO bias is a vital 

performance parameter that determines the long-term stability of a micromachined 

gyroscope. The term "bias drift" is used interchangeably with another term, bias stability, 

or instability in some of the literature, and is usually defined in units of 7hr. 

To understand the importance of bias drift, consider that in inertial navigation 

systems, gyroscopes and accelerometers are used together to collect heading information, 

which is, orientation and position. The rate information obtained from the gyroscope is 

integrated to give the angle value. To ensure precise angle information, the variation of 

the ZRO signal must be kept at a minimum level, which otherwise may result in a huge 

error in angle information. Bias drift, is such an accurate measure of how large the 

variation in the ZRO is. Nowadays, modern gyroscope systems rely on periodic 

calibration with GPS to ensure accurate heading information. However, in circumstances 

such as deep sea navigation and oil exploration, when frequent surfacing to calibrate with 

a GPS is not possible, long-interval calibration is a must. In such cases, a gyroscope 

system with lower bias drift can function accurately for a longer time, without the need 

for calibration. 

The bias drift of a gyroscope is comprised of systematic and random components. 

The systematic components are due to temperature variations, linear accelerations, 
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vibrations and other environmental factors [5]. The random component depends 

significantly on the noise floor of the gyroscope and has a 1/f characteristic [3]. Therefore, 

improvement in gyroscope resolution also results in lower bias drift. An empirical 

expression to predict the bias drift in gyroscopes is given in [22] 

Bias drift oc j (2.8) 
VDrive VSense™ &®-Electrodes 

where AreaEiectrodes is the total capacitive area of all the sense electrodes. 

Since bias drift is related to the noise floor of a gyroscope, a Power Spectral Density 

(PSD) method was used to measure bias drift. However, the Allan Variance Technique 

has become more common in specifying the bias drift of a gyroscope [5]. Chapter 6 is 

dedicated to a detailed analysis of bias drift. 

2.2.4 Operation Bandwidth 

The rate gyroscope used in this dissertation is a CVG operated in the open-loop mode, in 

which the driven mode is excited and inertial rotation about the input axis results in the 

excitation of the readout mode. The motion in the readout mode is only monitored but 

not controlled and the amplitude of the readout-mode vibration is proportional to the 

input rate [7]. The operation bandwidth of this CVG in the open-loop mode is directly 

related to the separation of the natural frequencies of the two vibration modes. Also, 

bandwidth can be regarded as an indicator of how many measurements can be made per 

second. It reflects the response time required for the system output to take on its new 

steady-state value after a step change in the input rotation rate. Since the bandwidth is 

found to be inversely proportional to the effective quality factor (QEFF) of the system, 
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larger bandwidths can be achieved either by increasing the system damping, or by further 

separating the two natural frequencies, both of which would lower QEFF-

However, there is a tradeoff between bandwidth and sensitivity, since sacrificing QEFF 

for more bandwidth apparently results in a smaller steady-state response to a given 

inertial input rotation rate. The bandwidth requirement for a CVG depends on its 

application. In gyrocompass navigation where a very high rate resolution is necessary, 

high QEFF and, hence, high sensitivity has the priority, so a small bandwidth and a long 

response time are tolerable. Conversely, in other cases such as the automotive roll-over 

situation where high yaw rates associated with vehicular skidding need to be detected, 

minimum response time of the CVG system is crucial and therefore a larger bandwidth is 

required [3]. 

2.3 Theoretical Model Analysis 

A tuning-fork gyroscope is equivalent to a coupled resonator system and the rotation-

induced Coriolis Effect is the coupling element between the two vibration modes - drive 

and sense modes [23]. Each vibration mode corresponds to a two-port resonator system, 

which can be driven by an input voltage and outputs a current. The input voltage is 

converted into a driving force through the drive electrodes, which can either be comb-

drive or parallel-plate. The driving force causes the mechanical structure to vibrate and as 

a result of this vibration, current output can be generated from the capacitive sense 

electrodes, which also can be comb-drive or parallel-plate, and is picked up by the front-

end interface electronics. There is an electromechanical coupling effect at both the 
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conversions from the input voltage to driving force and from the structure motion to 

output current. 

Newton's Second Law of Motion governs the dynamics of the tuning-fork gyroscope. 

To analyze the system behavior in each mode, the vibration is excited from input and the 

signal from output is observed. 

2.3.1 Drive Mode 

The drive-mode of the MB-TFG relies on comb-drive electrodes on one side for 

generating electrostatic force to activate the MB-TFS and the output current is detected 

from the comb-drive electrodes on the other side. Fig. 2.3 shows typical comb-drive 

structures using Deep Reactive Ion Etching (DRIE) process. 

Figure 2.3: DRIE fabricated comb-drive structures 

In comb-drive electrodes, one comb structure is fixed while the other one is mobile. 

When a voltage difference is established be tween these two combs and the mobile 

electrode is moving so that the overlapping capacitive area of two opposite comb fingers 
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is changing, electrostatic force is generated along the displacement of the mobile 

electrode. The derivation of this electrostatic force is based on the stored electrical energy 

change of a capacitor and its expression is given by 

Fe = na0V
2— (2.9) 

" d 

where n is the number of the fingers on one comb electrode, eo is the permittivity of free 

space (8.85419 x 10"12C2/Jm), V is the voltage difference, h/dd is the aspect ratio of the 

comb fingers, h is the structure thickness and dd is the gap between two opposite comb 

fingers. 

In this MB-TFG, as shown in Fig. 2.4, a polarization DC voltage VP is applied to the 

MB-TFS and, hence, the mobile comb-drive electrode. Its purpose is for capacitive 

transduction and preventing frequency doubling of the drive force [24]. In the meantime, 

an AC voltage Vd is applied to the fixed comb-drive electrode at one side in order to 

excite the drive-mode vibration, and output current is generated from the fixed comb-

drive electrode at the other side. Likewise, if the AC voltage is applied to the four 

parallel-plate tuning electrodes to excite the sense-mode vibration, output current can be 

detected from the other four parallel-plate sense electrodes. 

In the drive-mode, the equivalent lumped-element mechanical model is illustrated in 

Fig. 2.5, where M is the effective mass of the MB-TFS, Dd is the damping in the drive-

mode, kd is the effective mechanical stiffness of the flexural beams in the drive-mode. 
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Figure 2.4: Signal configuration of the MB-TFG for characterizing its drive-mode and 
the sense-mode vibration behavior 

The second-order ordinary differential equation (ODE) describing the relationship 

between the proof-mass displacement along the x-axis (x) and the driving AC voltage for 

the MB-TFG (Vd) is given by 

d2x dx 

_a)dM 
d ~~n~ 

Vd 

kd = a)2
dM 

-2ne0 — VPvd 
dd 

(2.10) 

(2.11) 

(2.12) 

The electrostatic force in Eq. 2.10 is the total force from the comb-drive electrodes 

both at the input and output. It is similar to Eq. 2.9 except that Vp is the DC polarization 

voltage on the mechanical structure and Vd is the AC driving voltage at the input port. 
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> Fe 

Figure 2.5: Equivalent mechanical model of the MB-TFG in the drive-mode 

The natural resonant frequency of this system is given by 

1 \kd 
fd ~ 2TT J ¥ 

(2.13) 

As mentioned before, electromechanical coupling effect exists at both the conversions 

from the input voltage to driving force and from the structure motion to output current. In 

the drive-mode, the electromechanical coupling coefficient is found to be 

r]d = -2ne0 — VP 
dd 

(2.14) 

and it is the same at both input and output ports. 

Since the MB-TFG needs to be incorporated into the drive-loop electronics for 

operation, its model in the electrical domain is also important. For electrical system 

simulation using PSPICE, the drive-mode ODE can be modeled as an equivalent series-

RLC circuit [25]. As shown in Fig. 2.6, Rd, Ld and Cd are referred to as the motional 

resistance, inductance and capacitance of the drive-mode, respectively. Cdo is the static 
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capacitance from the comb-drive electrodes and id is the generated motional current 

because of the proof-mass motion. 

Id 

CM — — Cd, 

"a —a i\d 

vd0 mor^_||_ww 

Figure 2.6: Equivalent series-RLC circuit model of the MB-TFG in drive-mode 

The motional parameter values of the circuit model are given by 

_ Dd _ (odMdd _M _7}d 
Rd-7d~4Qd(ne0hVP)2 Ld~ri Cd~Vd

 (2-15) 

In order to obtain the vibration information of the MB-TFS from the input and output 

electrical signals, the drive-mode vibrations must be related to the electrical signals of the 

comb-drive electrodes. The drive-mode vibration amplitude, qd, of the proof-masses is 

related to the ac voltage, Vd, at the input port by 

VdVdQd 2n£0hVPvdQd 
Rd = —r = v - r (2.16) 

Kd 0-dKd 

where Qd is the quality factor of the drive-mode. 

The current, id, at the output port is related to the drive-mode vibration amplitude by 

h 
id = 9d"d^d = - 2 n £ 0 —Vpqdwd (2.17) 

dd 
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where cod is the angular resonant frequency of the drive-mode. Note that the current at the 

output port is proportional to the drive-mode velocity of the proof-masses. 

2.3.2 Sense Mode 

Different from the comb-drive electrodes in the drive-mode, the sense-mode uses 

parallel-plate electrodes to actuate and detect the proof-mass motion. Fig. 2.7 shows the 

parallel-plate electrode employed in this MB-TFG, which is also DRIE fabricated. 

Figure 2.7: DRIE fabricated parallel-plate electrode 

In Fig. 2.7, the upper plate is fixed on the substrate while the lower plate is just the 

movable proof-mass. When a voltage difference is established between the two plates and 

the proof-mass is vibrating thus changing the gap between the two plates, electrostatic 

force is generated and is given by 

_ 1 V2 V2 

Fe-2Cs0Ts
 + Cs0dly (2.18) 
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where Cso is the static sense capacitance, ds is the sense gap and y is the displacement of 

the proof-mass towards the upper plate. Note that this electrostatic force includes a linear 

term that is proportional to the displacement of the proof-mass in the sense direction. 

The equivalent lumped-element mechanical model of the sense-mode is the same as 

that of the drive-mode, shown in Fig. 2.5, expect that the effective mechanical stiffness 

depends on an electrostatic stiffness ke The second-order ODE relating the proof-mass 

displacement along the y-axis (y) to the input AC voltage (vs) in the sense-mode is given 

by 

d2y dy C*a 

M-^ + Ds-±+{ks - ke)y = —fvPvs (2.19) 

ke = 2^-V2 (2.20) 

The electrostatic force in Eq. 2.19 is the total force of the input and output ports. Its 

derivation automatically leads to the electrostatic stiffness in Eq. 2.20. The dependence of 

the effective mechanical stiffness on ke is referred to as the electrostatic spring-softening 

effect since the electrostatic stiffness always reduces the effective mechanical stiffness. 

The other motional parameters and the resonant frequency in the sense-mode take the 

same forms as those in the drive-mode. 

In the sense-mode, the electromechanical coupling coefficient is found to be 

Vs = ~VP (2.21) 
ds 

and it is the same at both input and output ports. 
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The equivalent series-RLC circuit model in the sense-mode is the same as that in the 

drive-mode, shown in Fig. 2.6. Its motional parameters are given by 

_ Ds _ usMdj _M rj2 

Rs~vl~ Qs(£olshVp)2 L s " ^ f Cs-k~^ke
 ( 2 2 2 ) 

Similarly, the relations between the electrical signals, vs and is, at the input and output 

ports and the sense-mode vibration amplitude, ys, are given as below 

= WsQs = Cs0VPvsQs 

sO 

h = ysVsO)s = --r- VPysa)s (2.24) 

where Qs and cos are the quality factor and angular resonant frequency of the sense-mode, 

respectively. 

The above analysis on the sense-mode is based on the actuation using AC voltage 

signal, in real operation of the MB-TFG, however, the excitation signal for the sense-

mode vibrations is a rotation rate signal ftz. The actuation force is a Coriolis Force given 

by 

dx 
Fa = 2M&Z — = 2Mazqdojd (2.25) 

After substituting the electrostatic force in Eq. 2.19 with this Coriolis Force, the 

output current of Eq. 2.24 can be derived again and this is already given in Eq. 2.6. 
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The other noteworthy point is that since a DC tuning voltage VT is applied on the four 

tuning electrodes while operating the MB-TFG, the actual electrostatic stiffness of the 

sense-mode is 

ke=^V2+^(VP-VTy (2.26) 

It can be seen that both the polarization voltage and the tuning voltage can adjust the 

electrostatic stiffness and therefore the resonant frequency of the sense-mode. This 

dependence on the polarization voltage and the tuning voltage is the basis of the 

electrostatic frequency tuning in the mode-matching of this MB-TFG. 

2.4 Quadrature Error and Mode-Matching 

Fabrication imperfections of the micromachined structure in MB-TFG result in spatial 

misalignments of the proof-masses and a mechanical resonant frequency separation 

between the two vibration modes. These errors are detrimental to gyroscope performance 

and will be discussed next. 

2.4.1 Quadrature Error 

Due to fabrication imperfections of the mechanical structure, there is an error signal 

common to all CVGs. Referred to as the quadrature error, it causes off-axis movement of 

the proof-masses, resulting in a residual displacement along the sense axis even in the 

absence of rotation [26]. A single proof-mass is illustrated in Fig. 2.8, which is allowed to 

move along both the drive and sense axes (x-axis and y-axis). Ideally, the motion of the 

proof-mass in the drive-mode resonance should be strictly restricted along the x-axis, 
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while motion along the y-axis occurs only when the sense-mode is excited due to 

rotation-induced Coriolis Acceleration. However, imbalances present in the mechanical 

structure cause the proof-mass to vibrate at an angle 0Q from the actual drive-axis as 

shown. This off-axis displacement of the proof-mass leads to mechanical coupling of the 

drive-mode resonant motion to the sensitive y-axis, and consequently an unwanted 

oscillatory deflection along the sense axis. Comparing to the Coriolis-induced deflection, 

this spurious mechanical coupling is the quadrature error, which produces an output 

signal even in the absence of any input rotation, contributing to the zero rate output 

(ZRO). 

Sense axis 
(90") 

AcluM 
direction 
af motion 
afmms 

Figure 2.8: Origin of quadrature error in the MB-TFG proof-mass 

Assuming that the proof-mass in Fig. 2.8 is driven into sinusoidal oscillation along 

the drive axis with the drive amplitude qd and resonant frequency ©d 

*d(0 = qdsin(wdt) (2.27) 
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The misaligned motion of the proof-mass by the off-axis angle 0Q results in a 

displacement component along the sense axis, which is given by 

yquad(t) = sin(6Q)qd sin(o)dt) « 6Qqd sin(o)dt) (2.28) 

where sin(0Q) « 6Q is the small angle approximation. However, consider the Coriolis-

induced acceleration of the proof-mass that is given by 2vx x Oz and the proof-mass 

velocity along the drive axis that is given by codqd cos(ojdt), the Coriolis-induced proof-

mass displacement along the sense axis is therefore 

2£lzQEFFcodqd cos(o)dt) 2azQEFFqd cos(ojdt) 
ycorioiisit) = —2 = (2.29) 

a>i a)d 

where matched-mode operation is assumed (cod=cos) and the MB-TFG leverages on the 

effective quality factor QEFF under matched-mode condition to gain the maximum 

Coriolis-induced proof-mass deflection in the sense axis. 

A comparison between Eq. 2.28 and Eq. 2.29 demonstrates that although both the 

quadrature error and the Coriolis-induced deflections are amplitude modulated (AM) 

signals centered at the drive-mode resonant frequency, there is an inherent 90° phase shift 

between the two, and hence comes the term "quadrature error". This phase difference 

originates from the fact that the Coriolis Acceleration is proportional to the proof-mass 

velocity along the drive axis, while the quadrature error is proportional to the proof-mass 

position along the drive axis. 

If considering the relative magnitude of the quadrature error signal to that of the 

Coriolis Signal, the level of the quadrature error signal could be significantly high. Eq. 

2.30 shows the ratio of the quadrature error displacement to the Coriolis Displacement 
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yquad <*>d0Q 

y Coriolis 2ilzQEFF 

(2.30) 

This indicates that when QEFF is low, even a small misalignment angle 9Q could lead to a 

quadrature error that is much greater than the Coriolis Displacement. 

To deal with the quadrature error signal in the sense channel, a phase-sensitive I-Q 

synchronous demodulation scheme is applied and will be discussed in Chapter 4. 

Nevertheless, the role of the quadrature error in preventing perfect mode-matching, i.e. 

zero Hz frequency separation between the two vibration modes, must be investigated. 

The influence of the quadrature error on the dynamics of the gyroscope system can be 

effectively demonstrated by the cross-coupling coefficients in the 2-DOF spring stiffness 

matrix K [26] 

K=(kxx ixy) (2-31) 
\Kyx KyyJ 

where k^ and kyy denote the mechanical spring stiffness terms along the drive (x) and 

sense (y) axes respectively, while kxy and kyx are the cross-diagonal spring stiffness terms 

that model the quadrature error induced mechanical coupling. Quadrature error in CVGs 

has been identified as the single most important factor that precludes perfect mode-

matching, since these cross-diagonal terms make a non-degenerate 2-DOF system. A 

mode-matched 2-DOF gyroscope system should be a degenerate system in which the 

mass and spring stiffness matrices are diagonal [26]. The quadrature induced off-diagonal 

terms in the spring stiffness matrix prevent this mode degeneracy leading to a mismatch 

in the resonant frequencies. Therefore, quadrature nulling techniques are required to 

eliminate the off-diagonal terms so that the spring stiffness matrix is diagonalized. In 
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practice, however, since perfect alignment of the proof-masses is not possible, the goal of 

quadrature nulling is to reduce the quadrature error as much as possible. 

The minimization of the quadrature error is the first step in achieving perfect mode-

matching. Reported CVGs in literature [13, 26-28] all use certain form of quadrature 

nulling technique that involves either electronic or mechanical compensation of the 

quadrature error signal. The work at Georgia Institute of Technology in 2007 [3] suggests 

an efficient and repeatable electrostatic nulling technique of the quadrature error. 

Dedicated quadrature nulling electrodes were added at the corners for each proof-mass. 

As illustrated in Fig. 2.9, the generated electrostatic balancing torques from these 

quadrature nulling electrodes can rotate the proof-masses, thereby correcting for any 

spatial misalignment and suppressing the quadrature error. 

Considering the spring stiffness matrix K in Eq. 2.31, the quadrature error nulling 

technique eliminates the cross-diagonal terms as below 

r^/-^Ar\ I xx W ~ ^xy-elec \ (kxx 0 \ ,„,„s 

K(QN) = U _ L. , k = I 0 k J ( 2"3 2 ) 

\K-yx Kyx-elec Kyy J \ u "-yy/ 

where kxy.eiec and kyx-eiec are the electrostatic stiffness generated from the balancing 

torques of the quadrature nulling electrodes. 

file:///K-yx
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Figure 2.9: Illustration of quadrature error nulling using electrostatic balancing torques 

Once the quadrature error has been minimized, the mechanical stiffness terms of the 

drive and sense modes can be made equal to ensure that their resonant frequencies are 

equalized. This is achieved by electrostatic frequency tuning as mentioned before. 

2.4.2 Mode Matching 

Fabrication imperfections, in addition to causing the quadrature error, also result in a 

resonant frequency separation between the two vibration modes. This is because of the 

deviation of the mechanical spring width from its original design value, which in turn 

leads to resonant frequency deviation. To compensate for this frequency variation, 
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electrostatic tuning of the resonant frequency in the sense-mode is performed. From the 

above analysis, the sense-mode resonant frequency can be given as 

'•"sJ-V1 (2-33) 

Given by Eq. 2.26, ke is the electrostatic stiffness along the sense axis that is induced by 

the use of parallel-plate electrodes in the sense-mode. Increasing the polarization voltage 

Vp lowers the sense-mode frequency, while the drive-mode frequency is relatively 

independent of the polarization voltage change because the drive-mode oscillations are 

excited using comb-drive electrodes and hence no electrostatic stiffness [29]. Eq. 2.33 

also shows that since the electrostatic stiffness always lowers the sense-mode resonant 

frequency (therefore referred as electrostatic spring-softening effect), the sense-mode 

frequency is typically designed to be slightly higher than the drive-mode frequency, so as 

to enable frequency tuning and mode matching in presence of fabrication variations. 

Mathematically, in mode-matching, electrostatic frequency tuning complements 

quadrature nulling by electronically equalizing the remaining diagonal terms in the spring 

stiffness matrix K, which can be represented as 

*o«=(V *„°-J=(V I) (2-34) 

In summary, both quadrature error nulling and electrostatic frequency tuning are 

necessary to achieve the matched-mode operation. Improper quadrature error nulling 

technique does not suppress the off-diagonal terms in the spring stiffness matrix K and a 

minimum achievable separation between the two resonant frequencies will result even 
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after the electrostatic frequency tuning step. A lack of dedicated quadrature error nulling 

electrodes in [30] led to a minimum achievable frequency separation of 12Hz. 

The primary motivation for mode-matching is to take advantage of the mechanical 

signal amplification provided by the effective quality factor (QEFF) of the gyroscope 

system. Since the Coriolis-induced energy transfer takes place at the drive-mode resonant 

frequency, QEFF represents the effective mechanical gain that the sense-mode can offer at 

the drive-mode resonant frequency. It therefore depends on the inherent quality factors of 

the mechanical structure, and the frequency separation between the drive and sense 

modes. For a given mechanical structure, QEFF is maximized under matched-mode 

condition. Although typical mechanical quality factors are in the range of 10,000 -

50,000 [31], higher effective Qs of around 100,000 are reported in [32] and more recently, 

quality factors in the scale of one million have been demonstrated at the Microsystems 

Lab of University of California at Irvine [33-36]. 

A high QEFF can improve the sensor performance in many ways. Most importantly, it 

lowers the overall noise floor of the system, as can be seen from Eq. 2.3 and Eq. 2.4. In 

particular, the capacitive sensitivity of the sensor is proportional to the amount of the 

proof-mass displacement along the sense axis, which is strongly dependent on the mode 

separation. In the unmatched mode condition, QEFF is low and very small mechanical gain, 

if any, is provided by the sense-mode, whereas in the matched mode condition, the 

capacitive sensitivity is amplified by a fairly higher QEFF, as given by 

A£ = 2Cs0QEFFqd ( 2 3 5 ) 

Q-z <>)adsQ 
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where <»o is the sensor frequency. The enhancement in the capacitive sensitivity lowers 

the electronic noise floor and therefore alleviates the constraints on the interface 

electronics in terms of noise, gain and power [3]. 

However, with high QEFF mode-matching comes many other challenges. While a high 

QEFF amplifies the Coriolis Acceleration signal, unwanted signal like quadrature error 

gets amplified as well. Mode-matching also needs to be stable over time and temperature, 

and should be realized automatically for commercialization. Nowadays, a mismatched 

mode of 5-10% in resonant frequencies when operating the gyroscope is often preferred 

because of the significant challenges involved with the mode-matching of high-Q 

resonant modes of a mechanical structure [3]. 
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CHAPTER III 

FABRICATION 

The fabrication technology of the micromachined gyroscopes mainly falls into two 

categories - surface micromachining technology and bulk micromachining technology. 

The Multiple-Beam Tuning-Fork Gyroscope (MB-TFG) in this work was fabricated 

using the surface micromachining technology with only one mask. After the initial 

performance characterization of the fabricated devices, a critical improvement was made 

to the MB-TFG design to significantly increase the quality factors of both vibration 

modes. 

3.1 Fabrication Procedure 

Tuning-fork gyroscopes in various derived forms have been designed and implemented 

using either surface micromachining technology [13, 26] or bulk micromachining 

technology [17-20, 37-39]. The MB-TFG design in this work was implemented using the 

surface micromachining technology since it generally can create much more complicated 

devices than can bulk micromachining. Though MB-TFG is a device with very delicate 

features, its fabrication procedure is quite simple and the yield percentage of one wafer is 

relatively high. Only one mask of Deep-Reactive-Ion-Etching (DRIE) is needed and the 

following Hydrofluoric (HF) acid etching completes the fabrication process. 

The MB-TFG prototypes were fabricated on Silicon-On-Insulator (SOI) wafers with a 

30um-thick heavily-doped device layer and a 2um-thick buried dioxide layer. A SOI 

wafer has a layered "silicon - insulator - silicon substrate" structure and its main 
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advantages over the conventional silicon processing include [40]: (1) lower parasitic 

capacitance due to isolation from the bulk silicon, which improves power consumption at 

matched performance, and (2) resistance to latchup due to complete isolation of the n-

and p-well structures. In general, SOI substrates are compatible with most conventional 

fabrication processes. Fig. 3.1 illustrates the two-step fabrication process. 

,M^J^mMn^i-A^^ 
^pwbstrate 

Silicon 

Si02 

SOI wafer with highly doped device layer 

a \SSS\\SSS\\V>>S^ 

Defining the tuning-fork structure and transducers using DRIE 

sssssssa SSSSC yL-®SS ssssss 
i l l 

HF acid etching of buried dioxide to release the movable structure 

Figure 3.1: One-mask fabrication process of 30um-thick tuning-fork gyroscopes on a 
SOI wafer 

Deep Reactive Ion Etching (DRIE) is a micromachining technique that etches 

mechanical elements onto a silicon wafer. Unlike a wet chemical etch, DRIE 

micromachining uses a plasma etch to create features. This allows greater flexibility in 

etch profiles, enabling a wider array of mechanical elements [41]. A DRIE step with a 
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modest aspect ratio of 10:1 is first employed to transfer the design patterns of the MB-

TFG on the single mask into the device layer. The time-controlled HF acid etching step is 

followed to etch away silicon dioxide underneath the MB-TFS, which as a result is 

released for mechanical motion. Meanwhile, the silicon dioxide under all the electrodes 

should be retained as much as possible with the purpose of strongly holding the 

electrodes for electrical connections. The DRIE step was performed at Cornell 

Nanofabrication Facility (CNF) using PT770 etcher and the HF acid etching step was 

performed at Micro Devices and Micromechanics Laboratory of Old Dominion 

University. 

3.2 Design Improvement 

The original design [42] kept only the MB-TFGs in the device layer and etched away all 

the surrounding silicon, as shown by a fabricated device in Fig. 3.2. From the analysis on 

the measured Qs, the main drawback of this design is that while the tuning-fork structure 

can be completely released for mechanical motion, the large openings next to the anchor 

increase the exposure of the silicon dioxide underneath the anchor to the HF acid and 

result in severe over-etch of this silicon dioxide. This undesirable side effect leads to 

significant amount of anchor loss and thus a much lower quality factor. 

In order to overcome the anchor loss problem, an improved mask design defines the 

MB-TFG by its surrounding trenches, as shown by a fabricated device in Fig. 3.3. The 

idea is to create smaller openings next to the anchor so that the silicon dioxide underneath 

is less exposed to the HF acid. In this design, however, precise time control of HF acid 

etching is vital and sometimes very challenging since the complete release of the tuning-
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fork structure and the maximal preservation of the silicon dioxide underneath the anchor 

need to be guaranteed simultaneously. The optimal etching time is verified through 

repetitive experiment. 

Figure 3.2: A fabricated MB-TFG from the original design 

Figure 3.3: A fabricated MB-TFG from the improved design 

After fabrication, each MB-TFG device needs to be checked for proof-mass motion 

using the probe station before mounted onto Printed-Circuit-Board (PCB) for 
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characterization. Fig. 3.4 shows a device under a probe. The proof-masses and the beams 

should be able to move with ease under a small force from the probe. 

/ 

I 

Figure 3.4: A MB-TFG device under probe 

The fabricated gyroscope is shown in Fig. 3.5 in different views. Fig. 3.5 (a) shows a 

top view of the trench feature in this MB-TFG, which acts as a protection measure to 

limit the over-etching of silicon dioxide underneath the anchor and electrodes. The close-

up view in Fig. 3.5 (b) shows the sense gap, the comb-drive fingers and the release holes 

on a proof mass. Fig. 3.5 (c) shows a cross-section view that illustrates the removal of 

silicon dioxide between the proof-mass and the substrate, which confirms that the proof-

mass is completely released. Also shown in this figure is the over-etching effect in DRIE, 

which can be made negligible through process optimization. The cross-section view of 

Fig. 3.5 (d) illustrates the HF acid over-etching effect under an anchor. The surrounding 

trenches reduced the effect but inevitably some silicon dioxide under the anchor has been 

etched away at the sides. 
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Figure 3.5: SEM pictures of the MB-TFG showing its different features 
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Table 3.1 summarizes the key design parameters of the MB-TFG in order to provide a 

general idea on this device. 

Table 3.1: Summary of the key design parameters of the MB-TFG 

Parameter 
Dimension of a device 

Thickness 
Beam width 

Dimension of a proof mass 
Number of comb fingers 

Gap between fingers 
Initial sense/tuning capacitance 

Sense/tuning gap 
Width of the sense/tuning electrodes 

Number of the sense/tuning electrodes 

Value 
1.7x1.7 

30 
10 

400x400 
25 
4 

0.046 
3 

130 
4 

Symbol 
-
h 
b 
-

n 

g 
CSO/CTO 

dso/dro 
We 

ns/riT 

Unit 
mm2 

urn 
urn 
urn 

-

urn 
PF 
urn 
urn 

-

The whole MB-TFG device has an in-plane dimension of Ummx 1.7mm. The in-plane 

dimension of the proof masses is 400umx400uui and the beam width of the flexural 

structure is lOum The thickness of the MB-TFG is 30um because the device was 

fabricated on a 30um-thick device layer of a SOI wafer. The release holes in the proof-

masses are all 10u.mxl0u.rn in size and they are used for ensuring full release of the 

proof-masses. The key design parameters of the electrostatic electrodes are illustrated in 

Fig. 3.6. The minimum design feature is 3um at the sense gap and the tuning gap between 

the parallel-plate electrodes and the proof masses. Note that the tuning electrodes and the 

sense electrodes have an identical design dimension. 

http://10u.mxl0u.rn
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Figure 3.6: Key design parameters of the electrostatic electrodes 

Due to fabrication imperfections, the actual fabricated dimensions of the sense/tuning 

gap and the gap between comb fingers are much larger, which can be confirmed by the 

SEM pictures in Fig. 3.7. Although the design feature for the sense/tuning gap is 3um, it 

is actually about 5urn in Fig. 3.7 (a). Likewise, in Fig. 3.7 (b), the actual gap between the 

comb-drive fingers is about 7um, while its design value is 4um. These fabrication 

variations will be taken into consideration in the theoretical evaluation of the gyroscope 

performance. 
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(a) Sense gap (b) Comb finger gap 

Figure 3.7: SEM pictures of the actual gaps in the MB-TFG 

In summary, using surface micromachining technology, the MB-TFG was fabricated 

based on the mask which defines small openings next to the anchor for the purpose of 

alleviating the fabrication effect on the anchor loss of the MB-TFG, thus significantly 

increasing its quality factors. 
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CHAPTER IV 

INTERFACE ELECTRONICS 

Interface electronics for actuating, controlling and sensing of the micro-mechanical 

structure of the gyroscope are an important part of a gyroscope system. Based on 

functionality, the electronics for a MB-TFG can be divided into two subsystems - the 

drive loop and the sense channel. The drive loop electronics are responsible for starting 

and sustaining an oscillation of the proof-masses along the drive axis with constant 

amplitude, while the function of the sense channel is to extract the input rotation 

information from the direct output of the gyroscope. In both the drive loop and the sense 

channel, a Transimpedance Amplifier (TIA) is used as the front-end for interfacing with 

the MB-TFG. 

4.1 Transimpedance Front-end for Capacitive Detection 

As the performance of the micromachined gyroscope itself is continuously improved, its 

interface circuit becomes critical in determining the overall system performance. The 

MB-TFG in this work is a capacitive sensor that needs a low-noise front-end stage to 

detect its very small capacitance changes, which largely depend on the mechanical 

motion of the proof-masses. A low-noise front-end interface is vital in achieving a high 

system resolution. Therefore, the first step in developing the interface electronics is to 

choose an appropriate front-end stage that is able to convert small mechanical signals 

such as displacement and velocity into useful electrical quantities (current and voltage) 

for subsequent signal processing. 



48 

The minimum detectable rotation rate of the gyroscope depends on the noise floor of 

the whole system - gyroscope and its interface electronics. It is defined as the resolution 

of the system and is given by the total noise equivalent rotation (TNEQ) in Eq. 2.2. The 

objective in the interface electronics design is to ensure that the electrical noise 

equivalent rotation (ENEQ) is less than the mechanical noise equivalent rotation 

(MNEfi), i.e., the circuit noise is not the limiting factor in the system performance [3]. 

The ENEQ depends on the minimum detectable capacitance change of the sense 

channel and the capacitive sensitivity (F/°/hr) that relates the parallel-plate capacitance 

change of the sensor to an input rotation rate 

ENED. = —££T- (4.1) 

HZ 

From the motional current of Eq. 2.6, the capacitive sensitivity can be derived as 

AC 2Cs0QEFFqd 

Hz oj0d 
(4.2) 

SO 

For a parallel-plate capacitive transducer, the minimum detectable capacitance change 

(ACmin) is proportional to the total input-referred current noise of the interface electronics 

integrated over the bandwidth of interest, as given by 

InoiseJBW 
^Cmin = nolse (4.3) 

0)0VP 

where Vp is the fixed DC voltage maintained across the sense gap. 
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Although the ENEQ can be lowered with the help of high aspect-ratio 

micromachining technique such as High Aspect-Ratio Combined Poly and Single-Crystal 

Silicon (HARPSS) in [43], this section concentrates on reducing the total input-referred 

current noise of the interface electronics from the circuit theory point of view. 

Several techniques have been developed in interface front-ends to detect the small 

capacitive displacement in MEMS gyroscopes. Charge integration using switched 

capacitor front-ends is employed for static MEMS accelerometers [44, 45], and 

micromachined gyroscopes [46, 47]. These schemes are suited for gyroscopes with low 

operating frequencies due to the power budget restriction. Further, the use of a switching 

voltage on the mechanical structure causes significant feed-through and parasitic 

electrical coupling [3]. 

The continuous-time charge integrator front-ends are used in [13, 26], since large AC 

impedances can be generated using capacitors at the operating frequencies. In addition, 

there is no kT/C noise associated with the capacitors because they are not switched. 

However, these integrators require a large resistor to bias the input node and the thermal 

noise of this large feed-back resistor forms the dominant noise contributor of the front-

end and determines the overall performance [3]. 

For micromechanical resonator-based oscillators in [48], Transimpedance Amplifier 

(TIA) with a feed-back resistor is used for continuous-time sensing of the motional 

current. Similarly, in this work, the TIA is employed in the drive loop as the front-end to 

detect the motional current. Furthermore, it is also used as the low-noise front-end for 

capacitive Coriolis Detection in the sense channel. 
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In order to investigate the TIA as the low-noise front-end in both the drive loop and 

for capacitive detection in the sense channel, its schematic interfacing with a 

micromachined gyroscope is shown in Fig. 4.1. 

Cf {stray capacitance) 

Bond Wire (R ~ 100) 

Pmof *6*\ 
A-JO, Wpt 

MEMS Dm 
149pm SOI} 

IC Chip 
(Standard CMOS) 

Figure 4.1 [3]: TIA (with noise sources) interfaced with a microgyroscope 

In the above figure, a constant DC voltage VP is maintained on the proof-mass and 

the substrate. Rp is the feedback resistance and CF is the associated stray capacitance. At 

the inverting terminal of the op-amp, there is a lumped parasitic capacitance, CTOT, that is 

composed of the pad capacitances and the gate capacitance of the input differential pair 

transistors in the op-amp [3]. 

The schematic in Fig. 4.1 can be simplified to an op-amp inverting amplifier shown in 

Fig. 4.2, where RMOT represents the motional resistance of the MB-TFG in either the 

drive-mode or the sense-mode. Because of the high open-loop DC gain of the op-amp 

and its negative feedback configuration, the inverting terminal of the op-amp is a good 
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virtual ground and therefore presents very low input impedance. As a result, the output 

current signal path is relatively insensitive to the total parasitic capacitance CTOT, thus 

preventing significant signal loss. This is one advantage of the TIA front-end. 

Figure 4.2: Simplified op-amp inverting amplifier 

Another advantage of using the TIA front-end is that it also helps reduce the loading 

effect of the interface electronics on the quality factor of the gyroscope in the drive-

mode, because of its low input impedance. Fig. 4.3 illustrates this effect. 

Reactive elements determine 
frequency of resonance 

j L fwyv Iji j .i JSA/>< 

AC drive 
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Motional RIN-AMP 

Impedance 

Amplifier 

Figure 4.3 [3]: Quality factor loading due to interface electronics 
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When the drive loop locks into electromechanical oscillations, the loaded drive-mode 

quality factor (QL) is lower than its unloaded value (QUL) [48] 

„ RMOT-D _ , . .v 

QL = p —p T ^ QUL (4-4) 
K M O T - D ~l~ K1N-AMP "•" rtOf/r 

where RIN-AMP and ROUT are the input and output impedances seen by the gyroscope from 

the drive loop electronics. For an immediate TIA front-end interfacing with the 

gyroscope, RIN-AMP is approximated by 

RF 
RIN-AMP ~ ~. (4.5) 

"•OL 

where AOL is the DC open-loop gain of the op-amp, which is typically between 80 -

lOOdB. Considering that typical values for Rp are in the M£l range, the RIN-AMP can be 

very low. Therefore, the Q-loading effect can be minimized with a TIA front-end. 

Returning to Fig. 4.1, the main noise contributors in the TIA front-end are identified 

as the input-referred voltage and current noise of the op-amp (v2
pamv and ilpamv ), and 

the thermal current noise of the feedback resistor RF which is given by 

4fcflT 
Kp 

Because the sensor output is a current, then the total equivalent input-referred current 

noise (IN-TOT) of the TIA front-end determines the minimum detectable capacitance 

change in Eq. 4.3, and hence the gyroscope resolution. IN-TOT, given by [49], includes 

effects from the total parasitic capacitance seen at the input node CTOT and the input 

resistance of the op-amp RiN-opamp 
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1 1 4k T 
lN-TOT ~ lopamp + vopamp X ( p I" n I" ^^TOTJ ^ „ (4-7) 

KF KlN-opamp KF 

In the operation bandwidth of the sensor, the equivalent input noise spectrum is assumed 

white and the thermal noise of the feedback resistor is the dominant noise source. Eq. 4.7 

is reduced to 

h-TOT* \^jf- (4-8) 

Based on Eqs. 4.1 to 4.3, the electronic noise floor ENEQ of the MB-TFG interfaced 

with a TIA front-end is given by 

^Cmin ds0IN_TOTylBW ^0yj Rp 

4kBT 
^[BW 

ENEQ. = —^iiii = : ^ i l _ L l i U ^ _ ~ " f (4.9) 
AC 2VPCsQQEFFqd 2VPCs0QEFFqd 

Now, consider the noise current IBrownian that is due to the random Brownian motion of the 

proof-mass along the sense axis, which is given by 

dCs0 
hrownian = <^0^P " a T T " ^ ( 4 . 1 0 ) 

where the noise displacement yn is derived in [28] using the Equi-Partition Theorem in 

[50] 

— AkBTQEFF 
yl = ° 3 (4.1D 
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It is worth noting that using Eqs 4.10, 4.11 and 2.6, the mechanical noise floor MNEfi 

can be derived as in Eq. 2.3. 

As described in Chapter 2, similar to a drive-mode, the sense-mode of the MB-TFG 

can also be modeled as a second order system with an equivalent series RLC circuit 

representation. The Brownian Noise Current can also be expressed as 

4/0,7 
Brownian n {?*•*•&) 

where RMOT-S is the motional resistance of the sense-mode. If comparing the mechanical 

Brownian noise current to the total input-referred noise current of the TIA frond-end, the 

ratio is 

4kBT 
I Brownian \ RM0T-S " F , . ., „ , 

~i = rir-T = \R ( 4 , 1 3 ) 
MOT-S 

R* 

Therefore, increasing RF over RMOT-S makes the total input-referred noise current of the 

TIA frond-end smaller than the mechanical Brownian Noise Current, which in turn 

means a smaller ENEQ than MNEQ. 

From the above analysis, it is evident that an increased RF is beneficial not only for 

larger TIA gain, but also for lower input circuit noise. RF in the sense channel is chosen 

to be larger than the motional resistance of the sense-mode (RMOT-S) SO that the circuit 

noise is not the limiting factor in determining the system performance of the MB-TFG. 

However, as will be seen later, since the overall gain of the drive loop needs to be 

controlled for the purpose of sustaining a stable oscillation, the feedback resistance of the 
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TIA front-end in the drive loop cannot be too large. Otherwise, the subsequent circuit 

stages are not able to tune the overall gain to satisfy the condition for a stable oscillation 

in the drive loop. 

4.2 Drive Loop Electronics 

After choosing TIA as the front-end interface, drive loop and sense channel circuits can 

be built. The purpose of the drive loop circuit is to start up and sustain the oscillation of 

the proof-masses along the drive axis with constant amplitude. Constant amplitude of the 

drive-mode vibration is crucial in successful and accurate operation of the gyroscope, 

since variations of the drive-mode amplitude result in velocity changes of the mechanical 

structure along the drive axis. Considering this velocity signal is the carrier signal in the 

amplitude modulation with the input angular rate signal, any fluctuation can lead to false 

or inaccurate rate output. A key feature of the drive loop circuit in this work is an 

Automatic Gain Control (AGC) scheme that is used to achieve and maintain constant 

amplitude in the drive-mode oscillation of the gyroscope. 

4.2.1 Electromechanical Resonant Oscillator 

The working principle of the drive loop is an electromechanical resonant oscillator circuit 

that combines the electronics and the MB-TFG device, which is similar to the approach 

used for micromechanical resonator oscillators in [25]. The drive-mode mechanical 

resonant frequency is the oscillating frequency of the gyroscope. The drive-mode 

oscillation with constant amplitude is established by using a positive feedback loop that 

satisfies the Barkhausen's Criteria, which is illustrated in Figure 4.4. 
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Figure 4.4: A positive feedback loop illustrating the Barkhausen's Criteria 

The criteria state that in the feedback loop above, if A(s) is the open-loop gain of the 

amplifier and [3(s) is the transfer function of the feedback path, then PA is the loop gain 

around the feedback loop and this circuit will sustain steady-state oscillations only at 

frequencies for which: 

1) The loop gain is equal to unity in magnitude, i.e., |PA| = 1; 

2) The phase shift around the loop is zero or an integer multiple of In, i.e., zpA = 2jin, 

n=0, 1,2, ... 

In the drive loop system of this MB-TFG, the gyroscope device is the "Frequency-

selective feedback network" P(s) since its frequency response shows that it functions as 

an analog filter. The rest electronics in the drive loop represent the "Amplifier" A(s), 

which is responsible for sensing the output current from the gyroscope and providing an 

input driving voltage to the gyroscope. 

The closed-loop gain of the drive loop system is given by 

Ads') A(s) 
Avis) = i-A&m = T^m (4"14) 
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From this equation, when the Barkhausen's Criteria are met, i.e., T(s) = 1, the closed-loop 

gain goes to infinite. It explains that while there is a finite output, no input is needed, in 

other words, this system is self-oscillating. 

The drive-mode oscillation originates from the inherent mechanical (Brownian) and 

electronic noise in the system. Although there are many frequency components in a noise 

signal, due to the filter characteristic of the MB-TFG, only the component that is of the 

same frequency as the mechanical resonant frequency of the MB-TFG is selected and 

gets through. By ensuring the satisfaction of the Barkhausen's Criteria, this positive 

feedback signal has no net phase shift with respect to the initial noise signal of the same 

frequency. Therefore, it strengthens this initial signal at the mechanical resonant 

frequency of the MB-TFG, and finally turns it into the oscillation signal of the MB-TFG. 

Another important fact states that in order to start up the oscillation in the drive loop, 

the initial loop gain (T = PA) must be larger than unity. To understand this point, 

consider that in this series resonant oscillator design, the loop gain is given by 

RAMP RAMP ^ ., r \ 
(4.15) RMOT-D + RIN + ROUT RMOT-D 

where RAMP denotes the total transimpedance gain of the drive loop electronics (TIA 

front-end and subsequent voltage gain stage), RMOT-D is the equivalent motional resistance 

of the drive-mode, RIN and ROUT are the input and output resistances seen by the 

gyroscope from the drive loop electronics. Since RMOT-D can be well over 1 OMft, while 

RIN and ROUT are typically low from the previous analysis, the loop gain is reduced to a 

ratio between RAMP and RMOT-D-
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Conceptually, the motional resistance RMOT-D represents the transmission loss in the 

drive loop. To compensate for this mechanical energy dissipation of the MB-TFG, 

electrical energy is supplied by the sustaining electronics in the drive loop and is 

represented by the total transimpedance gain RAMP- When the electrical energy supplied 

is higher than the mechanical energy dissipated in one cycle, i.e., RAMP > RMOT-D and, 

hence T > 1, oscillation occurs. As the cycle goes on, the oscillation signal will be 

reinforced and built up until either some form of nonlinearity or a designed automatic 

level control circuit (as in this case) makes RAMP
 =

 RMOT-D, at which point T = 1 and the 

oscillation is sustained at a certain constant amplitude. Note that throughout the 

magnitude variation of the loop gain, its net phase shift must remain to be zero so that 

positive feedback is always guaranteed. 

4.2.2 Circuit Configuration 

The complete interface electronics for operating the MB-TFG, including both the drive 

loop and the sense channel, are shown in Fig. 4.5. This section covers only the drive loop 

configuration, while the sense channel configuration will be discussed later. When the 

gyroscope is in operation, its two proof-masses are excited into resonant oscillation along 

the drive axis using the comb-drive electrodes that are located symmetrically on both 

sides of the MB-TFS, as shown in Fig. 2.1. It is essential that the vibrating proof-masses 

are anti-phase with respect to each other so that the differential nature of the sensor is 

retained [3]. The anti-phase movement of the proof-masses also reduces the anchor loss, 

thus ensuring a high mechanical quality factor of the drive-mode. 
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Figure 4.5: Schematic of the interface electronics for operating the MB-TFG 

A high drive-Q is desirable in many ways. First, it can significantly ease the design of 

the drive resonant oscillator. The drive motional resistance of the MB-TFG is sometimes 

as high as 20MQ in a vacuum, which requires a very large transimpedance gain from the 

sustaining circuitry in the drive loop. The high drive-Q reduces this motional resistance 

and loosens the large gain requirement. Second, a high drive-Q enables the oscillations to 

be built up and sustained at the required amplitude with much smaller AC voltage levels 

at the comb-drive electrodes, thereby dissipating less power. Third, the frequency 

stability of the oscillator is maximized when the drive-Q is maximized [25]. The 

mechanical structure with a high drive-Q forms an excellent narrow-band filter at the 

file:///Juhiphcr
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desired resonant frequency, therefore stabilizes the oscillating frequency and also 

alleviates the linearity requirement on the driving voltage generated by the sustaining 

circuitry [3]. 

In Fig. 4.5, the drive loop configuration is very similar to the architecture presented in 

[51-53]. The drive motional current output from the MB-TFG is converted into voltage 

by the TIA front-end described before. This voltage is further amplified by a non-

inverting amplifier stage with variable gain control implemented by an AGC circuit. The 

following RC High Pass Filter (HPF) removes any DC component in the signal and also 

provides some positive phase shift to help ensure a 0° loop phase shift. After passing the 

HPF stage, the voltage signal, which serves as the input driving voltage, is applied back 

to the MB-TFG, thus completing the drive loop. In accordance with Fig. 4.4, "Amplifier" 

A consists of the TIA front-end, variable gain amplifier, HPF and AGC, while the MB-

TFG device is the "feedback network" p. During operation, theoretically, the MB-TFG 

provides 180° phase shift from the input voltage to output current, and the TIA front-end 

provides additional 180° phase shift. In practice, the HPF (or LPF) is used to compensate 

for any unexpected small phase shift. In addition, given that the oscillation frequency is 

below 20kHz, the bandwidth of the sustaining amplifiers is much larger than the 

oscillation frequency, so an excess phase shift is prevented. 

Besides in the drive loop, the feedback driving signal is fed into a buffer so that it can 

be monitored using an oscilloscope. The buffer effectively isolates the sustaining 

feedback loop from other variations. In order to realize the automatic level control 

function, the feedback driving signal is also the input for the AGC circuitry. Finally, as 

shown in Fig. 4.5, a voltage comparator converts the driving signal into a rail-to-rail 
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digital signal and the Phase Locked Loop (PLL) [54] locks on to it and provides an 

accurate in-phase signal for the sense channel processing. 

4.2.3 Automatic Gain Control 

The AGC circuit is based on the architecture presented in [55]. It is the key part of the 

drive loop electronics and is discussed here in detail. At system power-up, the AGC 

ensures a start-up loop gain of larger than 1 and then reduces it to be equal to 1 so as to 

keep a constant-amplitude oscillation, thereby preventing false rate outputs. 

Fig. 4.6 shows the configuration of the AGC circuit. The peak detector detects the 

peak level of the input driving voltage signal and outputs it to the difference amplifier, 

where with the help of an external reference DC voltage VREF, the AGC output voltage is 

generated. This voltage is then passed through a RC low pass filter to control the gate 

voltage of a MOS transistor, which is part of the feedback network of the non-inverting 

amplifier stage. By controlling the gate voltage of the MOSFET, its resistance and hence 

the gain of the amplifier can be controlled, resulting in a variable gain amplifier. 

Therefore, it is possible to tune the overall loop gain so that the drive-mode oscillation 

can be started and vibration amplitude can be controlled, using the AGC circuit. 

Off-chip 
Ripple Filter 

1 
peak detector 

Vm nve 

Voltage Controlled Resistor 

Figure 4.6 [3]: Configuration of the automatic gain control circuit 
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To gain a better understanding of the AGC circuit, the working principles of the peak 

detector and the difference amplifier are introduced. 

1) Peak Detector 

The peak detector measures the strength of an AC signal by its DC output. Although a 

classic rectifier (series diode) is often used, it cannot rectify a signal that is smaller than 

its own forward voltage. For small AC signals in this work, a precision half-wave 

rectifier (peak detector) is built, which combines the rectifying action of a diode and the 

accuracy of an operational amplifier. The precision rectifier is also known as a super 

diode. It behaves like an ideal diode or rectifier [56] and is useful in high-precision signal 

processing. Fig. 4.7 shows the schematic and the transfer characteristic of the precision 

rectifier. 

* 1 
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Figure 4.7 [57]: Schematic and transfer characteristic of the precision rectifier 

The operation of this circuit is illustrated in Fig. 4.8. During the negative half-cycle of 

a sine-wave input, the output of the op-amp goes positive forcing Dl to turn on and D2 to 

shut off. The circuit looks and acts just like an inverting amplifier, except for a diode in 
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series with the output pin of the op-amp, which adjusts itself higher (by the diode's 

forward voltage, about 0.6V) to get the right voltage at the Vo- The classic inverting 

equation applies V0 = — VSR2/R1. During the positive half-cycle, the output of the op-

amp goes negative forcing D2 to turn on and Dl to shut off. The output voltage Vo is 

zero, because one side of R2 is connected to V. that is held at the virtual ground, and 

there is no current through R2, therefore Vo = V. = 0V. During this half-cycle, the output 

of the op-amp swings negative enough in order to turn on D2 to pull the current through' 

the diode [58]. 

I = VS / R1 

-1 V 

vs 

Rl 0V R2 + 1 V 

D2 0FF 

+16V 01 
* 

Vo 

+1 V 

Negative half-cycle 

+1 V 

vs 

R1 ov 
A V 

:VS/R1 

R2 0V 
Vo 

3 D2 

D1 OFF 

-0 6 V 

Positive half-cycle 

Figure 4.8 [58]: Operations of an inverting precision half-wave rectifier 
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With a proper RC time constant at the output of the peak detector, the level of the input 

AC signal is represented by an output DC voltage. 

2) Difference Amplifier 

A difference amplifier, as the name suggests, is used to amplify the difference 

between two signals. As illustrated in Fig. 4.9, when all the resistors have the same value, 

the op-amp produces an output equal to the difference between the two inputs, which 

means unity gain. 

100K 
Ri 

R2 

V2°-VSA/-
100K 

R4 

100K 

Figure 4.9 [59]: Schematic of a difference amplifier 

The required DC level for controlling the resistance of the Metal-Oxide-

Semiconductor Field-Effect Transistor (MOSFET) is achieved by connecting the two 

inputs of the difference amplifier to the peak detector output and an external reference 

DC voltage VREF, respectively. 

100K 

Vo„t = v 2 - V, 
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4.2.4 PSPICE Simulation 

Various circuit simulations are done using Personal computer Simulation Program with 

Integrated Circuit Emphasis (PSPICE) to investigate the drive loop electronics. These 

simulations include the transient analysis and AC analysis of the drive oscillation circuit 

without AGC, study of the MOSFET resistance, transient analysis of the AGC circuit and 

the complete drive loop circuit. Fig. 4.10 shows the AC analysis of the drive oscillation 

circuit. Its purpose is to observe the loop gain of the oscillation loop, especially the phase 

shift of the loop gain. The simulation result in Fig. 4.11 confirms that the phase shift of 

the loop gain is 0° at the resonant frequency of this circuit, thus a positive feedback loop 

results. Note that the gyroscope is modeled by a series RLC circuit in the simulation 

schematic. 

0 

Figure 4.10: Schematic of AC analysis of the drive oscillation circuit 
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Figure 4.11: Simulation result showing a zero phase shift at the resonant frequency 

The transient analysis of the complete drive loop circuit is presented in Fig. 4.12. To 

start the oscillation, an initial condition of a voltage of lOmV is provided to the capacitor 

CI of the gyroscope model. The simulation time length is Is, from which only the range 

of 0.9s to Is is displayed. The simulation result in Fig. 4.13 shows a slowly growing 

oscillation signal at the drive resonant frequency of the gyroscope. 

Accurate simulation of the oscillation with constant amplitude from this drive loop 

circuit proves to be difficult. However, the following experimental work verifies this 

design successfully. 
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Figure 4.12: Schematic of transient analysis of the complete drive loop circuit 

Overview of the oscillation signal 
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Close-up view of the oscillation signal 

Spectrum of the oscillation signal 

Figure 4.13: Simulation result showing the drive oscillation signal and its spectrum 

4.3 Sense Channel Electronics 

The sense channel is primarily responsible for extracting the input angular rate 

information from the gyroscope output. Modulated by the input rotation rate, this output 

is an Amplitude Modulation (AM) Coriolis Signal, and is demodulated using the drive 

oscillation signal. The final low-pass filtered output signal is proportional to the input 

rotation rate, and may be further amplified if necessary. Since the synchronous 
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demodulation technique used allows for phase sensitive detection and rejection of the 

quadrature error, it is preferred over other techniques such as envelope detection. 

4.3.1 Phase Sensitive Demodulation 

The MB-TFG in this work is referred to as in the open-loop mode because its sense-

mode vibration is monitored but not controlled. When the gyroscope is subject to rotation 

about the z-axis, its proof-masses vibrate along the sense axis at the resonant frequency 

of the sensor. The vibration amplitude is modulated by the applied rotation rate signal. 

The displacement of the proof-masses, however, is attributed to both the Coriolis 

Acceleration and the quadrature error. These two signals can only be distinguished by the 

90° phase difference between them. The reason for this phase difference lies in the fact 

that the Coriolis Acceleration is proportional to the velocity of the proof-masses along 

the drive axis, while the quadrature error is proportional to the position of the proof-

masses. Therefore, the sense channel uses a synchronous I/Q (In-phase/Quadrature) 

demodulation technique to extract the input rotation rate information since it can 

differentiate the Coriolis Acceleration signal from the quadrature error signal, based on 

their different phase characteristics. 

Recall the Coriolis Acceleration signal in Eq. 2.1, which is given again here 

ay = 2D.z(t)vx(t) — 2{lz(t)qdcoxcos((x)xi) (4.16) 

Note that it is actually an AM signal in which the drive-mode velocity of the proof-

masses vx is the carrier signal, while the input rotation rate Qz is the modulating signal. 

The direct output from the sense electrodes also takes this form as an AM signal. Hence, 
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the rotation rate Qz can be extracted by demodulating the sense output using a signal that 

is in phase with the drive-mode velocity of the proof-masses. In this case, the drive 

oscillation signal serves as this demodulating signal. 

4.3.2 Circuit Configuration 

The circuit configuration of the sense channel is included in Fig. 4.5 and is highlighted 

again here in Figure 4.14. The sense-mode vibration of the proof-masses is reflected by 

the variation of the parallel-plate sense capacitance that is formed by the proof-masses 

and the sense electrodes. The output current is an indication of this sense capacitance 

change and is the input signal to the sense channel electronics. From the previous 

analysis, a high sense-Q of the MB-TFG is also desirable because it improves the rate 

resolution and sensitivity of the gyroscope system. 

Qiifidi atui e signal 
drv 90' 

TIA 

4W 
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-~(g)~j ^T\ 
Rate 

In phase Mgnal 

Figure 4.14: Circuit configuration of the sense channel 

As in the drive loop, a TIA front-end converts the sense current into a voltage. The 

following stage of an inverting amplifier makes this voltage in phase with the sense 

current, thereby retaining the original phase characteristic of the Coriolis Acceleration 
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signal. The demodulation takes place at the multiplier stage, where the voltage is 

multiplied with the in-phase drive oscillation signal (drv 0°) from the PLL output in the 

drive loop. Mathematically, the trigonometric identities state that when multiplying two 

in-phase sinusoids with the same frequency, it gives 

1 1 
sin(a)t) sin(wt) = — [cos(&Jt — cot) — cos(cot + cot)] = - [1 — cos(2<ut)] (4.17) 

1 1 
cos(ojt) cos(&)t) = - [cos(cot — cot) + cos(cot + cot)] = - [1 + cos(2cot)] (4.18) 

which implies that the multiplication results in a constant DC signal and a sinusoid signal 

with a doubled frequency. On the contrary, when multiplying two sinusoids with the 

same frequency but 90° phase difference, it gives 

1 1 
sin(a»t) cos(ojt) = — [sin(cot + cot) + sm(cot — cot)] = -sin(2cot) (4.19) 

which implies that the multiplication results in a sinusoid signal with a doubled frequency 

only. In both cases, the double-frequency sinusoid can be removed by a Low Pass Filter 

(LPF). This means that during the demodulation, if the drv 0° signal from the PLL is 

used, then the input rotation rate information is retained while the quadrature error 

information is removed; if the drv 90° signal from the PLL is used, then the quadrature 

error information is retained while the input rotation rate information is removed. In this 

way, both the input rotation rate and the quadrature error signals can be monitored from 

the sense channel, as illustrated in Fig. 4.14. 

This work only extracts the input rotation rate information. An active LPF is used to 

filter out the double-frequency component in the multiplier output so that the final output 
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is proportional to the input rotation rate fiz only. Additionally, a simple RC LPF stage 

could be added to smooth this voltage output if necessary. 

The second-order active LPF employs a Sallen-Key Topology, which uses a unity-

gain amplifier (OdB gain), as shown in Fig. 4.15. The Sallen-Key Topology is simple but 

has the advantage of a sharp transition between the pass and stop bands so that the 

interfering signal can be effectively reduced without degrading the desired signal. When 

Ri = R2 = R and Ci = C2 = C, the cutoff frequency is given by fc = l/2nRC . 

Table 4.1 summarizes the key electrical parameters of the sensor. 

tf, 

in o M/V-
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c, 
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Figure 4.15 [60]: A unity-gain low-pass filter implemented with a Sallen-Key Topology 

Table 4.1: Summary of the key electrical parameters of the sensor 

Parameter 
Sensor capacitive sensitivity 

Amplitude of drive voltage applied 
Minimum detectable AC (at 16.8kHz) 

System rate sensitivity 
Output voltage noise level at 4Hz 

System rate noise floor 
Power supply 

Measured Value 
A.\aF/°/s 

llOmV 
0.46aFAlHz 

S0juV/°/s 
9 liVNHz 

400°/hr/^Hz 
±5V 
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CHAPTER V 

PERFORMANCE CHARACTERIZATION OF THE MB-TFG 

This chapter analyzes and examines the performance parameters of the prototype Silicon-

On-Insulator (SOI) MB-TFGs. The main performance parameters include the quality 

factors in both the drive-mode and sense-mode, rate sensitivity, rate resolution and the 

overall bias stability of the system. Results from various characterization experiments of 

the MB-TFG system are highlighted and discussed. 

5.1 Quality Factor Characterization 

As stated before, quality factors in both vibration modes are a primary parameter for 

predicting the performance of a MB-TFG prototype, because it is closely related to 

almost all the important performance specifications of a gyroscope system such as the 

rate resolution, rate sensitivity and bias drift. This section presents an analysis of the 

quality factor and experimental results showing high Qs from both operation modes of 

the fabricated MB-TFGs. 

5.1.1 Theoretical Analysis 

In physics and engineering, the quality factor is a dimensionless parameter that describes 

how under-damped an oscillator or resonator is [61]. A higher Q indicates a lower rate of 

energy loss relative to the stored energy of the oscillator, and therefore, the oscillations 

die out more slowly. 
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For resonators, Q is defined as the ratio of the energy stored in the resonator to the 

energy supplied by a generator per cycle, in order to keep the signal amplitude constant at 

the resonant frequency fr> The stored energy is constant with time 

Q = 2nx 
Energy Stored 

Energy dissipated per cycle 
= 2nf0 x 

Energy Stored 
Power Loss (5.1) 

As shown in Fig. 5.1, the quality factor also characterizes the bandwidth Af of a resonator 

relative to its center resonant frequency f> [62]. For high values of Q, the following 

definition is mathematically accurate 

V A / 
(5.2) 

The bandwidth Af is defined in terms of the frequency difference between the two -3dB 

points, where the vibration energy is half of the maximal value. A higher Q would result 

in a narrower and sharper peak in this figure. 

k"rru'iK 

energy of 
steady-state 
vibrations 

f, 

frequency 

Figure 5.1 [63]: Definition of the Q factor of an oscillator 
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In electrical systems, the stored energy is the sum of energies stored in lossless 

inductors and capacitors, while the lost energy is the sum of the energies dissipated in 

resistors per cycle. Consider an ideal series RLC circuit, which is the electrical model of 

the MB-TFG, its Q is given by 

Q=iM (5-3) 

Similarly, in a single damped mass-spring mechanical system, the stored energy is the 

sum of the potential and kinetic energies stored in masses and springs, while the lost 

energy is the work done by an external force per cycle to counterbalance the effect of the 

damping force, so as to maintain constant vibration amplitude. The Q in this system is 

given by 

Q = — (5-4) 

Eq. 5.3 and Eq. 5.4 are interchangeable according to the explanation of these model 

parameters in Chapter 2. 

With regard to this gyroscope, the MB-TFS employed here is designed with an 

operation frequency above 10kHz to avoid any environmental noise [37] and below 

20kHz to keep the operation voltage at a relatively low level [2]. Since the MB-TFG is 

operated in vacuum, the energy loss mechanisms in the MB-TFS mainly include the 

Thermal-Elastic Damping (TED), anchor loss, and surface loss. The measured overall 

mechanical quality factor of a tuning-fork gyroscope in each operation mode is based on 

the sum of these losses [42]: 
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^measured VTED Uanchor V surface 

where QTED, Qanchor and QSUrface denote the Q related to TED, anchor loss and surface loss, 

respectively. From the previous work [17, 42], it has been found that: 1) surface loss is 

negligible for a tuning-fork gyroscope, as compared to TED and anchor loss; 2) from the 

design perspective, TED is the sole dominant loss in a similar tuning-fork structure with a 

flexural structure of three beams in parallel; 3) however, significant amount of anchor 

loss is introduced to the structure by over-etching silicon dioxide underneath an anchor. 

Therefore, as compared to these similar tuning-fork structures [17, 42], a flexural 

structure of four beams in parallel is incorporated in this MB-TFS design, in order to 

further reduce its TED and meanwhile keep the operation frequency in the desired range 

of 10kHz ~ 20kHz. The anchor loss can be significantly reduced by the improved mask 

design, as discussed in Chapter 3. 

To ensure a low TED in the MB-TFS design, a numerical model of TED based on a 

thermal-energy method is developed to evaluate the QTED in the two operation modes. 

Based on the work in [42, 64], the distribution of TED in the two operation modes of the 

MS-TFS with a beam width of 9.8um is shown in Fig. 5.2. As illustrated in this figure, 

TED mainly occurs in the beams along the drive axis in the drive-mode, and along the 

sense axis in the sense-mode. This is expected since the beams along the drive axis 

function as the mechanical spring for the drive-mode, while the beams along the sense 

axis act as the mechanical spring for the sense-mode. The simulated resonant frequency 

and QTED of the drive-mode and sense-mode are 15.69kHz and 260,023 for the drive-

mode, and 15.841kHz and 211,740 for the sense-mode. 



77 

(a) Drive-mode 

Max: 2.282et 

Mh:7.348e-9 

Max: 4016.561 
14000 

Mh: 1.805e-6 

(b) Sense-mode 

Figure 5.2: Distribution of TED in two operation modes of the MB-TFS 

With the proof-masses being kept at the same dimension, the curved lines in Fig. 5.3 

show that QTED in both operation modes decreases with the beam width and the resonant 

frequency. The QTED of the drive-mode is slightly higher than that of the sense-mode for 

a MB-TFS, because the MB-TFS experiences more dilatation in the sense-mode than in 

the drive-mode, under the same vibration amplitude. The different dots in Fig. 5.3 are the 

measured values of this design for comparison with the simulated results and will be 

explained later. 
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Figure 5.3: The relation of the calculated QTED of the drive-mode and the sense-mode 
versus (a) resonant frequency and (b) beam width of the MB-TFS (the proof-masses are 
kept at 400um x 400um x 30um), together with measured Q values of this design 
provided in Table 5.2. 

Anchor loss is caused by the load at the clamped region of a mechanical structure 

during vibrations. In the drive-mode vibrations, the normal stress at the clamped region 

of the MB-TFS gives rise to anchor loss, as shown in Fig. 5.4. According to the previous 
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work on anchor loss in a tuning-fork gyroscope [42], the Q related to anchor loss in the 

drive-mode is expected to be well above 9xl015, simply due to the symmetric structure 

and the symmetric mode shape. As shown in Fig. 5.5, since there is a net torque applied 

on the anchor in the sense-mode vibrations of the MB-TFS, the Q related to anchor loss 

in the sense-mode is expected to be much smaller than its counterpart in the drive-mode. 

Figure 5.4: Schematic view of the normal stress along the z-axis at the anchor giving rise 
to anchor loss in the drive-mode (out of proportion for clear illustration) 
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Figure 5.5: The torque about the z-axis at the anchor giving rise to anchor loss in the 
sense-mode (a) schematic view (out of proportion for clear illustration) and (b) simulated 
distribution of the normal stress along the sense-mode direction 
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5.1.2 Frequency Response of the MB -TFG 

Following fabrication of the MB-TFGs, the frequency response measurement is 

performed to find out the resonant frequencies and the quality factors of the drive-mode 

and sense-mode. Figs. 5.6 and 5.7 show a schematic view and a picture of the 

experimental setup for measuring the drive-mode frequency response of a MB-TFG in 

vacuum. The device is tested in vacuum condition in order to eliminate the effect of air 

damping. A die of the fabricated gyroscopes is fixed on a Printed Circuit Board (PCB) 

and a MB-TFG device is wire-bonded to the pads that are connected to a TIA front-end 

with a feedback resistor of RF= 5.1M£2. The PCB is then placed in a customized vacuum 

chamber and an Agilent 4395A network analyzer is connected to the device in a two-port 

configuration for measuring its frequency response in vacuum. This configuration is 

presented in Fig. 2.4. With a polarization DC voltage VP = 20V applied on the tuning-

fork structure, an AC drive voltage signal v,n is applied on one comb-drive electrode, and 

then a sense current signal ioutcan be detected from the other comb-drive electrode, which 

is further converted into a voltage output vout through the TIA front-end. Likewise, to 

measure the sense-mode frequency response of the device, an AC voltage signal vs is 

applied to the tuning electrodes and the sense current signal is can be detected from the 

four sense electrodes. 
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Figure 5.6: Schematic view of the experimental setup for measuring the frequency 
response of a MB-TFG 
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Figure 5.7: Picture of the PCB used in frequency response measurement and a close-up 
view of the wire-bonded MB-TFG device on the die 

Before discussion on the measured Q values, the loading effect of the interface 

electronics on the mechanical Q of the MB-TFG is revisited. As stated in Chapter 4, the 

Q-loading effect can be minimized with a TIA front-end because of its low input 

impedance. This can be confirmed by considering the damping from the experimental 

http://in.il
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electronics or Qeiectromcs- As described in [42], from the perspective of a mechanical 

system, Qeiectromcs is given by 

VfeM 
^.electronics ~ ~Tr IP-Oj 

while from the perspective of an equivalent electrical system, Qeiectromcs is given by 

coLio 
'electronics ~ ~^ \P-') 

KIN 

These two equations are essentially the same but from different perspectives. Since the 

RIN for a TIA front-end is very low, Qeiectromcs is at least on the order of 106, which means 

a negligible influence to the measured Q values. Therefore, the term of Qeiectromcs is 

omitted in the right hand side of Eq. 5.5 above. 

Fig. 5.8 shows the measured highest Q values, 255,550 in the drive-mode and 

103,390 in the sense-mode, of a MB-TFG at the resonant frequency of 15.7kHz 

(corresponding to Device #5 in Table 5.2). From the measured Insertion Loss (IL) of the 

gyroscope at resonance, its motional resistance can be extracted using the following 

expression [25] 

Rmotional = fy X 1 0 20 (5 .8 ) 

Because the motional resistance of the MB-TFG, together with the TIA stage, forms an 

inverting amplifier, and the IL measured by the network analyzer becomes the magnitude 

of the voltage gain of RF/ Rmotional in dB. 



83 

R/R 109 fine 5 dB/ REF -15 dB -3.25B3 dB fl/R log MFIG 10 dB/ REF -20 dB 

BU: 

0: 

lo?5r— 

aL .F : 

OR.F: 

15 

J5. 

.91361 kHz 

TJ-X4 

154 mHz 

94360BTS!to 

183.39 < 

-94 mHz 

81 »«z 

£ w J 03, 390 
Freq.: 15,944Hz 

(a) Drive-mode 
SUP 375 9 sec IF BH 2 Hz POUER -10 dBn 

SPRN 1 Hz CENTER 15.943625 kHz 

(b) Sense-mode 

Figure 5.8: Measured frequency response of Device #5 in Table 5.2, with the 
polarization voltage of Vp = 20V. 

Table 5.1 provides the measured results of the drive-mode and sense-mode frequency 

response of this fabricated MB-TFG and compares them with the designed values. Based 

on Eq. 2.15 and Eq. 2.22, and from the measured motional resistances and Qs, the actual 

fabricated sense/tuning gap is calculated to be dso = 4.9um and the gap between comb 

fingers to be g = 6.9um, which are consistent with the dimensions shown in Fig. 3.7. 

The measured resonant frequencies, Qs, and motional resistances of fabricated MB-

TFGs from two wafers, are summarized in Table 5.2, clearly showing that, for each wafer, 

the fabrication variation has a very trivial effect on the resonant frequency, but significant 

influence on the Q value and consequently on the motional resistance. Based on the 

measured resonant frequency, the beam width is found to be 9.8um and 10.3um for the 

fabricated gyroscopes on Wafer #1 and Wafer #2, respectively. Overall, the measured 

frequency response of the fabricated devices is consistent across a wafer, in the sense that 
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the Qs of the drive-mode are typically about 200k, while the Qs of the sense-mode are 

around 100k. The motional resistances in both modes show a similar consistency. 

The measured Q values of four devices are included in Fig. 5.3 for comparison. 

Devices #5 and #12 demonstrate the highest measured Qs from the two wafers, while 

Devices #10 and #13 are used for rate sensitivity characterization in the following 

subsection. The same symbol is used for a device. The symbol with a lower value 

represents the measured Q in the sense-mode and the one with a higher value represents 

the measured Q in the drive-mode. The comparison between the measured Q values and 

the simulated QTED values clearly shows once again that TED is the dominant loss in the 

drive-mode and is also significant in the sense-mode. 

Table 5.1: Summary of the designed and measured parameters of the drive-mode and 
sense-mode of the MB-TFG from the frequency response with polarization voltage of 
VP = 20V 

Parameter 

Resonant frequency 
Equivalent stiffness 

Equivalent mass 

QTED 

^measured 

Electromechanical 
coupling coefficient 

Equivalent inductance 

Equivalent resistance 

Equivalent capacitance 

Designed value 

Drive-mode 
15.694 

243 
25 

260,023 
-

0.0664a 

0.0385b 

5.67a 

16.87" 
2.19a 

6.52b 

1.81xl0'5a 

6.08xl0"bb 

Sense-mode 
15.842 

337 
34 

211,740 
-

0.307a 

0.115b 

0.36a 

2.57" 
0.35a 

2.47" 
2.83xl0'4a 

3.94xl0-5b 

Measured value (VP=20V) 

Drive-mode 
15.714 

-

25 
-

255,550 

0.0385 

-

7.41 

-

Sense-mode 
15.944 

-

34 
-

103,390 

0.115 

-

2.90 

-

Symbol 
(unit) 

f(kHz) 
k (jiN/nm) 

M(ug) 
-

-

n (uN/V 
or pC/urn) 

Z(MH) 

^motional 

(MQ) 

C(pF) 

a Value calculated using the designed comb finger gap of 4um or the designed sense/tuning gap 
of 3|im 

Value calculated using the fabricated gap between comb fingers of 6.9[i.m or the fabricated 
sense gap of 4.9um 
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Table 5.2: Summary on the measured resonant frequencies, Qs, and motional resistances 
of fabricated MB-TFGs from two wafers, with the polarization voltage of VP = 20V 

Device No. Drive-mode 

/(kHz) Q ^•motional 

(Mfl) 

Sense-mode 

/(kHz) Q 
^-motional 

(MO) 
Wafer #1 

Device # 1 
Device # 2 
Device # 3 
Device # 4 
Device # 5 
Device # 6 
Device # 7 
Device # 8 
Device # 9 
Device # 10 

15.683 
15.752 
15.914 
15.702 
15.714 
15.673 
15.771 
15.841 
15.972 
15.761 

210.81k 
143.8k 
231.8k 

201.46k 
255.55k 
201.32k 
247.48k 
197.43k 
236.34k 
168.48k 

9.1 
11.2 
8.9 
9.4 
7.4 

10.4 
6.9 
8.9 

11.0 
8.2 

16.237 
16.166 
15.988 
15.797 
15.944 
15.666 
15.911 
15.976 
16.189 
16.056 

106.5k 
157.81k 
105.42k 
144.48k 
103.39k 
116.43k 
107.79k 
100.20k 
88.569k 
96.225k 

3.5 
2.8 
2.8 
2.9 
2.9 
3.0 
2.5 
3.6 
3.6 
3.1 

Wafer #2 
Device #11 
Device # 12 
Device #13 

16.868 
16.800 
16.842 

178.47k 
244.97k 
213.75k 

8.5 
7.2 

10.7 

17.146 
17.162 
16.884 

84.605k 
134.14k 
100.7k 

2.8 
1.8 
2.2 

5.2 Rate Sensitivity Measurement 

Upon finishing the quality factor characterization, the MB-TFG system is set up and run 

in vacuum in order to measure its rate sensitivity. As mentioned earlier, reducing the 

frequency difference between the two operation modes is critical for achieving high rate 

sensitivity in a gyroscope. Therefore, electrostatic frequency tuning must be performed 

prior to measuring the rate sensitivity, so that the sense-mode frequency, which is 

designed to be slightly higher, can be tuned down to match with the drive-mode 

frequency. Note that this step is still carried out using the PCB in Fig. 5.7, since it is also 

a frequency response measurement. The DC polarization voltage VP on the tuning-fork 

structure and the DC tuning voltage VT on the four tuning electrodes are adjusted to meet 

this need, as shown in Fig. 5.9. However, due to inadequate electrodes dedicated to 

quadrature error nulling, perfect matched-mode condition (0Hz frequency split) is not 
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achievable, resulting in a minimal finite frequency difference between the two operation 

modes. 

Figure 5.9: Signal configuration of the MB-TFG for rotation rate detection 

Two MB-TFGs, Devices #10 and #13 (in Table 5.2), are tested for their frequency 

response in order to find out the values of Vp and VT, at which the minimal frequency 

difference is reached. Device #10's frequency difference can be monitored by applying 

an AC voltage to the set of the sense electrodes and feeding the output signal from one 

comb-drive electrode into the network analyzer, which corresponds to using vs as the 

input and io as the output in Fig. 2.4. Both the Vp and VT are adjusted manually to reduce 

this frequency difference. With VP at 70V and VT at ground level, a minimum frequency 

difference of Af= 7Hz is achieved at about 15.7kHz, as plotted in Fig. 5.10 (a). The two 

modes show similar magnitudes because they are realized by the same mechanical 

structure and thus interfere with each other under a small frequency difference. At this 
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frequency difference, the frequency response of the drive-mode and sense-mode of the 

MB-TFG is measured again, using still the signal configuration for frequency response 

shown in Fig. 2.4. The results are shown in Figs. 5.10 (b) and 5.10 (c) for obtaining their 

Qs and motional resistances, since these parameters are functions of the two DC voltages, 

Vp and VT. Here the drive and sense Qs are 95,000 and 26,000, respectively. The same 

procedure for frequency tuning is implemented on Device #13. For this device, VT is also 

at ground level and VP is at 29V when a minimum frequency difference of Af = 4Hz is 

achieved at about 16.8kHz, as plotted in Fig. 5.11 (a). The frequency responses of both 

modes under this frequency difference are shown in Figs. 5.11 (b) and 5.11 (c), 

respectively, showing a drive Q of 90,000 and a sense Q of 92,000. Based on these 

measured results, the theoretical rate resolution and rate sensitivity of both MB-TFGs are 

calculated and listed in Table 5.3. The theoretical rate sensitivity included in this table is 

calculated using Eq. 2.6, with the assumption that the frequency difference is Af= 0Hz 

and the measured Q in the sense-mode listed in the table serves as the QEFF-

Af=7Hz „ '5'ZB"7 

(a) 
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fi/ft log ItfiG S dB/ REF e c 

Sw 

Q 

J ? + OSS' 

l A i AL.F 
/ \ flR.P: 

2 w 26,000 

IF BU 2 Hz P0HER -40 dBto 
CENTER 15 72785 kHz 

£5 

t 5 

s u e 

72»75 kHz 

604 iHz 
728896 kHz 

26.051 k 
B.71B8 dB 

-S6 rMz 
548 m 

375.9 SBC 
SPAN 5 Hz 

(b) (c) 

Figure 5.10: Frequency tuning for Device #10, (a) a minimum frequency difference of 
4^=7Hz at about 15.7kHz, with Vp=70V and VT=0V (b) measured frequency response of 
the drive-mode at Af=7Hz and (c) measured frequency response of the sense-mode at 
4P7Hz 
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Figure 5.11: Frequency tuning for Device #13, (a) a minimum frequency difference of 
Af=4Ya at about 16.8kHz, with VP=29V and VT=0V (b) measured frequency response of 
the drive-mode at AJ=4Hz and (c) measured frequency response of the sense-mode at 
Af^4Uz 

When the required polarization voltage Vp and tuning voltage VT for a MB-TFG 

device to reach its minimal frequency difference between the two operation modes are 

found, the interface electronics can be added to the gyroscope to set up the angular sensor 

system shown in Fig. 5.9. According to the circuit analysis in Chapter 4, this system was 

first built and tested based on a PCB and a circuit breadboard, as shown in Fig. 5.12. The 

self-generated oscillation signal at the mechanical resonant frequency of the MB-TFG 

and the corresponding in-phase PLL signal shown in Fig. 5.13 prove that the system is 

successful. 
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Figure 5.12: Picture of the sensor system on a PCB and a circuit breadboard 

1 200?/ 2 2-OOV/ ^ j | \ f. 0.0s S0.0*/ SMjl # I ~~%M" 

t >\ > A f t / 

X . • ^ . \ 

Figure 5.13: Preliminary result from the system showing the oscillation signal at 
mechanical resonance and the in-phase PLL signal 

Since the breadboard circuit is easily disturbed by noises, a compact PCB design 

containing the complete interface electronics is necessary. The new PCB is designed 

using Protel DXP. Schematics of the drive loop and sense channel are created, based on 

which component footprints and their logic connections are automatically generated. The 

actual layout of the circuit board can be done manually or automatically. Fig. 5.14 shows 

the different function blocks in the complete schematic design. Fig. 5.15 shows the 
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manual-routed layout of the circuit board, and a picture of the new PCB with the 

complete sensor system installed. 

The specific electrical components used to implement this system are listed in Table 

5.3. The TIA front-end in the drive loop uses a 5MQ potentiometer as the feedback 

resistor to provide extra flexibility for the loop gain tuning, while the TIA in the sense 

channel uses a 5.1 Mil feedback resistor, which is typically much larger than the motional 

resistance of the sense-mode, thus satisfying the requirement in Eq. 4.13 for low 

electronic noise. The non-inverting amplifier stage in the drive loop can provide a 

variable voltage gain up to about 8, therefore generating a maximum TIA gain of about 

40M£2 in the drive loop. In experiment, CI and R4 are actually implemented as a LPF, 

primarily for the loop gain phase concern. The inverting input of the voltage comparator 

393 is directly grounded and a 6.8kQ pull-up resistor is used at its open-collector output. 

The phase detector used in the HC4046 PLL is configured as the XOR phase detector 

[54]. The cutoff frequency of the Sallen-Key LPF in the sense channel is calculated to be 

159Hz. 
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Figure 5.15: Manual-routed layout of the circuit board and picture of the new PCB with 
complete sensor system 
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Table 5.3: List of components used in the interface electronics 

Component 
Ul, U2, U3, U4, U5, U7, U8, U9 

U6 
U10 
U l l 
Rl 
R2 
R3 

R4, R5, R6, R8, R9, RIO, R l l , R12, 
R15,R16,R19,R20 

R7 
R13 
R14 
R17 
R18 

R21,R26 
R22 
R23 
R24 
R25 
CI 

C3, C6, C7, C9, CIO, C l l , C12, C13, 
C14, C15, C16, C17, C18, C19, C20, 
C22, C23, C24, C25, C26, C27, C28, 

C29 
C2,C8 

C4 
C5 

Ql 
D1,D2 

Value or Name 
OPA656U 

393 
HC4046AG 

AD835A 
5MQ Potentiometer 

68ft 
470ft 
1KQ 

20KD 
6.8KQ 
5.1MQ 

loon 
2KQ 
10KQ 

lOOKft 
470KXI 
47KQ 

Potentiometer 
4.7nF 
luF 

47uF 
lOnF 

0.1 uF 
BSS138 
ES1D 

Using the new PCB system, the rate sensitivity of the two MB-TFGs, Devices #10 

and #13, can be measured. Before running the system, by breaking the drive loop at the 

voltage feedback point, its loop gain characteristic can be observed by the network 

analyzer. The magnitude of the loop gain can be controlled by the VGA stage, while the 

total phase shift around the loop should be close to 0°. The magnitude and phase plots of 

the loop gain are presented in Fig. 5.16, showing that a positive feedback loop has been 

established. 
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Figure 5.16: Magnitude and phase plots of the loop gain showing a positive feedback 
drive loop 

Figs. 5.17 (a) and 5.17 (b) show the buffered closed-loop oscillation waveforms with 

constant amplitudes of Devices #10 and #13, respectively. The oscillation frequency is 

15.7kHz for Device #10 and 16.8kHz for Device #13, which correspond to their 

respective mechanical resonant frequency. The glitches at the peak and valley of the 

waveforms are due to electronic feed-through on the PCB. According to Eq. 2.16, the 

peak-to-peak voltage levels (Vpp) of 120mV and 347mV indicate that the drive-mode 

vibration amplitude of both devices is about 3.0p.m. The drive-mode vibration amplitude 

can also be calculated using the measured motional current in the drive-mode, based on 

Eq. 2.17. Comparing to high drive voltages used in [13], the high drive-Q here allows for 

low drive voltages to achieve a large vibration amplitude in the drive-mode. Figs. 5.17 (c) 

and 5.17 (d) show the measured results of both MB-TFGs from the sense channel output 

in response to an input rotation rate signal of 45°/sec. 
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Figure 5.17: Measured results related to the rate sensitivity of the MB-TFG (a) Device 
#10: oscillation signal of the drive-mode vibration, FpP=120mV corresponding to 
#Dnv<>=3.1um (b) Device #13: oscillation signal of the drive-mode vibration, f̂ p=347mV 
corresponding to <7/>,ve=3.0|j,m (c) Device #10: oscilloscope output, Vpp=1.37mV in 
response to a rotation rate signal of 45°/s (d) Device #13: oscilloscope output, 
Vpp=3.94mV in response to a rotation rate signal of 457s 

As plotted in Fig. 5.18, the measured rate sensitivity is 30u.Vpp/7sec for Device #10 

and 80uVpp/7sec for Device #13. The larger rate sensitivity of Device #13 is due to a 

larger Q in the sense-mode and a smaller frequency difference of the two operation 

modes, which means a better mode-matching. In order to get a clear output signal, the 

first-order LPF at the end of the sense channel has a very low cutoff frequency and 

therefore attenuates the observed signal level. Overall, the rate sensitivity for the two 

devices is obtained with an equivalent TIA gain of about 6MQ. in the sense channel. 
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Figure 5.18: measured rate sensitivity of Device #10 with Af=lWz and Device #13 with 
4/^4Hz 

Table 5.4 summarizes the operation parameters and the key performance parameters 

of both MB-TFGs. Because of the difference between the polarization voltages, Device 

#10 has a motional resistance of only 1.33MQ in the drive-mode, while it is 9.84MQ for 

Device #13. This means a much larger effective TIA gain is needed in the drive loop for 

Device #13. Their motional resistances in the sense-mode are comparable (1.87MU for 

Device #10 and 1.59M£2 for Device #13), since although VPis larger for Device #10, its 

sense-mode quality factor is much smaller than that of Device #13. The theoretical rate 

resolutions and rate sensitivities of Devices #10 and #13 can be calculated using Eqs. 2.2, 

2.3, 2.4 and 2.7, and these results are also included in Table 5.4. ENEQ is lower than 

MNEQ basically because Rp (5.1MI2) in the sense channel is larger than RMOT-S-



97 

From the foregoing results, it can be seen that the MB-TFG is a device with high 

sensitivity. Take Device #13 for example, for a given input rotation rate of 307s, the 

vibration amplitude of the proof-masses along the sense axis is only about 0.01 \im. 

Table 5.4: Summary of the operation parameters and performance parameters of two 
MB-TFGs 

Parameter 
Drive-mode vibration amplitude (qDr,ve) 

Operation frequency (f0) 
Frequency difference (Af, also BW) 

Q in the drive-mode (QD) 
Q in the sense-mode (Qs) 

Polarization voltage/tuning voltage {VP, VT) 
Measured Motional resistance in the drive-mode 
Measured Motional resistance in the sense-mode 
Equivalent impedance in the sense channel (RTIA) 

Theoretical mechanical noise (MNEO) 
Theoretical electrical noise (ENEQ) 

Theoretical total noise (TNEQ) 
Theoretical rate sensitivity with Af=0Hz 

Measured rate sensitivity 

Device #10 
3.1jim 

15.7kHz 
7Hz 
95,000 

26,000 
70V,0V 
1.33MQ 
1.87MQ 

6MQ 
0.6147hrA/Hz 
0.243 Thr/VHz 
0.667hr/VHz 
4.313mV/7s 
30uVpp/7s 

Device #13 
3.0^m 

16.8kHz 
4Hz 
90,000 

92,000 
29V, 0V 
9.84MQ 
1.59MQ 

6MQ 
0.3247hrA/Hz 
0.1777hr/VHz 
0.377hWHz 
5.913mV/7s 
80uVpp/7s 
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CHAPTER VI 

BIAS DRIFT IN MEMS GYROSCOPES 

Bias drift is another very important performance specification of the MB-TFG. It is used 

to refer to the bias stability or instability of a gyroscope system. This chapter focuses on 

this critical parameter and introduces the Allan Variance Technique for characterizing 

bias drift. 

6.1 Introduction to Bias Drift 

The output of a gyroscope in the absence of an input rotation rate is referred to as Zero 

Rate Output (ZRO) or gyroscope bias. Expressed in terms of angular rate (7hr or 7s), the 

bias is an accurate measure of the long-term stability of a gyroscope. Bias drift is the 

variation of the gyroscope bias, which has systematic and random components. The 

systematic component is related to environmental conditions such as temperature, 

pressure, voltage fluctuations, and mechanical vibration. In many cases, these could be 

calibrated and compensated for in a system. The other component, however, cannot be 

compensated for because of its randomness, and is therefore of concern. The random 

variation of the gyroscope bias, computed over specified finite sample time and 

averaging time intervals, is referred to as the bias stability or instability, and is related to 

the noise build up in the sensor. 

Bias instability of a gyroscope forms the fundamental limit that determines if the 

sensor is capable of navigation grade performance [65-68]. Lower bias instability means 

smaller angular e rror over time, and better overall heading accuracy of the inertial 



99 

navigation system. Typically, the accumulated error over time is corrected in the system 

by periodic calibration with an external reference, such as GPS [65]. However, it is 

desirable to limit communications with external references to prevent electronic jamming 

and reduce computational complexity. A gyroscope with low bias instability allows for 

longer time between calibrations. The analysis of the bias drift of a MEMS gyroscope 

offers insights into the inherent noise mechanisms in the sensor. 

6.2 Allan Variance Technique 

Bias drift is a function of the long-term average of the ZRO data, instead of a single data 

point. It is a statistical phenomenon that can be modeled by stochastic methods. Bias drift 

had been previously specified as a single Root-Mean-Square (RMS) number over time. 

However, this was a very conservative estimate, and did not offer any particular insight 

into the actual noise mechanisms. Subsequently, since bias drift is related to random 

noise in a system, the Power Spectral Density (PSD) was used to characterize it. The 

output of the gyroscope in the absence of any rotation input is recorded in the time 

domain, and Fourier Analysis yields the two-sided PSD (Sn(/))-

A time-domain method that determines the angular error characteristics over time 

provides more insight for navigation applications, to determine the long-term stability of 

a gyroscope. One such method is the Allan Variance Technique, which has been used 

extensively to study drift, both in fiber-optic gyroscopes and Coriolis-based vibratory 

gyroscopes. This technique, developed in the 1960's by David Allan, is a time-domain 

(TD) analysis, which was initially introduced to study frequency stability of oscillators 

[69]. It aids in understanding the underlying random processes that give rise to data noise, 
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and also enables identification of each noise term in the collected data. The Allan 

Variance Method relies on the principle that each noise component has its own 

characteristic PSD, and thereby is able to correlate each random component based on a 

specific averaging time. Currently, the Allan Variance Technique is used as the standard 

for drift characterization in MEMS gyroscopes [7]. 

6.3 Computing the Allan Variance 

The Allan Variance is defined as follows: the quantity expressed by one half the mean 

value of the square of the difference of adjacent time averages from a time series as a 

function of averaging time [70] and is expressed mathematically as 

* 2 ( T ) = 2 ( n
1 _ 1 ) ^ ( y ( T ) , + 1 - y(r)d2 (6.1) 

i 

where c(x) is the root Allan Variance as a function of averaging time x, n is the total 

number of data clusters, and yj is the average value of the measurement in cluster i. 

The procedure to compute the root Allan Variance consists of repeatedly averaging 

the data over varying clustering/bin times. The iterative procedure to compute Allan 

Variance can be summarized as follows: 

1) Data Collection: The ZRO from the CVG is sampled at a specified sampling 

interval (to) for a given period of time, which is at least a few hours at constant 

temperature to gain any meaningful information. 

2) Data Clustering: The long sequence of data is divided into finite clusters based on 

an averaging time, x (an integer multiple of the initial sampling interval xo). 
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3) Data Averaging: All the data points in each cluster are summed up and averaged 

over the length of that cluster. 

4) Variance Computation: The difference of the averages in successive clusters is 

evaluated and squared. The values are then summed up and divided by the 

rescaling factor. The square root of this result provides a quantitative measure of 

how much the average has changed at that particular value of averaging time. This 

term is referred to as the Allan Deviation or root Allan Variance. 

5) Repeated Averaging: The final step of the calculation involves revisiting the ZRO 

data and increasing the x, and repeating steps 1 through 4. The final cluster length 

should be at least 10 times the original one. 

The Allan Variance can be computed from the PSD of the collected data [70], as 

given by 

[°° sin4(nfT) , N 8*M = V B ( 0 WrT (&2) 

This can be interpreted as the Allan Variance being directly proportional to the output 

noise power of the gyroscope when the output is passed through a filter with a transfer 

function sin4(7r/r)/( nftf. This particular transfer function arises due to the nature of the 

process used for computing the Allan Variance, i.e., the data clustering and averaging. 

The filter bandwidth depends on the sampling time x. Therefore, by varying x, different 

types of random processes, and therefore different properties associated with the noise, 

can be evaluated. 
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6.4 Noise Components in CVGs 

The values of the root Allan Variance of the ZRO data are plotted as a function of the 

averaging time x. Fig. 6.1 is adapted from [70] and plots the typical Allan Variance Curve 

of a CVG. The time-domain data from the CVG contains contributions from various 

noise terms. It has been observed and verified that the noise terms are correlated with 

different averaging times, and hence correspond to different portions on the Allan 

Variance curve. The Allan Variance curve allows for easy identification of the various 

random processes that exist in the gyroscope output, and is therefore preferred for CVG 

drift analysis. 

i t 

a(x) 

Figure 6.1: Sample plot of Allan variance analysis highlighting sections of the graph 
that correspond to various noise sources 

It is observed in Fig. 6.1 that there are four distinct regions along the Allan Variance 

curve, which correspond to the following noise terms: 
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1. Quantization Noise 

2. Angle Random Walk (ARW) 

3. Bias Instability 

4. Rate Random Walk (RRW) 

The random processes that contribute to these noise terms can be assumed to be 

uncorrelated (i.e., statistically independent). The total Allan Variance at a given sampling 

time x can be obtained by the RMS sum of the magnitude of each of these components at 

that x, as 

°~Total\T) = °~Quantization^) + °ARWKZ) + °~Bias Instability^) + °~RRW\T) (6.3) 

6.4.1 Quantization Noise 

The quantization noise is one of the errors introduced into an analog signal by encoding it 

in digital form. This noise is caused by the small differences between the actual 

amplitudes of the points being sampled and the bit resolution of the analog-to-digital 

converter [71]. For a gyro output, the source of this noise is the sampling of the output to 

record the value of the bias over time. Since the sampling is at a relatively higher 

frequency than other gyro time constants, this noise term corresponds to small values of x 

in the time domain. The angle PSD for such a process is given in [72] as 

Se(n = rQ2
N 

sin (TT/T)]2 

nfr 
(6.4) 
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where QN is the quantization noise coefficient. Its theoretical limit is set to S/Vl2 [73], 

where 'S' is the gyroscope scale-factor. The rate PSD is related to the angle PSD (by 

differentiation process) through the following 

402 

SaiO = {2nf)2Se{f) = -^-sm2{nfx) (6.5) 

Substituting Eq. 6.5 into Eq. 6.2 and performing the necessary integration yields 

2 r } — ^®N re, <v\ 
0Quantization^1) ~ 2 V.O.OJ 

Therefore the root Allan Variance of the quantization noise when plotted in the log-log 

scale is represented by a slope of-1. The quantization noise has a short correlation time 

(i.e. high frequency). Since the high-frequency noise can usually be filtered out because 

of low bandwidth of the vehicular motion in most applications, it is not considered a 

major source of error/concern [74]. 

6.4.2 Angle Random Walk 

The Angle Random Walk (ARW) is a result of integrating a wideband rate PSD noise. It 

is a measure of the angular error build up with time that is due to white noise in angular 

rate. In CVGs, the source of this noise is the Brownian motion of the mec hanical 

structure. This component corresponds to the flat region of the PSD plot in the frequency 

domain because it is white. The associated PSD for wideband rate noise can be 

represented as 

5n(/) = N2 (6.7) 
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where N is the angle random walk coefficient usually expressed in Thr/VHz. Substituting 

Eq. 6.7 into Eq. 6.2 and performing the appropriate integration yields 

ffiwW = — (6-8) 

Therefore the root Allan Variance of the ARW when plotted in the log-log scale is 

represented by a slope of-0.5. The numerical value of N can be obtained by fitting a -0.5 

slope line to the portion of the root Allan Variance plot that varies as a function of x"°5, 

and reading its value at x = Is. N/60 gives the magnitude of the ARW component in the 

gyroscope output, yielding a measure of the total white noise. This noise error term is 

typically expressed in °/Vhr and is an accurate indicator of the short-term stability of the 

system. Often, the ARW is converted to noise density by multiplying its value by 60 (Eq. 

2.5), and expressed in Thr/VHz. The noise density refers to the TNEfi of the vibratory 

gyroscope system and is commonly expressed in datasheets. Being a measure of short-

term system stability, the ARW is significant at start-up, as it can prevent the initial 

biases of the system from being measured accurately. 

Note that if the ARW is expressed in °/Vs, it is equivalent to the unit of 7s/VHz in 

noise density, without the multiplication of 60 needed. 

6.4.3 Bias Instability 

The origin of this noise is the electronics or other components that are susceptible to 

random flickering. Because of its low-frequency nature, it is indicated as the bias 

fluctuations in the data [75]. The rate PSD associated with this noise is known as the 1/f 

noise. By derivation, the bias instability value can be read on the root Allan Variance Plot 



106 

at the region where the slope is 0. The numerical value is the minimum value on the 

Allan Deviation Curve. Bias instability represents the minimum attainable bias drift of 

the vibratory gyroscope system (when sampled at the averaging time corresponding to the 

minimum of the root Allan Variance Curve). In data sheets, the minimum value of the 

Allan Variance Curve is quoted as the bias drift of the gyro. 

6.4.4 Rate Random Walk 

The Rate Random Walk (RRW) represents the drift-rate error build-up with time that is 

due to the white noise of the angular acceleration component in the vibratory gyroscope. 

The exact origin of this noise is still uncertain, but consists of random processes with 

very long correlation times. The rate PSD associated with this noise has a 1/f2 

characteristic, and the Allan Variance corresponding to this noise term is given by 

K2 

^RRW^)=YT ( 6 ' 9 ) 

where K is the Rate Random Walk coefficient. This indicates that RRW is represented by 

a slope of 0.5 on a log-log plot, where K is usually in 7hr2/VHz. 

6.5 Bias Drift of the MB-TFG 

The MB-TFG is locked into drive resonance using the electromechanical drive loop, and 

the Allan Variance analysis performed on the ZRO data provides a methodology to 

quantify its stability or instability over time. It must be noted that since the bias drift is a 

DC phenomenon, nonlinearity at large input rotation rates is not an issue. The DC value 

of the ZRO was sampled using an Agilent 34405A digital multimeter. The root Allan 
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Variance was computed for various sampling times, using the MATLAB code shown in 

Appendix A. 

Fig. 6.2 shows the measured voltage output of a 30(xm-thick SOI MB-TFG (Device 

#13 in Chapter 5), under a zero-rate input. This ZRO value, exhibiting a noise level of 

approximately lmV peak-to-peak is sampled every 200ms for a period of about 3 hours. 

-15s J r 

0 2000 4000 6000 8000 10000 12000 
Time(s) 

Figure 6.2: ZRO plot of Device #13 for a period of about 3 hours 

The root Allan Variance Plot of this MB-TFG is then plotted in Fig. 6.3. In this figure, 

the -0.5 slope line fitted with the Allan Variance Curve at x = Is gives 4007hr/VHz, 

which corresponds to a measured noise floor of 9uVpp/VHz. The output-referred total 

equivalent noise density (TNED) of the gyroscope system is therefore 4007hr/VHz, and 

dividing this number by 60 yields the ARW of 6.677Vhr, which reflects the white noise 

in the system. The bias drift of the system is given by the minimum of the Allan Variance 

Curve, which is 957hr in this case. The bias instability is expected to be greatly reduced 
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by employing integrated interface electronics with flicker (1/f) noise suppression 

techniques. 

400 

10 

\ -0.5 slope line 

ARW 
400/60=6.67deg/sqrt(hr) 

Bias Instability 
95deg/hr 

I 
10 10 

Sampling time(s) 
10 

Figure 6.3: Root Allan Variance Plot of the MB-TFG (Device #13) 

From these measurement results, it can be seen that this MB-TFG is still a rate grade 

gyroscope, according to Table 1.1. The performance of this MB-TFG is also compared 

with other research work, as shown in Table 6.1. 

Table 6.1: Comparison of this MB-TFG and other reported TFGs 

Sensitivity 
(mV/7s) 

ARW 
(°/Vhr) 

Bias drift 
(7hr) 

This 
work 
0.08 

6.67 

95 

TFG [38] 
(2010) 

17.8 

1.2 

180 

TFG [20] 
(2009) 
0.131 

1.15 

131 

TFG [37] 
(2009) 
0.028 

5.4 

288 

TFG [17] 
(2008) 

83 

0.007 

0.15 

TFG [39] 
(2007) 

2.4 

0.6 

25200 
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To better understand how noise sources with different spectral characteristics are 

mapped onto the root Allan Variance Plot, considering that in a typical noise spectrum, 

the flicker noise from electronics is a low-frequency phenomenon and dominates low-

frequency regions, while higher frequency regions are dominated by the white noise from 

other sources (mechanical thermal noise). On the root Allan Variance Plot, at regions 

where the sampling time x is short, the ZRO signal can be regarded as a "high frequency" 

signal, thus the ARW extracted from these regions is strongly related to the white noise in 

the system; at regions where x is longer, the ZRO signal can be regarded as a "low 

frequency" signal, therefore the bias instability observed from these regions is correlated 

with the amount of flicker noise in the system. 

The bias drift is closely related to the sensitivity and bandwidth of the gyroscope. As 

shown from the experimental work in [76], bias drift varies inversely with sensitivity. 

Therefore, smaller bandwidth leads to higher sensitivity and lower bias drift. In addition, 

lowering the total system noise floor by a larger mass, increasing the effective quality 

factor and the capacitive sensitivity of the sensor, and techniques to reduce the flicker 

noise all result in an improved bias stability. 
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CHAPTER VII 

CONCLUSIONS AND FUTUER WORK 

7.1 Summary of Research Project 

This dissertation has focused on the design, fabrication, and performance evaluation of a 

MEMS Coriolis Vibratory Gyroscope (CVG) based on SOI wafers. A list of the technical 

contributions made through this research project is summarized as follows: 

(1) Design and Development of the Multiple-Beam Tuning-Fork Gyroscope (MB-

TFG): the MB-TFG relies on the Coriolis Effect to transfer energy between two 

in-plane operation modes - the drive-mode and the sense-mode. The drive-mode 

vibration is excited using a pair of comb-drive electrodes to apply electrostatic 

force on the proof-masses. When subject to a rotation rate about the out-of-plane 

z-axis, the sense-mode vibration is excited and can be detected from a capacitive 

output. The design of the Multiple-Beam Tuning-Fork Structure (MB-TFS) is 

based on a numerical model of the Thermo-Elastic Damping (TED), to ensure 

high quality factors (Qs) in both operation modes. A comprehensive theoretical 

analysis of the MB-TFG design is conducted to relate the design parameters to its 

operation parameters and further performance parameters. The MB-TFG 

prototypes were fabricated on 30um-thick Silicon-On-Insulator (SOI) substrate 

using a simple one-mask fabrication process. 

(2) Mask design improvement to enhance Qs in both modes: the fabrication process 

involves two steps - DRIE and HF acid etching. The original mask design 
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induced much anchor loss that greatly reduced the Q values, basically because of 

the over-etching of the silicon dioxide underneath the anchor during the HF acid 

etching step. An improved mask design defines the MB-TFG devices through a 

trench feature, which limits the exposure of the silicon dioxide to the HF acid, 

thus alleviating the severe fabrication effect on anchor loss and significantly 

increasing the Q values. The DRIE step was done at Cornell's Nanofabrication 

Facility (CNF) using PT770 etcher and the HF acid etching step was performed at 

Micro Devices and Micromechanics Laboratory of Old Dominion University. The 

30um-thick high-Q devices were fabricated with an optimal HF acid etching time 

that was determined through repetitive experiments. 

(3) Interface electronics design and implementation for operating the high-Q MB-

TFG in vacuum: an electromechanical drive loop based on the Barkhausen's 

Criteria for self-oscillation is designed and implemented on Printed-Circuit-Board 

(PCB) level, to start up and sustain oscillations along the drive axis of the MEMS 

structure. A synchronous phase sensitive demodulation technique, which is 

capable of rejecting the quadrature error, is implemented for sensing the input 

rotation rate. When operating the gyroscope, the DC polarization voltage applied 

on the MB-TFS is adjusted to reduce the sense-mode resonant frequency in order 

to achieve an almost matched-mode condition (4Hz frequency split at 16.8kHz). 

The matched-mode condition is highly desirable since the circuit and system 

developed in this research leverage on the inherently high mechanical gain (Q) of 

the coupled resonant systems, and the effective Q is maximized when the 

operation modes are completely matched in frequency. High Qs in both modes 
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benefit the sensor performance in many aspects such as high resolution, high 

sensitivity and low bias drift. 

(4) Transimpedance Amplifier (TIA) front-end design for motional current detection 

from the MB-TFG: the TIA has been chosen as the low-noise front-end that is 

interfaced with the MB-TFG. It also minimizes the Q-loading effect in the drive 

loop. The input-referred current noise of the TIA is measured to be as low as 

\ApAAlHz, which corresponds to a minimum detectable capacitance of 

0.46aF/^lHz. The feedback resistance of this TIA is in the range of 1 - 5MD, 

while the following Variable Gain Amplifier (VGA) can increase the overall TIA 

gain in the drive loop to over 20MCI. Comparing to the T-network-based TIA in 

[3], where the large TIA gain is realized on a single stage, this work has more 

flexibility in the gain tuning to meet the self-oscillation need in the drive loop. 

(5) Performance characterization of the assembled MB-TFG system: the fabricated 

MB-TFG devices are first measured for their frequency response in order to 

observe the resonant frequencies and Q values of both operation modes. The 

measured resonant frequency is around 16 - 17kHz and the measured highest Qs 

are over 200k for the drive-mode and 100k for the sense-mode. To operate this 

MB-TFG, the polarization voltage is adjusted so that a minimum frequency 

difference of 4Hz is achieved between the drive-mode and sense-mode, at a center 

frequency of 16.8kHz. The effective Q of the gyroscope is around 90k. Using the 

PCB level interface electronics, the rate sensitivity is measured to be 80juVpp/°/s, 

with an equivalent TIA gain of about 6M£2. Finally, the bias drift phenomenon is 

file:///ApAAlHz
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investigated. The impact of different noise sources such as flicker noise and white 

noise on the bias drift behavior of a MEMS gyroscope is modeled and analyzed. 

A time-domain analysis of the Zero Rate Output (ZRO) data using the Allan 

Variance Technique is described in detail. The measured Angle Random Walk 

(ARW) and bias drift of the MB-TFG system are 6.67%/hr and 957hr, 

respectively. 

7.2 Future Work 

Through the study and analysis in this work, several paths can be followed to improve 

and optimize the performance of this gyroscope. These possible future directions are 

briefly discussed. 

(1) Quadrature error minimization: the quadrature error in the output signal from the 

sense channel can be really large, according to Eq. 2.30. Although in this work, 

the quadrature error signal has been rejected by the phase sensitive demodulation 

technique, it still hinders a perfect mode-matching (0Hz frequency split), thus 

decreasing the effective Q and degrading the system performance. Therefore, 

electrostatic electrodes dedicated to the minimization of the quadrature error can 

be added into the MB-TFG design. Note that the usage of these electrodes must 

not interfere with the electrostatic frequency tuning of the sense-mode frequency, 

so they should be included in the form of the comb-drive electrode used in the 

drive-mode. These electrodes were incorporated in [3] and helped achieve a 

perfect mode-matching condition that led to a high-precision mode-matched 

tuning fork gyroscope. 
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(2) Bandwidth increase: the bandwidth of the gyroscope is a function of the mode 

separation as well as the inherent quality factor of the resonant modes. Since the 

bandwidth of this MB-TFG is only a few Hz, techniques for increasing the 

bandwidth are necessary. 

The electrical way is by Q-loading, which involves electronically loading the 

quality factor of the gyroscope in mode-matched condition. Q-loading decreases 

the QEFF but maintains the gyroscope in mode-matched condition. Since the BW 

is inversely proportional to QEFF and QEFF is lowered without frequency change, 

then bandwidth is increased. Electronic Q-loading can be achieved by varying the 

input impedance of the TIA front-end that the micromechanical device sees, 

according to Eq. 4.4. By providing an alternate feedback path, the normally low 

input impedance provided by the shunt-shunt feedback can be increased, thereby 

loading the quality factor. 

The mechanical way is to design a micromechanical structure with two 

frequency peaks in the sense-mode, as shown in [37]. With the drive-mode peak 

right in between the two sense-mode peaks, the bandwidth is increased. The 

drawback in this design is a very complicated structure. 

(3) Sensitivity increase: in this work, the output motional current in the sense-mode is 

from a group of four parallel-plate sense electrodes that are of the same nature -

their sense capacitive gap increases or decreases at the same time. The other 

group of four sense electrodes, by comparison, has an opposite nature in that their 

sense capacitive gap change is in opposite direction as to that of the first group. 

Noting this, we can take advantage of the differential nature of the motional 
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currents that are generated from these two groups of sense electrodes. By using an 

instrumentation amplifier, the rate sensitivity of the system can be doubled, as 

shown in [21]. The duty of frequency tuning for the other group of sense 

electrodes can be relieved because the polarization voltage alone is enough for 

fulfilling this purpose. 

(4) Reduction in power consumption: since this work is done using a discrete-level 

system with on-shelf electrical components, the power consumption is high. With 

the same circuit principle, the interface electronics can go to an integrated level, 

which will reduce the power consumption significantly. 
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APPENDIX A 

BIAS DRIFT MEASUREMENT 

MATLAB code used for Allan Variance computation 

clear .. ; 
close ^ u.; 
format ; 
sig2=[]; 
tau=[]; 
D= [ ] ; 
vavg=[]; 
vavg_mean= [ ]; 
zro= []; 
bin_size=0; 

vavg_all=load(* 
vavg_raw=vavg_all(:,2); 

/ f > f 

vavg_mean=vavg_raw(1:end)-mean(vavg__raw(1:end) ) ; 
sens=2.2e-8; 
zro=vavg_mean./sens; 
n=length(zro); 
tau0=0.2; 
total_time=n*tauO; 
ctr=l; 
scale=0.1; 
bin_size=l; 
while bin_size<floor((n/25)*tauO); 

fprintf ( ' ' ) ; 
m=10*scale; 
bm_size=m*tauO; 
tau (ctr) =bm_size; 
for i=0:floor(n/m)-1 

bm_ave (ctr, i+l) =mean (zro ( (1+round (m) *i) : (I 
end; 
ctr=ctr+l; 
scale=scale+(ctr-1)*0.1; 

end; 

n_tau=length(tau); 
for i=l:n_tau 

diff_bin=bin_ave(I,:); 
dif f_bm_sqr= (dif f (diff_bin) ) . A2; 
dif f_bin_ms= (0.5) *mean (dif f_bm_sqr) ; 
sig2(l)=sqrt(diff bin ms); 
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end; 
save 

z. 

t_seconds=tauO*(1:n); 
figure (1); 

plot(t_seconds,vavg_mean, '-c ', 'i ' , 1) 
hold ; 
grid 
xlabel ( " r ' ) ; 
ylabelf , ' ) ; 

figure (2); 
loglog (tau, sig2, ' - ',' >. ',2); 
hold 
grid 
x=0.8:0.1:10; 
y=400*x.A (-0.5); 
loglog (x,y,'— ',' < - \2) ; 
xlabel(* ' ); 
ylabel ( ' - ' ) ; 

bias_drift=min(sig2); 
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