11,926 research outputs found

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    AMCTD: Adaptive Mobility of Courier nodes in Threshold-optimized DBR Protocol for Underwater Wireless Sensor Networks

    Full text link
    In dense underwater sensor networks (UWSN), the major confronts are high error probability, incessant variation in topology of sensor nodes, and much energy consumption for data transmission. However, there are some remarkable applications of UWSN such as management of seabed and oil reservoirs, exploration of deep sea situation and prevention of aqueous disasters. In order to accomplish these applications, ignorance of the limitations of acoustic communications such as high delay and low bandwidth is not feasible. In this paper, we propose Adaptive mobility of Courier nodes in Threshold-optimized Depth-based routing (AMCTD), exploring the proficient amendments in depth threshold and implementing the optimal weight function to achieve longer network lifetime. We segregate our scheme in 3 major phases of weight updating, depth threshold variation and adaptive mobility of courier nodes. During data forwarding, we provide the framework for alterations in threshold to cope with the sparse condition of network. We ultimately perform detailed simulations to scrutinize the performance of our proposed scheme and its comparison with other two notable routing protocols in term of network lifetime and other essential parameters. The simulations results verify that our scheme performs better than the other techniques and near to optimal in the field of UWSN.Comment: 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore