38,905 research outputs found

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Internal Model Hop-by-hop Congestion Control for High-Speed Networks

    Get PDF
    This paper presents a hop-by-hop congestion control for highspeed networks. The control policy relies on the data exchange between adjacent nodes of the network (nearest-neighbour interaction). The novelty of this paper consists in the extensive use of Internal Model Control (IMC) to set the rates of the traffic flows. As a result, the proposed congestion control provides upper-bounds of the queue lengths in all the network buffers (overflow avoidance), avoids wasting the assigned capacity (full link utilisation) and guarantees the congestion recovery. Numerical simulations prove the effectiveness of the scheme

    Local movement: agent-based models of pedestrian flows

    Get PDF
    Modelling movement within the built environment has hitherto been focused on rather coarse spatial scales where the emphasis has been upon simulating flows of traffic between origins and destinations. Models of pedestrian movement have been sporadic, based largely on finding statistical relationships between volumes and the accessibility of streets, with no sustained efforts at improving such theories. The development of object-orientated computing and agent-based models which have followed in this wake, promise to change this picture radically. It is now possible to develop models simulating the geometric motion of individual agents in small-scale environments using theories of traffic flow to underpin their logic. In this paper, we outline such a model which we adapt to simulate flows of pedestrians between fixed points of entry - gateways - into complex environments such as city centres, and points of attraction based on the location of retail and leisure facilities which represent the focus of such movements. The model simulates the movement of each individual in terms of five components; these are based on motion in the direction of the most attractive locations, forward movement, the avoidance of local geometric obstacles, thresholds which constrain congestion, and movement which is influenced by those already moving towards various locations. The model has elements which enable walkers to self-organise as well as learn from their geometric experiences so far. We first outline the structure of the model, present a computable form, and illustrate how it can be programmed as a variant of cellular automata. We illustrate it using three examples: its application to an idealised mall where we show how two key components - local navigation of obstacles and movement towards points of global locational attraction - can be parameterised, an application to the more complex town centre of Wolverhampton (in the UK West Midlands) where the paths of individual walkers are used to explore the veracity of the model, and finally it application to the Tate Gallery complex in central London where the focus is on calibrating the model by letting individual agents learn from their experience of walking within the environment

    Risk Minimizing Evacuation Strategies under Uncertainty

    Get PDF
    This paper presents results on the simulation of the evacuation of the city of Padang with approximately 1,000,000 inhabitants. The model used is MATSim (www.matsim.org). Three different strategies were applied: shortest path solution, user optimum, system optimum, together with a constraint that moves should reduce risk whenever possible. The introduction of the risk minimization increases the overall required safe egress time (RSET). The differences between the RSET for the three risk minimizing strategies are small. Further quantities used for the assessment of the evacuation are the formation of congestion and the individual RSETs (in comparison with the available SET).BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie
    • …
    corecore