17,669 research outputs found

    Application of Subset Simulation to Seismic Risk Analysis

    Get PDF
    This paper presents the application of a new reliability method called Subset Simulation to seismic risk analysis of a structure, where the exceedance of some performance quantity, such as the peak interstory drift, above a specified threshold level is considered for the case of uncertain seismic excitation. This involves analyzing the well-known but difficult first-passage failure problem. Failure analysis is also carried out using results from Subset Simulation which yields information about the probable scenarios that may occur in case of failure. The results show that for given magnitude and epicentral distance (which are related to the ‘intensity’ of shaking), the probable mode of failure is due to a ‘resonance effect.’ On the other hand, when the magnitude and epicentral distance are considered to be uncertain, the probable failure mode correspondsto the occurrence of ‘large-magnitude, small epicentral distance’ earthquakes

    Towards Quantitative Simulations of High Power Proton Cyclotrons

    Full text link
    PSI operates a cyclotron based high intensity proton accelerator routinely at an average beam power of 1.3MW. With this power the facility is at the worldwide forefront of high intensity proton accelerators. The beam current is practically limited by losses at extraction and the resulting activation of accelerator components. Further intensity upgrades and new projects aiming at an even higher average beam power, are only possible if the relative losses can be lowered in proportion, thus keeping absolute losses at a constant level. Maintaining beam losses at levels allowing hands-on maintenance is a primary challenge in any high power proton machine design and operation. In consequence, predicting beam halo at these levels is a great challenge and will be addressed in this paper. High power hadron driver have being used in many disciplines of science and, a growing interest in the cyclotron technology for high power hadron drivers are being observed very recently. This report will briefly introduce OPAL, a tool for precise beam dynamics simulations including 3D space charge. One of OPAL's flavors (OPAL-cycl) is dedicated to high power cyclotron modeling and is explained in greater detail. We then explain how to obtain initial conditions for our PSI Ring cyclotron which still delivers the world record in beam power of 1.3 MW continuous wave (cw). Several crucial steps are explained necessary to be able to predict tails at the level of 3\sigma ... 4\sigma in the PSI Ring cyclotron. We compare our results at the extraction with measurements, obtained with a 1.18 MW cw production beam. Based on measurement data, we develop a simple linear model to predict beam sizes of the extracted beam as a function of intensities and confirm the model with simulations.Comment: Corrections and new figur
    corecore