1,293,342 research outputs found
A Simulation Tool for tccp Programs
The Timed Concurrent Constraint Language tccp is a declarative synchronous concurrent language, particularly suitable for modelling reactive systems. In tccp, agents communicate and synchronise through a global constraint store. It supports a notion of discrete time that allows all non-blocked agents to proceed with their execution simultaneously.
In this paper, we present a modular architecture for the simulation of tccp programs. The tool comprises three main components. First, a set of basic abstract instructions able to model the tccp agent behaviour, the memory model needed to manage the active agents and the state of the store during the execution. Second, the agent interpreter that executes the instructions of the current agent iteratively and calculates the new agents to be executed at the next time instant. Finally, the constraint solver components which are the modules that deal with constraints.
In this paper, we describe the implementation of these components and present an example of a real system modelled in tccp.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Debris Disk Radiative Transfer Simulation Tool (DDS)
A WWW interface for the simulation of spectral energy distributions of
optically thin dust configurations with an embedded radiative source is
presented. The density distribution, radiative source, and dust parameters can
be selected either from an internal database or defined by the user. This tool
is optimized for studying circumstellar debris disks where large grains are
expected to determine the far-infrared through millimeter dust reemission
spectral energy distribution. The tool is available at
http://aida28.mpia-hd.mpg.de/~swolf/ddsComment: Comp. Phys. Comm, 2005, in pres
Modelling and simulation on the tool wear in nanometric cutting
Tool wear is a significant factor affecting the machined surface quality. In this paper, a Molecular Dynamics (MD) simulation approach is proposed to model the wear of the diamond tool in nanometric cutting. It includes the effects of the cutting heat on the workpiece property. MD simulation is carried out to simulate the nanometric cutting of a single crystal silicon plate with the diamond tip of an Atomic Force Microscope (AFM). The wear mechanism is investigated by the calculation of the temperature, the stress in the diamond tip, and the analysis of the relationship between the temperature and sublimation energy of the diamond atoms and silicon atoms. Microstrength is used to characterize the wear resistance of the diamond tool. The machining trials on an AFM are performed to validate the results of the MD simulation. The results of MD simulation and AFM experiments all show that the thermo-chemical wear is the basic wear mechanism of the diamond cutting tool
Reverse Skew-T - A Cloudmaking Tool for CG
We present 'Reverse Skew-T', a tool that allows users to direct a physically inspired simulation of layered clouds. To achieve this, we extend existing models for cloud simulation and provide a graphical user interface for providing important simulation parameters to our system
ORCSim: a generalized Organic Rankine cycle simulation tool
An increasing interest in organic Rankine cycle (ORC) technology has led to numerous simulation and
optimization studies. In the open-literature different modeling approaches can be found, but general software
tools available to the academic/industrial community are limited. A generalized ORC simulation
tool, named ORCSim, is proposed in this paper. The framework is developed using object-oriented programming
that easily allows improvements and future extensions. Currently two cycle configurations are
implemented, i.e. a basic ORC and an ORC with liquid-flooded expansion. The software architecture,
the thermo-physical property wrappers, the component library and the solution algorithm are discussed
with particular emphasis on the ORC with liquid-flooded expansion. A thorough validation both at component
and cycle levels is proposed by considering the aforementioned cycle architectures
Pluto: A Monte Carlo Simulation Tool for Hadronic Physics
Pluto is a Monte-Carlo event generator designed for hadronic interactions
from Pion production threshold to intermediate energies of a few GeV per
nucleon, as well as for studies of heavy ion reactions. This report gives an
overview of the design of the package, the included models and the user
interface.Comment: XI International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland
Efficient implicit simulation for incremental forming
Single Point Incremental Forming (SPIF) is a displacement controlled process performed on a CNC machine. A clamped blank is deformed by the movement of a small sized tool that follows a prescribed tool path. An extensive overview of the process has been given in [1]. The tool size plays a crucial role in the SPIF process. The small radius of the forming tool concentrates the strain at the zone of deformation in the sheet under the forming tool. The tool has to travel a lengthy forming path all over the blank to introduce the deformation. Numerically, this requires performing thousands of load increments on a relatively fine FE model resulting in enormous computing time. A typical computing time for implicit simulation of a small academic test is measured in by days. The focus of this paper is to efficiently use the implicit time integration method in order to reduce the required computing time for incremental forming implicit simulation drastically
Macroscopic simulation of the liner honing process
The form quality, the roughness and the surface appearance produced by honing minimizes the friction of the piston in the liner. The process is however mechanically complex and the selection of the process parameters is currently based on empirical methods. The aim of this paper is thus to develop a macroscopic simulation environment of complete real honing cycles, which will help end-users during the setting-up. This virtual tool is based on a space-time discretization and a macroscopic cutting model taking into account local contacts between the workpiece and the abrasive tool. The space-time discretization allows representing the machine environment with the tool, the workpiece and the kinematics. Simulation results are finally validated by comparison with industrial experiments.Thèse CIFRe Renault SAS / MSMP PôleProcess ECO
Towards an overheating risk tool for building design
PurposeThe work set out to design and develop an overheating risk tool using the UKCP09 climate projections that is compatible with building performance simulation software. The aim of the tool is to exploit the Weather Generator and give a reasonably accurate assessment of a building's performance in future climates, without adding significant time, cost or complexity to the design team's work.Methodology/approachBecause simulating every possible future climate is impracticable, the approach adopted was to use principal component analysis to give a statistically rigorous simplification of the climate projections. The perceptions and requirements of potential users were assessed through surveys, interviews and focus groups.FindingsIt is possible to convert a single dynamic simulation output into many hundreds of simulation results at hourly resolution for equally probable climates, giving a population of outcomes for the performance of a specific building in a future climate, thus helping the user choose adaptations that might reduce the risk of overheating. The tool outputs can be delivered as a probabilistic overheating curve and feed into a risk management matrix. Professionals recognized the need to quantify overheating risk, particularly for non‐domestic buildings, and were concerned about the ease of incorporating the UKCP09 projections into this process. The new tool has the potential to meet these concerns.Originality/valueThe paper is the first attempt to link UKCP09 climate projections and building performance simulation software in this way and the work offers the potential for design practitioners to use the tool to quickly assess the risk of overheating in their designs and adapt them accordingly.</jats:sec
- …
