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Abstract  

    Tool wear is a significant factor affecting the machined surface quality. In this paper, a Molecular 

Dynamics (MD) simulation approach is proposed to model the wear of the diamond tool in 

nanometric cutting. It includes the effects of the cutting heat on the workpiece property. MD 

simulation is carried out to simulate the nanometric cutting of a single crystal silicon plate with the 

diamond tip of an Atomic Force Microscope (AFM). The wear mechanism is investigated by the 

calculation of the temperature, the stress in the diamond tip, and the analysis of the relationship 

between the temperature and sublimation energy of the diamond atoms and silicon atoms. 

Microstrength is used to characterize the wear resistance of the diamond tool. The machining trials 

on an AFM are performed to validate the results of the MD simulation. The results of MD 

simulation and AFM experiments all show that the thermo-chemical wear is the basic wear 

mechanism of the diamond cutting tool. 
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1. Introduction 

Diamond tools are used extensively in nanometric cutting. The wear of a diamond tool during the 

machining degrades the machined surface roughness to some extent before the tool failure [1], it 

will also damage the condition of the machined surface, i.e. the surface integrity [2]. The 

performance of a precision component or product not only depends on its surface finish but also 

depends on its surface integrity. Therefore, it is of great significance to get better understanding of 

the physical aspects of the wear of the diamond cutting tool. 

    In nanometric cutting processes, the interatomic actions within the surface and subsurface layers 

will become dominant. Since the 1980s, Molecular Dynamics (MD) simulation has been employed 

to study nanometric cutting from the point of view of atomic structure. Belak and Hoover in LLNL 

and Ikawa and Shimada in Japan are the pioneers of this study [3][4], they have investigated the 

effect of cutting edge radius and minimum cut thickness in the nanometric cutting process. Inamura 

in Japan built a model that combined FEM and MDS [5], Rentsch in Germany and Komanduri in 

USA studied the crystallographic orientation effects on nanometric cutting processes [6][7]. 

Komanduri et al. also investigated the anisotropy and friction by MD simulation of indentation and 

scratching of single crystal aluminum [8]. A sound foundation has been laid, but all their work did 

not involve the tool wear. Although Maekawa et al. [9] postulated Morse type potentials with 

various magnitudes of the cohesion energy to approximate the friction and tool wear, the postulation 

needs experimental validation. The development of Atomic Force Microscope (AFM) techniques 

provide a powerful tool for the experimental validation. The sharp diamond tip of AFM can be used 

to emulate the single-point diamond cutting tool in cutting the workpiece surface [10]. 

    In this paper, the effects of cutting heat on the variation of workpiece property are thoroughly 

investigated with a MD simulation based on the Modified Embedded Atom Method (MEAM). The 

simulation is performed to simulate the tool wear in nanometric cutting of single crystal silicon 



using the AFM diamond tip. Nanometric cutting experiments using the AFM diamond tip are carried 

out to evaluate and validate the simulation results. 

 

2. Nanometric cutting model  

2.1 MD model of the nanometric cutting 

    The MD model of the nanometric cutting using the AFM diamond tip is shown in Fig.1. The 

triangular based pyramid shape of the diamond tip is consistent with that of the real AFM diamond 

tip, but its scale is one thirtieth of the real size of the AFM diamond tip to reduce the computation 

time. The cone angle (the angle between the cutting edge and its opposite side face) of the diamond 

tip is 90˚. The cutting edge radius is 1 nm. A single crystal silicon plate is the workpiece. The 

workpiece is divided into three different zones, namely the Newton atoms zone, the thermostatic 

atoms zone and the boundary atoms zone. The boundary atoms are assumed to be unaffected by the 

indentation and scratching process. Consequently, they are fixed in their initial lattice positions and 

serve to reduce the boundary effects and maintain the proper symmetry of the lattice. The motions of 

the thermostatic atoms are modified by the method of velocity reset [11]. This procedure is used to 

simulate the thermostatic effects of the bulk and guarantee the equilibrium temperature to approach 

the desired value since much of the cutting heat converted from elastic/shear energy and friction 

energy will be carried away by chip and lubricant in actual machining. The motions of the atoms in 

the Newton atoms zone and the AFM diamond tip are determined by the interatomic forces 

produced by the interaction potential and direct solution of Newton’s motion equation. Thus, the 

interactions between the workpiece and the AFM diamond tip can be studied using this approach. 

The dimension of the Newton atoms zone is 5.99 nm (length) × 1.18 nm (width) × 3.64 nm (height). 

The reason to choose a small size of silicon plate is to reduce the simulation time. The initial 

positions of work atoms and diamond tip atoms are the sites on their crystal lattice. Their initial 

velocities can be assigned from the Maxwell distribution at 298K. 
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2.2 Modeling of tool wear 

From a microscopic point of view, tool wear is the 

result of interactions between the workpiece atoms and 

the cutting tool atoms. It can be modelled on condition 

that the interactions can be described more accurately. 

In this research, the effect of cutting heat is included in 

the MD simulation to model and simulate the tool wear. 

 
 

Fig. 1. MD model of Nanometric cutting.  
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Generally, the interatomic forces between the workpiece atoms and tool atoms can be calculated 

by the difference of their respective potential energy. Here, the MEAM potential developed by 

Professor Baskes [12] is employed, i.e. the potential energy of the i-th atom is: 
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where Es, F, Zi, rij are the energy per atom of the reference structure, a functional of electron density, 

the number of the nearest neighbors of the i-th atom, the distance between the i-th atom and the j-th 

atom, respectively. The reference structure is the equilibrium crystal structure of the atoms. ρi and ρi 

are the electron density of the real lattice and the reference lattice respectively. This equation has an 

appealing physical interpretation. The first term in Eq. (1) is simply the average of the energy per 

atom of the reference lattice at each of the nearest-neighbor distances. The second term is formed by 

the difference between the embedding energy at the background electron density actually seen by 

atom i and the average embedding energy of this atom in the reference lattice at each of the nearest-

neighbor distances [12]. The energy of an element in the reference structure is given by a universal 

energy function: 
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where is the equilibrium nearest-neighbor distance, is the bulk modulus, is the atomic 

volume of the solid elements, and E

0
iR iB iΩ

sub is the sublimation energy. 

    It is noted that the sublimation energy is related to the temperature of the system. In order to 

analyze the tool wear mechanism, it is postulated that the cutting energy is completely transformed 

into the cutting heat, which results in a rise of cutting temperature. The equilibrium temperature of 

the system is calculated by the theorem of equipartition of energy, and then the enthalpy of 

sublimation by Kirchhoff’s law: 
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where  and  are the enthalpy of sublimation at temperature T)( 1THg
sΔ )( 2THg

sΔ 1 and temperature T2 

under standard atmospheric pressure, respectively. Cp(g) and Cp(s) are the heat capacities at constant 

pressure of the gas and the solid state, respectively. In this canonical ensemble due to the constant 

pressure, the enthalpy of sublimation equals to sublimation energy. Therefore, the sublimation 

energy in Eq. (2a) is rectified in the light of the temperature. Because the difference of potential 

energy is the interatomic force, the cutting heat is then transformed into load force. The forces acting 

on the i-th workpiece silicon atom is  
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where Ewti and Ewwi are the potentials of the i-th workpiece atom under the action of diamond tip 

atoms and other workpiece atoms respectively. Nt, Nw are the number of diamond tip atoms and 

workpiece atoms respectively. rwtij and rwwij are the distance between the i-th workpiece atom and 

diamond tip atoms and other workpiece atoms respectively. The equation of the forces acted on the 

i-th diamond tip atom is very similar to Eq. (4). Its derivation is omitted because of the limitation of 

the number of pages. According to the Newton’s second law, the movements of the Newton atoms 

and thermostatic atoms of the workpiece and diamond tip atoms are expressed as: 
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where rwi and rti are the displacement vector of workpiece material atoms and cutting tool atoms 

respectively. rttij and rtwij are the distance between the i-th diamond tip atom and other diamond tip 

atoms and workpiece atoms respectively. The Euler algorithm can be used to solve these functions, 

and the result will be the displacement and the velocity of the individual workpiece and diamond tip 

atoms in the cutting zone. The tool wear can therefore be studied by analysing the loci of these 

atoms. 

 

3. Tool wear simulation 

3.1 The observation of tool wear 

In the simulation, the (110) plane is chosen as the rake face and flank face of the AFM diamond 

tip. The AFM diamond tip is indented into the (001) plane of the workpiece with a speed about 10 

m/s. The indentation and scratching depth is set at 0.94 nm. The scratching is carried out along the 

<010> direction in the workpiece with a speed of 20 m/s and scratching distance of 2 nm to emulate 

the nanometric cutting. The reason that high indentation speed and scratching speed were chosen is 

to reduce the computation time. After one scratching, the tool tip moves 0.26 nm from the initial 

position to do another scratching until a machined area of about 1 nm × 2 nm is generated. The bulk 

temperature is 25°C. The computation time step is 10 fs. In order to observe tool wear clearly, the 
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(a) 71.4ps     (b) 136 ps 

Fig. 2. MD simulation of tool wear. 



section diagram of the nanometric cutting is shown in Fig. 2 at two computation times: (a) 71.4 ps, 

(b) 136 ps. At 71.4 ps, the crystal lattice of the work material begins to be disturbed, and the 

initiation of micro-dislocations can be observed at each side of the diamond tip in the work material 

for the reason of releasing the strain energy. At 136 ps, some workpiece atoms move forward to 

generate the chip. It is a discontinuous atom cluster. There are distinct diffusions between the work 

atoms and diamond tip atoms at the cutting edge. A few tool atoms separate at the rake face and the 

cutting edge of the diamond tip, and then move with the chip, while some remain in the workpiece 

surfaces. This means that the cutting 

edge of the tool begins to wear. The 

interference of boundary atoms to the 

simulation can be ignored since the 

boundary atoms are outside the cut-

off distance of the interactions between silicon atoms and carbon atoms. Fig. 3 shows the simulated 

images of the AFM diamond tip before and after the cutting respectively. Fig. 3 (b) illustrates that a 

few diamond tip atoms have been removed from the cutting edge near the rake face and, 

consequently, an obvious wear flat appears there. This is undesirable because it will produce the 

unacceptable dimensional or form error on the workpiece and may eventually cause catastrophic 

failure of the tool [13]. The apex of the AFM diamond tip has been removed, and a little concavity 

can also be observed on the top of it. It also shows that tool wear has happened. 

 
(a) Before cutting            (b) After cutting 

Fig. 3. Simulation of the tool wear in nanometric cutting. 
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3.2 The wear mechanism of diamond tip 

    In the simulation the highest stress in the diamond tip is 6.24 GP. It is lower than the fracture 

toughness of the diamond. It thus seems that the fracture will not occur. The ratio of the mean 

tangential cutting force to the mean normal cutting force is 0.54 in this simulation. It shows that 

strong friction is existing between the workpiece atoms and the diamond tip atoms. The friction and 

the strain energy released from the deformed crystal lattice will be transformed into cutting heat. 
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Although some cutting heat will be carried away by the chip, there is still some heat built up at the 

cutting edge. According to the simulation, the highest local temperature of 813K occurs in the 

diamond tip and is about 1.43 nm from the apex of the diamond tip. 

    From Fig. 4 it can be seen that the sublimation energy of carbon atom and silicon atom all 

decrease with the increase of temperature, but the 

sublimation energy of carbon decreases much faster 

than that of the silicon atom. The drastic decrease of 

sublimation energy and diffusion of the work atoms 

(as shown in Fig.2. (b)) will weaken the cohesion 

bond of C-C and make the bond easier to break. The 

breaking of the C-C bond in the diamond tip will 

take place at the location where the fewest C-C 

bond exist. Fig. 5 shows that layers of diamond atoms are removed from the apex and cutting edge 

of the diamond tip during cutting. The directions of the 

removal layers are parallel to the (111) plane and (001) 

plane of the diamond crystal respectively. Fewer C-C 

bonds exist between the two kinds of crystal planes 

compared with those of others. It is a typical micro-

delamination characteristic in that the diamond atoms are removed in layers and along the direction 

where the fewest bonds exist. The micro-delaminations result from the high temperature, the atomic 

diffusion and the drastically decreasing sublimation energy of the carbon atom. The generation of 

concavity at the apex of diamond tip may be the result of atomic diffusion (as shown in Fig.2. (b)) 

and the breaking of C-C bond due to the highest temperature concentrating there. The analyses 

above make it clear that the wear of the diamond tip is caused by thermal effects, atomic diffusion 

and the drastic decrease of the sublimation energy of carbon atoms in nature. The wear mechanism 

 
Fig.4. The variation of sublimation energy of C and 

Si with the temperature. 

 
 
Fig.5. Simulation of the micro-delamination at 
the diamond tip. 
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of the diamond tip is consistent with that of the thermo-chemical wear, which can be defined as the 

wear caused by thermo-chemical effects, such as thermal effects, atomic diffusions, etc. Therefore, 

thermo-chemical wear can be regarded as the basic wear mechanism of the diamond tip. 

    In this modeling and simulation, the wear rate is expressed as: 

lF
VW
n

r
Δ

=      (7) 

where ΔV is the wear volume, Fn is the mean 

normal cutting force, l is the cutting distance. The 

shear stress causing initial wear is defined as the 

micro-strength of the diamond tip. Table 1 lists the 

wear rate and microstrength when the different 

crystal planes are used as rake face and flank face 

of the diamond tip. It shows that the (100) plane 

has the highest microstrength and the lowest wear 

rate. On the other hand, the (110) plane has the lowest microstrength and the highest wear rate. 

Therefore, the wear resistance can be characterized by microstrength. The (100) plane is 

recommended to be used as the rake face and flank face of the diamond cutting tool. 

 (100) (111) (110) 

Wear rate 

(mm2/Nm) 

0.8 1.2 1.9 

Microstrength 

(Gpa) 

6.1 5.8 5.4 

Table 1 The wear rate and microstrength of different 

crystal plane 

 

4. Experimental validation 

    The nanometric cutting trials are carried out on a single crystal silicon plate by the diamond tip of 

an AFM (Nanoscope IIIa Dimension 3100, Digital Instruments) in scratching mode. The diamond 

tip cutting edge radius is 30 nm, and the torque stiffness of the cantilever is 2.9×10-5 N/V (as 

provided by the manufacturer). In the trials, the normal load remains at 80 μN during the indentation 

and scratching process, and the frequency of the scanning is set at 1 Hz. The scratching process is 

repeated after the diamond tip indents the surface to some extent until the generation of a machined 
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surface area of 2 μm by 2 μm. Based on the signal of torque voltage and the stiffness of the 

cantilever, the tangential cutting force can be calculated as 48.8 μN. The ratio of the tangential 

cutting force to the normal cutting force is 0.61. The value is quite consistent with that forecasted by 

the MD simulation as described in section 3.2 ( )difference  %5.11%100
61.0

54.061.0
=×

− . 

    Fig.6 shows the image of the diamond tip before and after nanometric cutting machining (20 

times scratching). The obvious wear land and a concavity can be observed as shown in Fig. 6 (b). 

The result is consistent with that of the MD simulation. It also indicates that the thermo-chemical 

wear is the basic wear mechanism of the diamond tool. 

 
(a) Before machining  (b) After machining 

Fig. 6. The wear of AFM Diamond tip in nanometric cutting. 

Concavity 

Wear flat 

 

5. Conclusions  

    In this paper the wear mechanism of diamond tool in nanometric cutting processes is investigated 

with the aid of MD simulations and the cutting trials on an AFM. The wear of the diamond tool 

depends on the cutting temperature, because the cutting heat will decrease the cohesion energy of 

carbon and weaken the bonding of C-C and thus results in tool wear. The tool wear is characterized 

by micro-delamination. Thermo-chemical wear is the basic mechanism of the tool wear. The 

tendency for the diamond tool to micro-delaminate can be characterized by its microstrength. The 
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(100) plane has the biggest microstrength and the lowest wear rate. The (100) plane is recommended 

as being the rake face and flank face of the diamond cutting tool. 
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Nomenclature 

BBi  The bulk modulus, 1/m3 

Cp(g)  The heat capacity at constant pressure of the gaseity, Wm-1K-1

Cp(s)  The heat capacity at constant pressure of the solid state, Wm-1K-1

Ei  The potential of i-th atom, J 

Es  The energy per atom of the reference structure, J 
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Esub  The sublimation energy, J 

Ewti  The potential of the i-th workpiece atom under the action of diamond tip atoms, J 

Ewwi  The potential of the i-th workpiece atom under the action of other workpiece atoms, J 

F  A functional of electron density 

Fn  The mean normal cutting force, N 

Fti  The force acting on the i-th diamond tip atom, N 

Fwi  The force acting on the i-th workpiece atom, N 

Ftwi  The force acting on i-th diamond tip atom from workpiece atoms, N 

Ftti  The force acting on the i-th diamond tip atoms from other cutting tool atoms, N 

Fwi  The force acting on the i-th workpiece atom, N 

l  The cutting distance, m 

Nt  The number of diamond tip atoms  

Nw  The number of workpiece atoms 

0
iR   The equilibrium nearest-neighbor distance, m 

rij  The distance between atom i and atom j, m 

rti  The displacement vector of i-th diamond tip atoms, m 

rttij  The distance between the i-th diamond tip atom and other diamond tip atoms 

rtwij  The distance between the i-th diamond tip atom and workpiece atoms 

rwti  The distance between the i-th workpiece atom and diamond tip atoms, m 

rwwij  The distance between the i-th workpiece atom and other workpiece atoms, m 

rwi  The displacement vector of i-th workpiece atoms, m 

Ωi  The atomic volume of the solid elements, m3 

)( 1THg
sΔ  The enthalpy of sublimation at temperature T1 at standard atmospheric pressure, J 

)( 2THg
sΔ  The enthalpy of sublimation at temperature T2 at standard atmospheric pressure, J 

ΔV  The wear volume, m3
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