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The Timed Concurrent Constraint Language tccp is a declarative synchronous concurrent language,
particularly suitable for modelling reactive systems. In tccp, agents communicate and synchronise
through a global constraint store. It supports a notion of discrete time that allows all non-blocked
agents to proceed with their execution simultaneously.

In this paper, we present a modular architecture for the simulation of tccp programs. The tool
comprises three main components. First, a set of basic abstract instructions able to model the tccp
agent behaviour, the memory model needed to manage the active agents and the state of the store
during the execution. Second, the agent interpreter that executes the instructions of the current agent
iteratively and calculates the new agents to be executed at the next time instant. Finally, the constraint
solver components which are the modules that deal with constraints. In this paper, we describe the
implementation of these components and present an example of a real system modelled in tccp.

The full version of this paper [4] has been published in the proceedings of the 24th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2016).
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1 Introduction

It is well known that many critical applications in different domains, such as health [13], railways [10]
or automotive [8] have a reactive and concurrent behaviour that is difficult to model and analyse. Un-
fortunately, certain errors in these applications may have highly negative consequences and, therefore,
it is essential to detect failures in software in the early design phases. This is why most modelling lan-
guages for these complex systems are supported by simulation and verification tools that guarantee the
software’s safety and reliability with respect to the critical properties.

Several formalisms have been developed to solve the problem of describing and analysing concur-
rent systems. In this paper, we focus on the Concurrent Constraint Paradigm (ccp) [11] characterised
by the use of store-as-constraint instead of the classical store-as-value paradigm. Specifically, tccp [3]
is a language suitable for describing reactive systems within this paradigm. As opposed to the inter-
leaving composition of processes supported by most concurrent modelling languages, tccp makes use of
the synchronous composition of processes. Synchronous languages have proved to be very useful for
modelling hardware and software systems. Some successful examples are Lustre [7] or SIGNAL [5]. The
synchronous management of processes clearly simplifies the scheduling tasks, although it complicates
the memory use. The declarative and synchronous character of tccp makes it particularly suitable not
only for describing but also for analysing complex concurrent systems.

There are a few tools for tccp proposed in the literature [9, 12]. In this paper, we present a modular
framework for tccp with the aim of overcoming the lack of simulation and analysis tools. Classically, the
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2 A Simulation Tool for tccp

implementation of logic languages has been based on the definition of the so-called abstract machines
which provide an abstraction layer on the ultimate device that will execute the programs. Warren Abstract
Machine (WAM) [2] is the first and most well-known abstract machine for logic languages. In the context
of concurrent logic languages, there exist other proposals such as the abstract machine based on the
construction of an AND/OR tree for the implementation of Parlog [6], or the Parallel Inference Machine
(PMI) for language KL1 [14].

We have built a simulation tool for tccp programs following the abstract machine philosophy but
with some differences derived from the special features of the language1. The construction of a tool
for executing tccp implies dealing with its declarative, constraint-based and synchronous character. For
instance, the logic and concurrent nature of tccp involves the creation of a large number of fine-grain
agents with a well-delimited variable scope. In addition, the use of constraints as data makes the integra-
tion of constraint solvers in the tool necessary. Furthermore, to correctly deal with the synchronisation,
all agents executing in parallel must have a consistent view of the global memory (called store in tccp).

The implemented tool comprises different components to successfully solve the aforementioned
problems. The core of the tool is formed by a set of abstract instructions and a memory model that
is able to represent the state of the tccp program (that is, the current agent and the state of the global
store) during the execution. In addition, the tool includes an interpreter that executes the current active
agent iteratively. Finally, there is a module with the constraint solvers used to manage the basic opera-
tions on the global store correctly. In this paper, we describe all these components, their implementation
and evaluation with a typical tccp example.

2 Conclusions and Future Work

We have presented an abstract machine for tccp, which defines the behaviour of tccp agents over a
memory architecture called store. The abstract machine is composed of different modules which have
been design to be as independent as possible. Most of the architecture components are unaware of the
actual implementation of the memory or the particular implementation of the agent behaviour. We think
that this approach facilitates and simplifies the development of tools for tccp. In addition, we have
implemented a tool for the simulation of tccp following this abstract machine architecture. The tool
has been implemented in Java, and uses other external libraries and frameworks to implement different
elements. For example, we use ANTLR to generate the parsers, and PPL to implement the constraint
solver for linear constraints.

We have evaluated the simulator with the photocopier example, running different number of abstract
machine steps. We have presented the state of the abstract machine store after executing the example,
and shown some performance measures obtained with profiling tools. We believe that the performance
is acceptable, although we should improve the memory model to achieve more efficient implementations
for constructing, for instance, a tccp model checker.

Although, the current tool at http://morse.uma.es/tools/tccp may be only used to simulate
some available tccp codes, we plan to extend its capability by allowing users to simulate their own
programs. In fact, the tool only lacks a frontend that manages syntax errors. In addition, due to the
different implementation approaches followed by tool [9] and ours, it is difficult to compare performance
of both tools but we plan to do it in the near future.

As future work, we wish to extend the abstract machine to Hy-tccp [1]. Hy-tccp is an extension of
tccp for hybrid systems, which adds a notion of continuous time and new agents to describe the contin-

1The prototype tool can be found at http://morse.uma.es/tools/tccp.
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uous dynamics of hybrid systems. Hy-tccp is independent from the kind of constraints over continuous
variables. To implement a Hy-tccp simulator, we will assume that the hybrid systems are rectangular.
Because of the independence amongst the different entities which compose implementation, the exten-
sion of the current abstract machine will involve adding the new agents of the Hy-tccp language and
probably new abstract machine instructions. In addition, the parser should be extended to recognise the
new agents. Finally, we will reuse PPL as the constraint solver for constraints over continuous variables.
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