17 research outputs found

    Interference analysis of broadband space and terrestrial fixed radio communications systems in the frequency range 12 to 30 GHz

    Get PDF
    This thesis presents research into the principles of spectrum sharing analysis methods developed for investigating implications of interference from Nongeostationary Fixed Satellite Service (NGSO FSS) systems into Geostationary Fixed Satellite Service (GSO FSS) systems and Fixed Service (FS) terrestrial radio systems operating or planned for operation in the 12 to 30 GHz frequency range. Spectrum sharing is an effective way of allowing new services to operate without cancelling the existing allocations in the same part of the spectrum. The use of spectrum sharing results in re-use of the available spectrum among different services and, therefore, increases the efficient use of the radio frequencies. However, it is necessary to carry out extensive feasibility studies into technical or operational compatibility between the services involved. Often, sharing constraints are placed on systems, such as the power of emissions and the transmitter and receiver antenna pointings to reduce the interference into negligible levels. Traditionally, radio spectrum allocated to GSO FSS has been shared with FS. In recent years, there has been a growing interest in the use of low Earth orbits and a number of NGSO FSS constellations has been designed to provide broadband data services. This has led to the allocation of certain bands used by the FS and GSO FSS systems to NGSO FSS. In line with the new allocations, NGSO FSS, GSO FSS and FS systems are required to co-exist in parts of the 12 to 30 GHz frequency range. The primary objectives of this research were to identify principal factors affecting the feasibility of spectrum sharing and to develop spectrum sharing analysis methodologies to examine the implications of these factors with a view to identifying sharing constraints that would give rise to an acceptable sharing environment

    Use of V-band geostationary satellites to deliver multimedia services

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Space-based Communications Infrastructure for Developing Countries

    Get PDF
    This study examines the potential use of satellites to augment the telecommunications infrastructure of developing countries with advanced satellites. The study investigated the potential market for using satellites in developing countries, the role of satellites in national information infractructures (NII), the technical feasibility of augmenting NIIs with satellites, and a nation's financial conditions necessary for procuring satellite systems. In addition, the study examined several technical areas including onboard processing, intersatellite links, frequency of operation, multibeam and active antennas, and advanced satellite technologies. The marketing portion of this study focused on three case studies: China, Brazil, and Mexico. These cases represent countries in various stages of telecommunication infrastructure development. The study concludes by defining the needs of developing countries for satellites, and recommends steps that both industry and NASA can take to improve the competitiveness of U.S. satellite manufacturing

    Study of Rain Attenuation Calculation and Strategic Power Control for Ka-Band Satellite Communication in India

    Get PDF
    The tremendous worldwide growth in the use of Internet and multimedia services prompted the ambitious planning for evolution of commercial and broadband satellite communication systems. The traditional C and Ku bands in satellite communications are getting crowded, So the systems are moving towards higher frequency ranges above 20 GHz. The Ka-band (18-40 GHz) frequency spectrum has gained attention for satellite communication. The inherent drawback of Ka-band satellite system is that increase in signal distortion resulting from propagation effects. Atmospheric attenuation in Ka-band is always severe, especially in the presence of rain. Thus, New technologies are required for Ka-band systems, such as multiple hopping antenna beams and regenerative transponders to support aggregate data rates in the range of 1 - 20 Gbps per satellite, which can provide DTH, HDTV, mobile and fixed Internet users with broadband connection. Currently in India C and Ku-band frequencies are being used for commercial satellite communications. In future Ka-band will be used for wideband applications. Keeping in view of the socio-economic and geographical diversities of India. Propagation studies are essential for estimation of attenuation, so that Ka-band satellite links operating in different parts of Indian region can be registered appropriately. Ka-band system is recognized as a new generation in communication satellites that encompasses a number of innovative technologies such as on board processing (OBP) for multimedia applications and switching to provide two way services to and from small ground terminals. To do this efficiently multiple pencil like spot beams are used. One distinct feature of this propagation being used to address this problem is Satellite Spot-Beam. To design effective satellite communication system, the arrangement of spot beam locations in Indian subcontinent, the study and analysis of link availability for Kaband satellite communication in various geographically separated spot beams in India using statistical data is necessary. Based on global rain models integrated with the link budget, the study allows us to examine major system design issues encountered in Ka-band satellite communication that are susceptible to propagation impairments. This system can be flexible enough to increase power on specific transmissions to compensate for local weather conditions. This can make better use of the available bandwidth than C or Ku-band satellite, and more users can get higher level of services

    Proceedings of the 19th NASA Propagation Experimenters Meeting (NAPEX 19) and the 7th Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW 7)

    Get PDF
    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX 19 was held on 14 Jun. 1995, in Fort Collins, Colorado. Participants included representatives from Canada, Japan, and the United States, including researchers from universities, government agencies, and private industry. The meeting focused on mobile personal satellite systems and the use of 20/30-GHz band for fixed and mobile satellite applications. In total, 18 technical papers were presented. Following NAPEX 19, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop 7 (APSW 7) was held on 15-16 Jun. 1995, to review ACTS propagation activities with emphasis on the experimenters' status reports and dissemination of propagation data to industry

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking
    corecore