1,282 research outputs found

    Flexible couplings: diffusing neuromodulators and adaptive robotics

    Get PDF
    Recent years have seen the discovery of freely diffusing gaseous neurotransmitters, such as nitric oxide (NO), in biological nervous systems. A type of artificial neural network (ANN) inspired by such gaseous signaling, the GasNet, has previously been shown to be more evolvable than traditional ANNs when used as an artificial nervous system in an evolutionary robotics setting, where evolvability means consistent speed to very good solutionsÂżhere, appropriate sensorimotor behavior-generating systems. We present two new versions of the GasNet, which take further inspiration from the properties of neuronal gaseous signaling. The plexus model is inspired by the extraordinary NO-producing cortical plexus structure of neural fibers and the properties of the diffusing NO signal it generates. The receptor model is inspired by the mediating action of neurotransmitter receptors. Both models are shown to significantly further improve evolvability. We describe a series of analyses suggesting that the reasons for the increase in evolvability are related to the flexible loose coupling of distinct signaling mechanisms, one ÂżchemicalÂż and one Âżelectrical.

    Neural probabilistic path prediction : skipping paths for acceleration

    Full text link
    La technique de tracĂ© de chemins est la mĂ©thode Monte Carlo la plus populaire en infographie pour rĂ©soudre le problĂšme de l'illumination globale. Une image produite par tracĂ© de chemins est beaucoup plus photorĂ©aliste que les mĂ©thodes standard tel que le rendu par rasterisation et mĂȘme le lancer de rayons. Mais le tracĂ© de chemins est coĂ»teux et converge lentement, produisant une image bruitĂ©e lorsqu'elle n'est pas convergĂ©e. De nombreuses mĂ©thodes visant Ă  accĂ©lĂ©rer le tracĂ© de chemins ont Ă©tĂ© dĂ©veloppĂ©es, mais chacune prĂ©sente ses propres dĂ©fauts et contraintes. Dans les derniĂšres avancĂ©es en apprentissage profond, en particulier dans le domaine des modĂšles gĂ©nĂ©ratifs conditionnels, il a Ă©tĂ© dĂ©montrĂ© que ces modĂšles sont capables de bien apprendre, modĂ©liser et tirer des Ă©chantillons Ă  partir de distributions complexes. Comme le tracĂ© de chemins dĂ©pend Ă©galement d'un tel processus sur une distribution complexe, nous examinons les similaritĂ©s entre ces deux problĂšmes et modĂ©lisons le processus de tracĂ© de chemins comme un processus gĂ©nĂ©ratif. Ce processus peut ensuite ĂȘtre utilisĂ© pour construire un estimateur efficace avec un rĂ©seau neuronal afin d'accĂ©lĂ©rer le temps de rendu sans trop d'hypothĂšses sur la scĂšne. Nous montrons que notre estimateur neuronal (NPPP), utilisĂ© avec le tracĂ© de chemins, peut amĂ©liorer les temps de rendu d'une maniĂšre considĂ©rable sans beaucoup compromettre sur la qualitĂ© du rendu. Nous montrons Ă©galement que l'estimateur est trĂšs flexible et permet Ă  un utilisateur de contrĂŽler et de prioriser la qualitĂ© ou le temps de rendu, sans autre modification ou entraĂźnement du rĂ©seau neuronal.Path tracing is one of the most popular Monte Carlo methods used in computer graphics to solve the problem of global illumination. A path traced image is much more photorealistic compared to standard rendering methods such as rasterization and even ray tracing. Unfortunately, path tracing is expensive to compute and slow to converge, resulting in noisy images when unconverged. Many methods aimed to accelerate path tracing have been developed, but each has its own downsides and limitiations. Recent advances in deep learning, especially with conditional generative models, have shown to be very capable at learning, modeling, and sampling from complex distributions. As path tracing is also dependent on sampling from complex distributions, we investigate the similarities between the two problems and model the path tracing process itself as a conditional generative process. It can then be used to build an efficient neural estimator that allows us to accelerate rendering time with as few assumptions as possible. We show that our neural estimator (NPPP) used along with path tracing can improve rendering time by a considerable amount without compromising much in rendering quality. The estimator is also shown to be very flexible and allows a user to control and prioritize quality or rendering time, without any further training or modifications to the neural network

    Four-Dimensional Neuronal Signaling by Nitric Oxide: A Computational Analysis

    Get PDF
    Nitric oxide (NO) is now recognized as a transmitter of neurons that express the neuronal isoform of the enzyme nitric oxide synthase. NO, however, violates some of the key tenets of chemical transmission, which is classically regarded as occurring at points of close apposition between neurons. It is the ability of NO to diffuse isotropically in aqueous and lipid environments that has suggested a radically different form of signaling in which the transmitter acts four-dimensionally in space and time, affecting volumes of the brain containing many neurons and synapses. Although Âżvolume signalingÂż clearly challenges simple connectionist models of neural processing, crucial to its understanding are the spatial and temporal dynamics of the spread of NO within the brain. Existing models of NO diffusion, however, have serious shortcomings because they represent solutions for Âżpoint-sources,Âż which have no physical dimensions. Methods for overcoming these difficulties are presented here, and results are described that show how NO spreads from realistic neural architectures with both simple symmetrical and irregular shapes. By highlighting the important influence of the geometry of NO sources, our results provide insights into the four-dimensional spread of a diffusing messenger. We show for example that reservoirs of NO that accumulate in volumes of the nervous system where NO is not synthesized contribute significantly to the temporal and spatial dynamics of NO spread

    Survey of scientific programming techniques for the management of data-intensive engineering environments

    Get PDF
    The present paper introduces and reviews existing technology and research works in the field of scientific programming methods and techniques in data-intensive engineering environments. More specifically, this survey aims to collect those relevant approaches that have faced the challenge of delivering more advanced and intelligent methods taking advantage of the existing large datasets. Although existing tools and techniques have demonstrated their ability to manage complex engineering processes for the development and operation of safety-critical systems, there is an emerging need to know how existing computational science methods will behave to manage large amounts of data. That is why, authors review both existing open issues in the context of engineering with special focus on scientific programming techniques and hybrid approaches. 1193 journal papers have been found as the representative in these areas screening 935 to finally make a full review of 122. Afterwards, a comprehensive mapping between techniques and engineering and nonengineering domains has been conducted to classify and perform a meta-analysis of the current state of the art. As the main result of this work, a set of 10 challenges for future data-intensive engineering environments have been outlined.The current work has been partially supported by the Research Agreement between the RTVE (the Spanish Radio and Television Corporation) and the UC3M to boost research in the field of Big Data, Linked Data, Complex Network Analysis, and Natural Language. It has also received the support of the Tecnologico Nacional de Mexico (TECNM), National Council of Science and Technology (CONACYT), and the Public Education Secretary (SEP) through PRODEP

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem SchlĂŒsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, ĂŒbertreffen Gehirne von SĂ€ugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfĂ€higsten Maschinen. Industrieroboter sind sehr schnell und prĂ€zise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie fĂŒr die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfĂ€hig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits ĂŒberlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen ReprĂ€sentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras ĂŒbertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch fĂŒr eine vergleichende Studie zu sample-basierten Planern verwendet. ErgĂ€nzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewĂ€hlt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung fĂŒr dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage fĂŒr neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg fĂŒr die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK

    Capsule networks: a new approach for brain imaging

    Get PDF
    Nel campo delle reti neurali per il riconoscimento immagini, una delle piĂč recenti e promettenti innovazioni Ăš l’utilizzo delle Capsule Networks (CapsNet). Lo scopo di questo lavoro di tesi Ăš studiare l'approccio CapsNet per l'analisi di immagini, in particolare per quelle neuroanatomiche. Le odierne tecniche di microscopia ottica, infatti, hanno posto sfide significative in termini di analisi dati, per l'elevata quantitĂ  di immagini disponibili e per la loro risoluzione sempre piĂč fine. Con l'obiettivo di ottenere informazioni strutturali sulla corteccia cerebrale, nuove proposte di segmentazione possono rivelarsi molto utili. Fino a questo momento, gli approcci piĂč utilizzati in questo campo sono basati sulla Convolutional Neural Network (CNN), architettura che raggiunge le performance migliori rappresentando lo stato dell'arte dei risultati di Deep Learning. Ci proponiamo, con questo studio, di aprire la strada ad un nuovo approccio che possa superare i limiti delle CNNs come, ad esempio, il numero di parametri utilizzati e l'accuratezza del risultato. L’applicazione in neuroscienze delle CapsNets, basate sull’idea di emulare il funzionamento della visione e dell’elaborazione immagini nel cervello umano, concretizza un paradigma di ricerca stimolante volto a superare i limiti della conoscenza della natura e i limiti della natura stessa
    • 

    corecore