39 research outputs found

    Simulation of stochastic reaction-diffusion processes on unstructured meshes

    Full text link
    Stochastic chemical systems with diffusion are modeled with a reaction-diffusion master equation. On a macroscopic level, the governing equation is a reaction-diffusion equation for the averages of the chemical species. On a mesoscopic level, the master equation for a well stirred chemical system is combined with Brownian motion in space to obtain the reaction-diffusion master equation. The space is covered by an unstructured mesh and the diffusion coefficients on the mesoscale are obtained from a finite element discretization of the Laplace operator on the macroscale. The resulting method is a flexible hybrid algorithm in that the diffusion can be handled either on the meso- or on the macroscale level. The accuracy and the efficiency of the method are illustrated in three numerical examples inspired by molecular biology

    The Two Regime method for optimizing stochastic reaction-diffusion simulations

    Get PDF
    The computer simulation of stochastic reaction-diffusion processes in biology is often done using either compartment-based (spatially discretized) simulations or molecular-based (Brownian dynamics) approaches. Compartment-based approaches can yield quick and accurate mesoscopic results but lack the level of detail that is characteristic of the more computationally intensive molecular-based models. Often microscopic detail is only required in a small region but currently the best way to achieve this detail is to use a resource intensive model over the whole domain. We introduce the Two Regime Method (TRM) in which a molecular-based algorithm is used in part of the computational domain and a compartment-based approach is used elsewhere in the computational domain. We apply the TRM to two test problems including a model from developmental biology. We thereby show that the TRM is accurate and subsequently may be used to inspect both mesoscopic and microscopic detail of reaction diffusion simulations according to the demands of the modeller

    Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions

    Full text link
    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ\lambda--\newrho model for irreversible bimolecular reactions which was introduced in [arXiv:0903.1298]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated.Comment: 16 pages, 13 figures, submitted to SIAM Appl Mat

    Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations

    Full text link
    In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is the ghost cell method (GCM). Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt\Delta t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter hh, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: (i) \Delta t approaches 0 and h is fixed; and (ii) \Delta t approaches 0 and h approaches 0 such that \Delta t/h^2 is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model

    Analysis of Brownian dynamics simulations of reversible biomolecular reactions

    Get PDF
    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ-rho model for irreversible bimolecular reactions which was introduced in [11]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated

    Multiscale stochastic reaction-diffusion modelling: application to actin dynamics in filopodia

    Get PDF
    Two multiscale (hybrid) stochastic reaction-diffusion models of actin dynamics in a filopodium are investigated. Both hybrid algorithms combine compartment-based and molecular-based stochastic reaction-diffusion models. The first hybrid model is based on the models previously\ud developed in the literature. The second hybrid model is based on the application of recently developed two-regime method (TRM) to a fully molecular-based model which is also developed in this paper. The results of hybrid models are compared with the results of the molecular-based model. It is shown that both approaches give comparable results, although the TRM model better agrees quantitatively with the molecular-based model

    Reaction rates for a generalized reaction-diffusion master equation

    Full text link
    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm, which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules
    corecore