28,982 research outputs found

    Evaluating the Impact of Transmission Power on Selecting Tall Vehicles as Best Next Communication Hop

    Get PDF
    The relatively low height of antennas on communicating vehicles in Vehicular Ad Hoc Networks (VANETs) makes one hop and as well multi-hop Vehicle-to-Vehicle (V2V) communication susceptible to obstruction by other vehicles on the road. When the transmitter or receiver (or both) is a Tall vehi- cle, (i.e., truck), the V2V communication suffer less from these obstructions. The transmission power control is an important feature in the design of (multi- hop) VANET communication algorithms. However, the benefits of choosing a Tall vehicle when transmission power is varied are not yet extensively re- searched. Therefore, the main contribution of this paper is to evaluate the im- pact of transmission power control on the improved V2V communication capa- bilities of tall vehicles. Based on simulations, it is shown that significant bene- fits are observed when a Tall vehicle is selected rather than a Short vehicle as a next V2V communication hop to relay packets. Moreover, the simulation exper- iments show that as the transmission power is increasing, the rate of Tall vehi- cles that are selected as best next V2V communication hop is significantly growing

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    Vehicle to vehicle (V2V) wireless communications

    Get PDF
    This work focuses on the vehicle-to-vehicle (V2V) communication, its current challenges, future perspective and possible improvement.V2V communication is characterized by the dynamic environment, high mobility, nonpredective scenario, propagation effects, and also communicating antenna's positions. This peculiarity of V2V wireless communication makes channel modelling and the vehicular propagation quite challenging. In this work, firstly we studied the present context of V2V communication also known as Vehicular Ad-hoc Netwok (VANET) including ongoing researches and studies particularly related to Dedicated Short Range Communication (DSRC), specifically designed for automotive uses with corresponding set of protocols and standards. Secondly, we focused on communication models and improvement of these models to make them more suitable, reliable and efficient for the V2V environment. As specifies the standard, OFDM is used in V2V communication, Adaptable OFDM transceiver was designed. Some parameters as performance analytics are used to compare the improvement with the actual situation. For the enhancement of physical layer of V2V communication, this work is focused in the study of MIMO channel instead of SISO. In the designed transceiver both SISO and MIMO were implemented and studied successfully

    A predefined channel coefficients library for vehicle-to-vehicle communications

    Get PDF
    It is noticeable that most of VANETs communications tests are assessed through simulation. In a majority of simulation results, the physical layer is often affected by an apparent lack of realism. Therefore, vehicular channel model has become a critical issue in the field of intelligent transport systems (ITS). To overcome the lack of realism problem, a more robust channel model is needed to reflect the reality. This paper provides an open access, predefined channel coefficients library. The library is based on 2x2 and 4x4 Multiple – Input – Multiple – Output (MIMO) systems in V2V communications, using a spatial channel model extended SCME which will help to reduce the overall simulation time. In addition, it provides a more realistic channel model for V2V communications; considering: over ranges of speeds, distances, multipath signals, sub-path signals, different angle of arrivals, different angle departures, no line of sight and line of sight. An intensive evaluation process has taken place to validate the library and acceptance results are produced. Having an open access predefined library, enables the researcher at relevant communities to test and evaluate several complicated vehicular communications scenarios in a wider manners with less time and efforts

    Models and Performance of VANET based Emergency Braking

    Get PDF
    The network research community is working in the field of automotive to provide VANET based safety applications to reduce the number of accidents, deaths, injuries and loss of money. Several approaches are proposed and investigated in VANET literature, but in a completely network-oriented fashion. Most of them do not take into account application requirements and no one considers the dynamics of the vehicles. Moreover, message repropagation schemes are widely proposed without investigating their benefits and using very complicated approaches. This technical report, which is derived from the Master Thesis of Michele Segata, focuses on the Emergency Electronic Brake Lights (EEBL) safety application, meant to send warning messages in the case of an emergency brake, in particular performing a joint analysis of network requirements and provided application level benefits. The EEBL application is integrated within a Collaborative Adaptive Cruise Control (CACC) which uses network-provided information to automatically brake the car if the driver does not react to the warning. Moreover, an information aggregation scheme is proposed to analyze the benefits of repropagation together with the consequent increase of network load. This protocol is compared to a protocol without repropagation and to a rebroadcast protocol found in the literature (namely the weighted p-persistent rebroadcast). The scenario is a highway stretch in which a platoon of vehicles brake down to a complete stop. Simulations are performed using the NS_3 network simulation in which two mobility models have been embedded. The first one, which is called Intelligent Driver Model (IDM) emulates the behavior of a driver trying to reach a desired speed and braking when approaching vehicles in front. The second one (Minimizing Overall Braking Induced by Lane change (MOBIL)), instead, decides when a vehicle has to change lane in order to perform an overtake or optimize its path. The original simulator has been modified by - introducing real physical limits to naturally reproduce real crashes; - implementing a CACC; - implementing the driver reaction when a warning is received; - implementing different network protocols. The tests are performed in different situations, such as different number of lanes (one to five), different average speeds, different network protocols and different market penetration rates and they show that: - the adoption of this technology considerably decreases car accidents since the overall average maximum deceleration is reduced; - network load depends on application-level details, such as the implementation of the CACC; - VANET safety application can improve safety even with a partial market penetration rate; - message repropagation is important to reduce the risk of accidents when not all vehicles are equipped; - benefits are gained not only by equipped vehicles but also by unequipped ones
    • …
    corecore