4 research outputs found

    ECG electrode placements for magnetohydrodynamic voltage suppression

    Get PDF
    This study aims to investigate a set of electrocardiogram (ECG) electrode lead locations to improve the quality of four-lead ECG signals acquired during magnetic resonance imaging (MRI). This was achieved by identifying electrode placements that minimized the amount of induced magnetohydrodynamic voltages (VMHD) in the ECG signals. Reducing VMHD can improve the accuracy of QRS complex detection in ECG as well as heartbeat synchronization between MRI and ECG during the acquisition of cardiac cine. A vector model based on thoracic geometry was developed to predict induced VMHD and to optimize four-lead ECG electrode placement for the purposes of improved MRI gating. Four human subjects were recruited for vector model establishment (Group 1), and five human subjects were recruited for validation of VMHD reduction in the proposed four-lead ECG (Group 2). The vector model was established using 12-lead ECG data recorded from Group 1 of four healthy subjects at 3 Tesla, and a gradient descent optimization routine was utilized to predict optimal four-lead ECG placement based on VMHD vector alignment. The optimized four-lead ECG was then validated in Group 2 of five healthy subjects by comparing the standard and proposed lead placements. A 43.41% reduction in VMHD was observed in ECGs using the proposed electrode placement, and the QRS complex was preserved. A VMHD-minimized electrode placement for four-lead ECG gating was presented and shown to reduce induced magnetohydrodynamic (MHD) signals, potentially allowing for improved cardiac MRI physiological monitoring

    Simulation of elevated T-waves of an ECG inside a static magnetic field (MRI)

    No full text
    In MRI, the flow of blood in the patient is subjected to a strong static magnetic field (B(0)). The movement of charge carriers in a magnetic field causes a magnetofluid dynamic (MFD) effect that induces a voltage across the artery. This induced voltage distorts the ECG signal of the patient and appears as an elevation of the T-wave of the ECG signal. Flow of blood through the aortic arch is perpendicular to the magnetic-field and coincides with the occurrence of the T-wave of the ECG. Based on these facts, it is proposed that the elevation in the T-wave occurs because of the voltage induced across the aortic arch. In this paper, the elevation is computed mathematically using the equations of MFD. A method is developed to measure this induced voltage based on discretization of the aortic arch and measuring the blood flow profile in the aorta. The results are compared to the ECG signals measured in humans in the bore of 1.5 T imaging magnet. The computed ECG signals at the 12 leads are very similar to the measured values

    Simulation Of Elevated T-Waves Of An Ecg Inside A Static Magnetic Field (Mri)

    No full text
    In MRI, the flow of blood in the patient is subjected to a strong static magnetic field (B0). The movement of charge carriers in a magnetic field causes a magnetofluid dynamic (MFD) effect that induces a voltage across the artery. This induced voltage distorts the ECG signal of the patient and appears as an elevation of the T-wave of the ECG signal. Flow of blood through the aortic arch is perpendicular to the magnetic field and coincides with the occurrence of the T-wave of the ECG. Based on these facts, it is proposed that the elevation in the T-wave occurs because of the voltage induced across the aortic arch. In this paper, the elevation is computed mathematically using the equations of MFD. A method is developed to measure this induced voltage based on discretization of the aortic arch and measuring the blood flow profile in the aorta. The results are compared to the ECG signals measured in humans in the bore of 1.5 T imaging magnet. The computed ECG signals at the 12 leads are very similar to the measured values. © 2008 IEEE
    corecore