9,365 research outputs found

    Towards A Theory-Of-Mind-Inspired Generic Decision-Making Framework

    Full text link
    Simulation is widely used to make model-based predictions, but few approaches have attempted this technique in dynamic physical environments of medium to high complexity or in general contexts. After an introduction to the cognitive science concepts from which this work is inspired and the current development in the use of simulation as a decision-making technique, we propose a generic framework based on theory of mind, which allows an agent to reason and perform actions using multiple simulations of automatically created or externally inputted models of the perceived environment. A description of a partial implementation is given, which aims to solve a popular game within the IJCAI2013 AIBirds contest. Results of our approach are presented, in comparison with the competition benchmark. Finally, future developments regarding the framework are discussed.Comment: 7 pages, 5 figures, IJCAI 2013 Symposium on AI in Angry Bird

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    The Contribution of Society to the Construction of Individual Intelligence

    Get PDF
    It is argued that society is a crucial factor in the construction of individual intelligence. In other words that it is important that intelligence is socially situated in an analogous way to the physical situation of robots. Evidence that this may be the case is taken from developmental linguistics, the social intelligence hypothesis, the complexity of society, the need for self-reflection and autism. The consequences for the development of artificial social agents is briefly considered. Finally some challenges for research into socially situated intelligence are highlighted

    Modeling and Simulation of Robots Playing Football using MA TLAB/SIMULINK

    Get PDF
    Cooperating autonomous robots are characterized as intelligent systems that combine perception, reasoning, and action to perform cooperative tasks under circumstances that are insufficiently known in advance, and changing during task execution. There are various reasons to why we should build cooperative robots. They include increasing reliability and robustness through redundancy, decreasing task completion time through parallelism and decreasing cost through simpler individual robot design. Cooperative robots can be applied in various fields such as mining, construction, planetary exploration, automated manufacturing, search and rescue missions, cleanup of hazardous waste, industrial/household maintenance, nuclear power plant decommissioning, security, and surveillance. However, in this project cooperating autonomous robots are applied in terms of robots playing football. A fully autonomous robot has the ability to gain information about the environment, work for an extended period without human intervention, move either all or parts of itself throughout its operating environment without human assistance and to avoid situations that are harmful to people, property or itself. An autonomous robot may also learn or gain new capabilities like adjusting strategies for accomplishing its task(s) or adapting to changing surrounding. Therefore this project will inculcate the criteria of autonomous robots in term of robots playing football. This study will incorporate programming using MATLAB/SIMULINK, producing mathematical models and applying control analysis methods
    • 

    corecore