2,793 research outputs found

    Modeling and optimal design of shorting vias to suppress radiated emission in high-speed alternating PCB planes

    Get PDF
    An analytical mode analysis of vias in the multilayered printed-circuit-board periphery is developed to suppress the electromagnetic radiation induced by ground bounce. After separating the even and odd modes in alternating planes, the far-field radiation of parallel plates is derived using Huygens' principle. It is mainly contributed by the odd mode excitation, while the even mode sets a lower bound on the radiation level from the system when shorting vias are inserted between alternating ground plates. For the odd-mode radiation, a canonical problem is then constructed and analytically solved by applying image theory. Based on that, a systematic approach to achieve the optimum suppression design is developed for the various geometry parameters of the shorting vias, including the pitch, radius, and distance to the board edge. Full-wave simulation and measurement are also presented and the good agreement with the theoretical prediction validates the correctness and efficiency of the present analysis and design

    Highly efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate integrated waveguide technology

    Get PDF
    An impulse-radio ultra-wideband (IR-UWB) cavity-backed slot antenna covering the [5.9803; 6.9989] GHz frequency band of the IEEE 802.15.4a-2011 standard is designed and implemented in an air-filled substrate integrated waveguide (AFSIW) technology for localization applications with an accuracy of at least 3 cm. By relying on both frequency and time-domain optimization, the antenna achieves excellent IR-UWB characteristics. In free-space conditions, an impedance bandwidth of 1.92 GHz (or 29.4%), a total efficiency higher than 89%, a front-to-back ratio of at least 12.1 dB, and a gain higher than 6.3 dBi are measured in the frequency domain. Furthermore, a system fidelity factor larger than 98% and a relative group delay smaller than 100 ps are measured in the time domain within the 3 dB beamwidth of the antenna. As a result, the measured time-of-arrival of a transmitted Gaussian pulse, for different angles of arrival, exhibits variations smaller than 100 ps, corresponding to a maximum distance estimation error of 3 cm. Additionally, the antenna is validated in a real-life worst-case deployment scenario, showing that its characteristics remain stable in a large variety of deployment scenarios. Finally, the difference in frequency-and time-domain performance is studied between the antenna implemented in AFSIW and in dielectric filled substrate integrated waveguide (DFSIW) technology. We conclude that DFSIW technology is less suitable for the envisaged precision IR-UWB localization application

    A Life Prediction Model of Multilayered PTH Based on Fatigue Mechanism.

    Get PDF
    Plated through hole (PTH) plays a critical role in printed circuit board (PCB) reliability. Thermal fatigue deformation of the PTH material is regarded as the primary factor affecting the lifetime of electrical devices. Numerous research efforts have focused on the failure mechanism model of PTH. However, most of the existing models were based on the one-dimensional structure hypothesis without taking the multilayered structure and external pad into consideration. In this paper, the constitutive relation of multilayered PTH is developed to establish the stress equation, and finite element analysis (FEA) is performed to locate the maximum stress and simulate the influence of the material properties. Finally, thermal cycle tests are conducted to verify the accuracy of the life prediction results. This model could be used in fatigue failure portable diagnosis and for life prediction of multilayered PCB

    Signal Integrity Optimization of RF/Microwave Transmission Lines in Multilayer PCBs

    Get PDF
    While allowing for flexible trace routing and device miniaturization, multilayer printed circuit boards (PCB) suffer from performance issues at high frequency due to the impedance mismatch caused by vertical transitions. In this paper, a process for optimizing the high-speed performance of microstrip to stripline transitions in multilayer PCBs is demonstrated. This includes strategic tuning of via dimensions using time-domain reflectometry and an analysis of the use of shielding vias to prevent parasitic cavity resonance. Simulations of optimized 2-layer, 4-layer, and 6-layer microstrip to stripline transitions show a return loss of 20 dB up to 7 GHz. To demonstrate a useful microwave application, a planar filter with a passband of 4 GHz to 6 GHz is submerged 6-layers. The simulation shows that when paired with the optimized vertical transitions, the filter can maintain performance
    corecore