11,921 research outputs found

    Multi-phase and Multi-component CFD Analysis of a Load - Sensing Proportional Control Valve

    Get PDF
    The paper analyzes the flow through a directional control valve for load –sensing application by means of a multi-phase and multi-component CFD approach. Numerical modeling includes both cavitation and aeration; in particular, the Rayleigh-Plesset equation and the inertia controlled growth model for bubble formation are adopted. The effects of gas release and vapor formation as well as turbulence on the main valve metering characteristics are investigated. The results show a remarkable influence of the aeration phenomena on the recirculating zones downstream of the metering area and thus on the cavitation onset region

    Energy Savings in the Hydraulic Circuit of Agricultural Tractors

    Get PDF
    Increasing interest in reducing pollutant emissions and fuel consumption of off-road vehicles has led to research into alternative systems that aim to reduce the power dissipation of the hydraulic circuits equipping such vehicles. This work proposes alternative hydraulic architectures for agricultural tractors in comparison with traditional systems. The alternative circuit architecture uses independent metering valves and electronically controlled variable pump and involves different control strategies. The analysis is performed with reference to the hydraulic circuit and operating conditions of the remote utilities of a medium-sized tractor. A duty cycle for remote utilities is used for the analysis, obtained from experimental measurements on a tractor equipped with a front loader. Traditional and alternative architectures are modelled using a lumped parameter approach. In this way it is demonstrated that considerable energy savings can be achieved using the alternative architectures

    Pilot operated cartridge valve - Dynamic characteristics measurements for energy efficient operation and application

    Get PDF
    The two-stage on/off valve scheme is studied in this thesis which is able to rapidly actuate within the fraction of a second for directional flow control applications. And also, it was able to replicate characteristics of direct operated solenoid on/off valves in the same category, with the addition of higher flow rate capacity up to 200 l/min and above with pressure drop under 5 bar. The valves utilized for piloting of the hydraulic operated cartridge valve are the normally closed and normally open direct solenoid operated on/off valve. In the experiments, the internal piloting structure is adopted to avoid external pressure source and keeping valve operation dependencies minimum to the electric power. The switching time was found to be lowest at 100 bar, that is approximately 12 ms for opening and 30 ms for closing from the point of activation signal. It is also observed that the flow rate has negligible effect on the switching duration and changing the poppet area ratio to 50% of Ax from 96% can reduce down the closing time. Further, it was observed that the internal piloting has its drawbacks which creates a closed loop between main valve metering edge and pilot chamber. This resulted in oscillations in form of poppet movement near the dead end on either side of the stroke, and also if the system is not stiff or due to pressure waves traversing in the long hoses. Another positive outcome from the measurements showed that different switching methods such as, intermittent, continuous and pulse switching can be performed in a controlled manner, but the study was limited to the capability of the valve scheme. Moreover, the simulation model is also built in the Matlab/Simscape environment to refine the valve model based on the experiment results for further measurements that were limited by the physical system. Additional simulations are conducted to reduce the marginal difference between the opening and closing duration by restricting the stroke length to 5 mm, contrary to the original 8.5 mm, at 200 l/min and the switching duration was considerably reduced by half of the original duration. The experiments were conducted for flow in one direction only, whereas in simulation also the bi-direction flow capability is also carried out to displace an actuator with constant velocity, while lifting and lowering and holding of the load to certain position

    Improved modelling and driving of hydraulic asymmetric cylinders systems

    Get PDF
    Asymmetric and symmetric cylinder drives are the major actuators for hydraulic linear motion control applications. The asymmetric type is the most popular one and can be found in various areas, industrial, civil and even aerospace. Its compact design in structure and high power to weight ratio are highlighted, but nonlinear behaviours are found in these applications. An asymmetric cylinder is usually controlled by a symmetric ported control valve, which introduces difficulty in the motion control of the cylinder. To avoid such issue, symmetric cylinder drives are typically chosen for high-performance dynamic response applications. This thesis focusses at improving the modelling and driving of the asymmetric cylinder drive system.The major nonlinearities in asymmetric cylinder systems occur when the control valve crosses its null position, causing pressure jumps, and system parameters switching to new values. In this scenario, the system is usually operating at low speed, in which the friction influence is an important factor. In addition, energy efficiency is always a concern in hydraulic applications, a valve-controlled asymmetric cylinder drive can have better controllability than a pump-controlled system, but its energy efficiency is worse than the latter. The aims of this research are to:•Improve modelling of asymmetric cylinder drive systems.•Improve the driving of asymmetric cylinder systems at low speed and velocity reversal with friction consideration.•Combine the advantages of a valve-controlled and a pump-controlled asymmetric cylinder drive system for energy efficiency purpose.A detailed analysis of a valve-controlled asymmetric cylinder system is carried out, and the nonlinearities behaviours are investigated in structure and theory aspects. The simulation modelling in this thesis reveals the system performances when the control valve travels across its null position, and this process is simulated with a numerical solution. An analytical solution is developed, showing that the new analytical solution runs 200 times faster than the original numerical method in simulation. Friction is inevitable in any device and it plays an important role in hydraulic nonlinearities, especially when the system runs at low speed and velocity reversal. Existing friction models are investigated and reviewed, but limited friction models considered the pressure influence in hydraulics. A new friction model for hydraulic system is developed on current LuGre model. This new friction model includes pressure term, acceleration term and velocity term. The new friction model is validated by experimental results and improvements are demonstrated.Under the consideration of energy efficiency, functionality, cost and feasibilities, a hybrid pump-controlled asymmetric cylinder system that combines the merits of a valve-controlled system and a pump-controlled system is implemented. Its pros and cons are investigated and analysed. Its simulation model is built to aid further analysis of the existing nonlinearities.Comparing the simulation results of the hybrid pump-controlled asymmetric cylinder system with the valve-controlled asymmetric cylinder system, the energy efficiency of the hybrid pump-controlled system is 20% better and can be further optimised. The various experimental results validate the simulation model of the hybrid system. Therefore, the functionality and feasibility of the energy efficient design of the hybrid pump-controlled system are validated.The design circuit of the hybrid pump-controlled asymmetric cylinder system is not fully optimised, and improvements can be achieved in future works including replacing the pilot shifted four-way valve with a solenoid valve, adding accumulators to stabilise the pressure in the service line and adding a controller to optimise the system performance.</div

    The Hydraulic Power Generation and Transmission on Agricultural Tractors: Feasible architectures to reduce dissipation and fuel consumption-Part i

    Get PDF
    This paper is aimed at investigating the benefits in terms of energy efficiency of new electro-hydraulic architectures for power distribution systems of a medium-size agricultural tractor, with a focus on the hydraulic high-pressure circuit. The work is part of a wider industrial research project called TASC (Smart and Clean Agricultural Tractors [1]). Traditional and alternative architectures have been modelled and energetically compared through simulation, using a lumped parameter approach. Experimental data previously acquired have been used to validate the models and to replicate real working conditions of the machine in the simulation environment. A typical on-field manoeuvre has been used as duty cycle, to perform an effective energetic analysis. The standard hydraulic circuit is a multi-users load sensing system that uses a single variable displacement pump to feed steering, trailer brake and auxiliary utilities in that order. The key idea of the proposed solutions is the separation of steering from the other implements, to optimize the entire energy management. In particular, the paper investigates new and flexible solutions for the auxiliary utilities, including an electro-hydraulic load sensing architecture with variable pump margin, an electronic flow matching and flow sharing architecture, and an electronic strategy for automatic pressure compensation. The simulation results show that good energy saving can be achieved with the alternative architectures, so that physical prototyping of the most promising solutions will be realized as next step of the project

    Advanced Control Strategies for Mobile Hydraulic Applications

    Get PDF
    Mobile hydraulic machines are affected by numerous undesired dynamics, mainly discontinuous motion and vibrations. Over the years, many methods have been developed to limit the extent of those undesired dynamics and improve controllability and safety of operation of the machine. However, in most of the cases, today\u27s methods do not significantly differ from those developed in a time when electronic controllers were slower and less reliable than they are today. This dissertation addresses this aspect and presents a unique control method designed to be applicable to all mobile hydraulic machines controlled by proportional directional valves. In particular, the proposed control method is targeted to hydraulic machines such as those used in the field including construction (wheel loaders, excavators, and backhoes, etc.), load handling (cranes, reach-stackers, and aerial lift, etc.), agriculture (harvesters, etc.), forestry, and aerospace. For these applications the proposed control method is designed to achieve the following goals: A. Improvement of the machine dynamics by reducing mechanical vibrations of mechanical arms, load, as well as operator seat; B. Reduction of the energy dissipation introduced by current vibration damping methods; C. Reduction of system slowdowns introduced by current vibration damping methods. Goal A is generally intended for all machines; goal B refers to those applications in which the damping is introduced by means of energy losses on the main hydraulic transmission line; goal C is related to those applications in which the vibration attenuation is introduced by slowing down the main transmission line dynamics. Two case studies are discussed in this work: 1. Hydraulic crane: the focus is on the vibrations of the mechanical arms and load (goals A and B). 2. Wheel loader: the focus is on the vibrations of the driver\u27s seat and bucket (goals A and C). The controller structure is basically unvaried for different machines. However, what differs in each application are the controller parameters, whose adaptation and tuning method represent the main innovations of this work. The proposed controller structure is organized so that the control parameters are adapted with respect to the instantaneous operating point which is identified by means of feedback sensors. The Gain Scheduling technique is used to implement the controller whose set of parameters are function of the specific identified operating point. The optimal set of control parameters for each operating point is determined through the non-model-based controller tuning. The technique determines the optimal set of controller parameters through the optimization of the experimental machine dynamics. The optimization is based on an innovative application of the Extremum Seeking algorithm. The optimal controller parameters are then indexed into the Gain Scheduler. The proposed method does not require the modification of the standard valve controlled machine layout since it only needs for the addition of feedback sensors. The feedback signals are used by the control unit to modify the electric currents to the proportional directional valves and cancel the undesired dynamics of the machine by controlling the actuator motion. In order for the proposed method to be effective, the proportional valve bandwidth must be significantly higher than the frequency of the undesired dynamics. This condition, which is typically true for heavy machineries, is further investigated in the research. The research mostly focuses on the use of pressure feedback. In fact, although the use of position, velocity, or acceleration sensors on the vibrating bodies of the machine would provide a more straightforward measurement of the vibration, they are extremely rare on mobile hydraulic machines where mechanical and environmental stress harm their integrity. A comparison between pressure feedback and acceleration feedback alternatives of the proposed method is investigated with the aim to outline the conditions making one alternative preferable over the other one (for those applications were both alternatives are technically viable in terms of sensors and wiring reliability). A mid-sized hydraulic crane (case study 1) was instrumented at Maha Fluid Power Research Center to study the effectiveness of the proposed control method, its stability and its experimental validation. Up to 30% vibration damping and 40% energy savings were observed for a specific cycle over the standard vibration damping method for this application. The proposed control method was also applied to a wheel loader (case study 2), and up to 70% vibrations attenuation on the bucket and 30% on the driver\u27s cab were found in simulations. These results also served to demonstrate the applicability of the control method to different hydraulic machines. Improved system response and a straightforward controller parameters tuning methodology are the features which give to the proposed method the potential to become a widespread technology for fluid power machines. The proposed method also has potential for improving several current vibration damping methods in terms of energy efficiency as well as simplification of both the hydraulic system layout and tuning process

    Energy Comparison between a Load Sensing System and Electro-Hydraulic Solutions Applied to a 9-Ton Excavator

    Get PDF
    With the increasingly stringent regulations on air quality and the consequent emission limits for internal combustion engines, researchers are concentrating on studying new solutions for improving efficiency and energy saving even in off-road mobile machines. To achieve this task, pump-controlled or displacement-controlled systems have inspired interest for applications in offroad working machines. Generally, these systems are derived from the union of a hydraulic machine coupled to an electric one to create compact components that could be installed near the actuator. The object of study of this work is a 9-ton excavator, whose hydraulic circuit is grounded on load sensing logic. The validated mathematical model, created previously in the Simcenter Amesim© environment, represents the starting point for developing electro-hydraulic solutions. Electric components have been inserted to create different architectures, both with open-and closed-circuit layouts, in order to compare the energy efficiency of the different configurations with respect to the traditional load sensing system. The simulations of a typical working cycle show the energy benefits of electrohydraulic solutions that allow for drastically reducing the mechanical energy required by the diesel engine and, consequently, the fuel consumption. This is mainly possible because of the elimination of directional valves and pressure compensators, which are necessary in a load sensing circuit, but are also a source of great energy dissipations. The results show that closed-circuit solutions produce the greatest benefits, with higher energy efficiencies than the open-circuit solution. Furthermore, closed-circuit configurations require fewer components, allowing for more compact and lighter solutions, as well as being cheaper

    Modeling simulation and parameters optimization for hydraulic impactor

    Get PDF
    The paper analyzes the working principle of hydraulic impactor, describes the return and stroke order of action and establishes the nonlinear mathematical model describing its dynamic characteristic. The simulation model of hydraulic impactor is established based on AMESim. The structural features of trial machine is used to constrain variables, the piston speed is assigned as the optimizing objective, and the NLPSL algorithm is used to optimize the parameters of system model of hydraulic impactor, after which the system performance is obviously improved
    • …
    corecore