26,596 research outputs found

    Evolution of Supply Chain Collaboration: Implications for the Role of Knowledge

    Get PDF
    Increasingly, research across many disciplines has recognized the shortcomings of the traditional “integration prescription” for inter-organizational knowledge management. This research conducts several simulation experiments to study the effects of different rates of product change, different demand environments, and different economies of scale on the level of integration between firms at different levels in the supply chain. The underlying paradigm shifts from a static, steady state view to a dynamic, complex adaptive systems and knowledge-based view of supply chain networks. Several research propositions are presented that use the role of knowledge in the supply chain to provide predictive power for how supply chain collaborations or integration should evolve. Suggestions and implications are suggested for managerial and research purposes

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Supply chain management: An opportunity for metaheuristics

    Get PDF
    In today’s highly competitive and global marketplace the pressure on organizations to find new ways to create and deliver value to customers grows ever stronger. In the last two decades, logistics and supply chain has moved to the center stage. There has been a growing recognition that it is through an effective management of the logistics function and the supply chain that the goal of cost reduction and service enhancement can be achieved. The key to success in Supply Chain Management (SCM) require heavy emphasis on integration of activities, cooperation, coordination and information sharing throughout the entire supply chain, from suppliers to customers. To be able to respond to the challenge of integration there is the need of sophisticated decision support systems based on powerful mathematical models and solution techniques, together with the advances in information and communication technologies. The industry and the academia have become increasingly interested in SCM to be able to respond to the problems and issues posed by the changes in the logistics and supply chain. We present a brief discussion on the important issues in SCM. We then argue that metaheuristics can play an important role in solving complex supply chain related problems derived by the importance of designing and managing the entire supply chain as a single entity. We will focus specially on the Iterated Local Search, Tabu Search and Scatter Search as the ones, but not limited to, with great potential to be used on solving the SCM related problems. We will present briefly some successful applications.Supply chain management, metaheuristics, iterated local search, tabu search and scatter search

    Modelling Fresh Strawberry Supply "From-Farm-to-Fork" as a Complex Adaptive Network

    Get PDF
     The purpose of this study is to model and thereby enable simulation of the complete business entity of fresh food supply. A case narrative of fresh strawberry supply provides basis for this modelling. Lamming et al. (2000) point to the importance of discerning industry-specific product features (or particularities) regarding managing supply networks when discussing elements in "an initial classification of a supply network" while Fisher (1997) and Christopher et al. (2006, 2009) point to the lack of adopting SCM models to variations in products and market types as an important source of SCM failure. In this study we have chosen to move along a research path towards developing an adapted approach to model end-to-end fresh food supply influenced by a combination of SCM, system dynamics and complex adaptive network thinking...

    Eco-efficient supply chain networks: Development of a design framework and application to a real case study

    Get PDF
    © 2015 Taylor & Francis. This paper presents a supply chain network design framework that is based on multi-objective mathematical programming and that can identify 'eco-efficient' configuration alternatives that are both efficient and ecologically sound. This work is original in that it encompasses the environmental impact of both transportation and warehousing activities. We apply the proposed framework to a real-life case study (i.e. Lindt & SprĂŒngli) for the distribution of chocolate products. The results show that cost-driven network optimisation may lead to beneficial effects for the environment and that a minor increase in distribution costs can be offset by a major improvement in environmental performance. This paper contributes to the body of knowledge on eco-efficient supply chain design and closes the missing link between model-based methods and empirical applied research. It also generates insights into the growing debate on the trade-off between the economic and environmental performance of supply chains, supporting organisations in the eco-efficient configuration of their supply chains

    Effective use of product quality information in meat processing

    Get PDF
    This paper presents a case study on use of advanced product quality information in meat processing. To serve segmented customer demand meat processors consider use of innovative sensor technology to sort meat products to customer orders. To assess the use of this sensor technology a discrete-event simulation model is built. Various scenarios were defined for processing strategy (buffered or non-buffered), the number of end product groups to sort to and the availability of product quality information. The performance of these scenarios is measured w.r.t. order compliance, labor consumption and throughput-time. Our results reveal that the current processing and product sorting strategy is in-effective for sorting to a large number of end product groups. Furthermore, the current availability of product quality information is insufficient to ensure high levels of order compliance for advanced product quality products

    A General Simulation Framework for Supply Chain Modeling: State of the Art and Case Study

    Full text link
    Nowadays there is a large availability of discrete event simulation software that can be easily used in different domains: from industry to supply chain, from healthcare to business management, from training to complex systems design. Simulation engines of commercial discrete event simulation software use specific rules and logics for simulation time and events management. Difficulties and limitations come up when commercial discrete event simulation software are used for modeling complex real world-systems (i.e. supply chains, industrial plants). The objective of this paper is twofold: first a state of the art on commercial discrete event simulation software and an overview on discrete event simulation models development by using general purpose programming languages are presented; then a Supply Chain Order Performance Simulator (SCOPS, developed in C++) for investigating the inventory management problem along the supply chain under different supply chain scenarios is proposed to readers.Comment: International Journal of Computer Science Issues online at http://ijcsi.org/articles/A-General-Simulation-Framework-for-Supply-Chain-Modeling-State-of-the-Art-and-Case-Study.ph

    Business Process Innovation using the Process Innovation Laboratory

    Get PDF
    Most organizations today are required not only to establish effective business processes but they are required to accommodate for changing business conditions at an increasing rate. Many business processes extend beyond the boundary of the enterprise into the supply chain and the information infrastructure therefore is critical. Today nearly every business relies on their Enterprise System (ES) for process integration and the future generations of enterprise systems will increasingly be driven by business process models. Consequently process modeling and improvement will become vital for business process innovation (BPI) in future organizations. There is a significant body of knowledge on various aspect of process innovation, e.g. on conceptual modeling, business processes, supply chains and enterprise systems. Still an overall comprehensive and consistent theoretical framework with guidelines for practical applications has not been identified. The aim of this paper is to establish a conceptual framework for business process innovation in the supply chain based on advanced enterprise systems. The main approach to business process innovation in this context is to create a new methodology for exploring process models and patterns of applications. The paper thus presents a new concept for business process innovation called the process innovation laboratory a.k.a. the Ð-Lab. The Ð-Lab is a comprehensive framework for BPI using advanced enterprise systems. The Ð-Lab is a collaborative workspace for experimenting with process models and an explorative approach to study integrated modeling in a controlled environment. The Ð-Lab facilitates innovation by using an integrated action learning approach to process modeling including contemporary technological, organizational and business perspectivesNo; keywords
    • 

    corecore