447,495 research outputs found

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    A Methodology For Coronary Stent Product Development: Design, Simulation And Optimization

    Get PDF
    Coronary stents are slotted tubes made of metals, alloys, or polymers. They are deployed in human arteries, which are blocked by calcified plaque, to keep the arteries open and allow the blood to flow with ease. Coronary stents have been proven as an effective treatment device for heart diseases such as acute myocardial infarction. Design plays an important role for coronary stents to perform the clinical functions properly. Various parameters such as materials, structures, dimensions, and deployment methods etc., need to be considered in the design of coronary stents. There are numerous studies on design of coronary stents and many significant manufacturing methods have been reported in the past two decades. However, there is no comprehensive methodology for the product development of coronary stents in terms of design, simulation, and manufacturing. The objective of this research is to develop a methodology for coronary stents product development that focuses on design, simulation, and manufacturing. The methodology brings together insights from numerous engineering design disciplines with the aim of making coronary stent development more flexible and more cost-efficient The product development methodology for coronary stents is executed through modeling and analyzing stent designs with details of design, simulation, and optimization methods. Three innovative stent designs are modeled using engineering design software (SolidWorks) and mechanical performances are simulated, evaluated, and optimized with the help of advanced engineering simulation software (ANSYS). In this study, the performance of stents based on stress, strain, and total deformation during deployment are analyzed and compared with commercially available optimal design i.e., Cypher (J & J Co.) stent, which acts as a benchmark design

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Networked Cooperative Autonomous Munitions Digital Twin Modeling Utilizing Model Based Systems Engineering

    Get PDF
    An example of a high-complexity system is a swarm of Networked Cooperative Autonomous Munitions (NCAM) that prioritize wide area search and multiple view target confirmation. First, this research discusses methods toward building behavioral models within a Model-Based Systems Engineering (MBSE) tool. Then, this research presents the parallel modeling effort of NCAM in two environments: the MBSE model in Cameo Systems Modeler, and a physics-based model in the Advanced Framework for Simulation, Integration, and Modeling (AFSIM). Each digital model in its environment provides distinct benefits to the stakeholders of the design process, so the models must present consistent and parallel information. Thus, this research also presents automated methods to translate design information between models. Overall, the pair of models working in concert build trust with decision making authorities through understanding of the autonomous processes through systems cognition and digital scenario simulation

    Increased understanding of hybrid vehicle design through modeling, simulation, and optimization

    Get PDF
    2010 Fall.Includes bibliographical references.Vehicle design is constantly changing and improving due to the technologically driven nature of the automotive industry, particularly in the hybridization and electrification of vehicle drive trains. Through enhanced design vehicle level design constraints can result in the fulfillment of system level design objectives. These constraints may include improved vehicle fuel economy, all electric range, and component costs which can affect system objectives of increased national energy independence, reduced vehicle and societal emissions, and reduced life-cycle costs. In parallel, as computational power increases the ability to accurately represent systems through analytical models improves. This allows for systems engineering which is commonly quicker and less resource consuming than physical testing. As a systems engineering technique, optimization has shown to obtain superior solutions systematically, in opposition to trial-and-error designs of the past. Through the combination of vehicle models, computer numerical simulation, and optimization, overall vehicle systems design can greatly improve. This study defines a connection between the system level objectives for advanced vehicle design and the component- and vehicle-level design process using a multi-level design and simulation modeling environment. The methods and information pathways for vehicle system models are presented and applied to dynamic simulation. Differing vehicle architecture simulations are subjected to a selection of proven optimization algorithms and design objectives such that the performance of the algorithms and vehicle-specific design information and sensitivity is obtained. The necessity of global search optimization and aggregate objective functions are confirmed through exploration of the complex hybrid vehicle design space. Whether the chosen design space is limited to available components or expanded to academic areas, studies can be performed for numerous design objectives and constraints. The combination of design criteria into quantifiable objective functions allows for direct optimization comparison based on any number of design goals. Integrating well-defined objective functions into high performing global optimization search methods provides increased probability of obtaining solutions which represent the most germane designs. Additionally, key interactions between different components in the vehicular system can easily be identified such that ideal directions for gain relative to minimal cost can be achieved. Often times vehicular design processes require lower order representations or consist of time and resource consuming iterations. Through the formulation presented in this study, more details, objectives, and methods become available for comparing advanced vehicles across architectures. The main techniques used for setting up the models, simulations and optimizations are discussed along with results of test runs based on chosen vehicle objectives. Utility for the vehicular design efforts are presented through comparisons of available simulation and future areas of research are suggested

    Design, Simulation, Manufacturing: The Innovation Exchange

    Get PDF
    This book reports on topics at the interface between manufacturing, materials, mechanical, and chemical engineering. It gives special emphasis to CAD/CAE systems, information management systems, advanced numerical simulation methods and computational modeling techniques, and their use in product design, industrial process optimization and in the study of the properties of solids, structures, and fluids. Control theory, ICT for engineering education as well as ecological design and food technologies are also among the topics discussed in the book. Based on the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2019), held on June 11-14, 2019, in Lutsk, Ukraine, the book provides academics and professionals with a timely overview and extensive information on trends and technologies behind current and future developments of Industry 4.0, innovative design and renewable energy generation

    Design, Simulation, Manufacturing: The Innovation Exchange

    Get PDF
    This book reports on topics at the interface between manufacturing, mechanical and chemical engineering. It gives a special emphasis to CAD/CAE systems, information management systems, advanced numerical simulation methods and computational modeling techniques, and their use in product design, industrial process optimization and in the study of the properties of solids, structures and fluids. Control theory, ICT for engineering education as well as ecological design and food technologies are also among the topics discussed in the book. Based on the International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2018), held on June 12-15, 2018, in Sumy, Ukraine, the book provides academics and professionals with a timely overview and extensive information on trends and technologies behind current and future developments of Industry 4.0, innovative design and renewable energy generation

    Design, Simulation, Manufacturing: The Innovation Exchange

    Get PDF
    This book reports on topics at the interface between manufacturing, materials, mechanical, and chemical engineering. It gives special emphasis to CAD/CAE systems, information management systems, advanced numerical simulation methods and computational modeling techniques, and their use in product design, industrial process optimization and in the study of the properties of solids, structures, and fluids. Control theory, ICT for engineering education as well as ecological design and food technologies are also among the topics discussed in the book. Based on the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2019), held on June 11-14, 2019, in Lutsk, Ukraine, the book provides academics and professionals with a timely overview and extensive information on trends and technologies behind current and future developments of Industry 4.0, innovative design and renewable energy generation

    Conceptual Design of a Massaging Device to Mitigate Exercise Associated Calf Muscle Cramps

    Get PDF
    Exercise-associated muscle-cramping (EAMC) is a-common-condition, experienced by recreational and competitive-athletes, which can potentially-endanger their-health, as-well-as professional-career. This paper reports the-synopsis of a-conceptual-design, simulation, and analysis of a-massaging-device to-mitigate paraphysiologic-EAMC, in-the-calf-area. Document-analysis was utilized as one of the-study-instruments (including published-research on the-concepts of cramps and their-treatments; selected-relevant International-patents; the-use of anthropometric-data in product-design; prior-art on massaging-devices, and selected-devices, currently available at the-market, with their-respective-limitations). The-study applied fundamental-Engineering-principles of product design, and was-carried-out in-compliance with ISO7250: 1996 (Basic-human-body-measurements for technological-design). The-best-ranked-design (out of the 3 design-alternatives, made) was chosen, via Engineering-Design Weighted-Decision-Matrix, and confirmed by the ‘Drop and Re-vote’ (D & R) method. 2D-drawings, of the-best-design-alternative, were created by computer-aided-design (CAD) AutoCAD-software, while 50th percentile, adult-male was selected, as a design-target. Relevant-leg and hand-dimensions (one-dimensional measurements), were obtained from published-anthropometric-data-tables. Simulation of Stress-Analysis/Single-Point Static-Analysis (to-detect and eliminate rigid-body-modes; and separate stresses across contact-surfaces) was done by Autodesk Inventor-Version: 2016 (Build 200138000, 138). Conceptual-design of the-massaging-device was optimized according-to results of simulations, calculations, and fundamental engineering-product design principles. The-study also revealed that the-patho-physiology, causing EAMC, is most-likely multi factorial and complex. Overall, the-results of this-concise-study are rather-positive, providing a-good starting-point for advanced-exploration on the-same. Further-improvements and trials, however, are necessary. The-study, hence, recommended: (i) Further-studies, to-optimize the-dimensions of the-device, to-accommodate different-shapes of calf-muscles; (ii) More-advanced-methods, such-as PuCC; AHP, and TRIZ should be considered in-selection of the-best-design-alternative; (iii) Comprehensive-materials-selection should be detailed via Ashby-charts; (iv) To-carry-out a-detail-design; (v) To-fabricate a-prototype; (vi) To-conduct additional-tests (e.g., FEA/FEM) and explorative-use-ability-trials, in-collaboration-with the-department of Medical-Engineering, School of Medicine, MU; and (vii) To-analyze the-marketing-aspect of the-final-device. The-device is potentially-beneficial to sports-health-care-providers, coaches, and athletes; moreover, it could be included into-First-Aid Sport-kit (subject-to satisfactory-trails). Keywords: EAMC, spasm, athlete, sports, theories. DOI: 10.7176/ISDE/10-2-0
    corecore