39,893 research outputs found

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Study of Raspberry Pi 2 Quad-core Cortex A7 CPU Cluster as a Mini Supercomputer

    Full text link
    High performance computing (HPC) devices is no longer exclusive for academic, R&D, or military purposes. The use of HPC device such as supercomputer now growing rapidly as some new area arise such as big data, and computer simulation. It makes the use of supercomputer more inclusive. Todays supercomputer has a huge computing power, but requires an enormous amount of energy to operate. In contrast a single board computer (SBC) such as Raspberry Pi has minimum computing power, but require a small amount of energy to operate, and as a bonus it is small and cheap. This paper covers the result of utilizing many Raspberry Pi 2 SBCs, a quad-core Cortex A7 900 MHz, as a cluster to compensate its computing power. The high performance linpack (HPL) is used to benchmark the computing power, and a power meter with resolution 10mV / 10mA is used to measure the power consumption. The experiment shows that the increase of number of cores in every SBC member in a cluster is not giving significant increase in computing power. This experiment give a recommendation that 4 nodes is a maximum number of nodes for SBC cluster based on the characteristic of computing performance and power consumption.Comment: Pre-print of conference paper on International Conference on Information Technology and Electrical Engineerin

    Remote systems development

    Get PDF
    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    corecore