46 research outputs found

    An Algorithm for Probabilistic Alternating Simulation

    Get PDF
    In probabilistic game structures, probabilistic alternating simulation (PA-simulation) relations preserve formulas defined in probabilistic alternating-time temporal logic with respect to the behaviour of a subset of players. We propose a partition based algorithm for computing the largest PA-simulation, which is to our knowledge the first such algorithm that works in polynomial time, by extending the generalised coarsest partition problem (GCPP) in a game-based setting with mixed strategies. The algorithm has higher complexities than those in the literature for non-probabilistic simulation and probabilistic simulation without mixed actions, but slightly improves the existing result for computing probabilistic simulation with respect to mixed actions.Comment: We've fixed a problem in the SOFSEM'12 conference versio

    Buffered Simulation Games for B\"uchi Automata

    Full text link
    Simulation relations are an important tool in automata theory because they provide efficiently computable approximations to language inclusion. In recent years, extensions of ordinary simulations have been studied, for instance multi-pebble and multi-letter simulations which yield better approximations and are still polynomial-time computable. In this paper we study the limitations of approximating language inclusion in this way: we introduce a natural extension of multi-letter simulations called buffered simulations. They are based on a simulation game in which the two players share a FIFO buffer of unbounded size. We consider two variants of these buffered games called continuous and look-ahead simulation which differ in how elements can be removed from the FIFO buffer. We show that look-ahead simulation, the simpler one, is already PSPACE-hard, i.e. computationally as hard as language inclusion itself. Continuous simulation is even EXPTIME-hard. We also provide matching upper bounds for solving these games with infinite state spaces.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Rank-Based Simulation on Acyclic Graphs

    Get PDF
    The simulation preorder is widely used both as a behavioral relation in concurrent systems, and as an abstraction tool to reduce the state space in model checking, were memory requirement is clearly a critical issue. Therefore, in this context a simulation algorithm should address both time and space efficiency. In this paper, we rely on the notion of rank to design an efficient simulation algorithm. It turns out that such algorithm outperforms-both in terms of time and in terms of space-the best simulation algorithms in the literature, on the class of acyclic graphs

    Generalizing the Paige-Tarjan Algorithm by Abstract Interpretation

    Full text link
    The Paige and Tarjan algorithm (PT) for computing the coarsest refinement of a state partition which is a bisimulation on some Kripke structure is well known. It is also well known in model checking that bisimulation is equivalent to strong preservation of CTL, or, equivalently, of Hennessy-Milner logic. Drawing on these observations, we analyze the basic steps of the PT algorithm from an abstract interpretation perspective, which allows us to reason on strong preservation in the context of generic inductively defined (temporal) languages and of possibly non-partitioning abstract models specified by abstract interpretation. This leads us to design a generalized Paige-Tarjan algorithm, called GPT, for computing the minimal refinement of an abstract interpretation-based model that strongly preserves some given language. It turns out that PT is a straight instance of GPT on the domain of state partitions for the case of strong preservation of Hennessy-Milner logic. We provide a number of examples showing that GPT is of general use. We first show how a well-known efficient algorithm for computing stuttering equivalence can be viewed as a simple instance of GPT. We then instantiate GPT in order to design a new efficient algorithm for computing simulation equivalence that is competitive with the best available algorithms. Finally, we show how GPT allows to compute new strongly preserving abstract models by providing an efficient algorithm that computes the coarsest refinement of a given partition that strongly preserves the language generated by the reachability operator.Comment: Keywords: Abstract interpretation, abstract model checking, strong preservation, Paige-Tarjan algorithm, refinement algorith

    Generalized Strong Preservation by Abstract Interpretation

    Full text link
    Standard abstract model checking relies on abstract Kripke structures which approximate concrete models by gluing together indistinguishable states, namely by a partition of the concrete state space. Strong preservation for a specification language L encodes the equivalence of concrete and abstract model checking of formulas in L. We show how abstract interpretation can be used to design abstract models that are more general than abstract Kripke structures. Accordingly, strong preservation is generalized to abstract interpretation-based models and precisely related to the concept of completeness in abstract interpretation. The problem of minimally refining an abstract model in order to make it strongly preserving for some language L can be formulated as a minimal domain refinement in abstract interpretation in order to get completeness w.r.t. the logical/temporal operators of L. It turns out that this refined strongly preserving abstract model always exists and can be characterized as a greatest fixed point. As a consequence, some well-known behavioural equivalences, like bisimulation, simulation and stuttering, and their corresponding partition refinement algorithms can be elegantly characterized in abstract interpretation as completeness properties and refinements
    corecore