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Abstract. The simulation preorder is widely used both as a behavioral relation in
concurrent systems, and as an abstraction tool to reduce thestate space in model
checking, were memory requirement is clearly a critical issue. Therefore, in this
context a simulation algorithm should address both time andspace efficiency. In
this paper, we rely on the notion of rank to design an efficientsimulation algo-
rithm. It turns out that such algorithm outperforms—both interms of time and in
terms of space—the best simulation algorithms in the literature, on the class of
acyclic graphs.

1 Introduction

The simulation preorder [12] is a behavioral refinement relation on labeled graphs,
widely used as a formal tool supporting the design and the automated reasoning on
complex systems. In particular, simulations plays a role intwo tasks that are often cru-
cial to guarantee the success of a formal method for system design or computer aided
verification: the systemrefinementand the systemabstraction[10]. In this context,
the behavior of a system or a set of programs implementing a collection of cooperating
units is naturally modeled as a (labeled) graph, whose nodesdescribe the possible states
and arrows represent actions. Given a specification of a system as a labeled graphG1,
the simulation preorder provides a formal tool for checkingwetherG1 is correctly im-
plemented (or refined) by the concrete systemG2. Moreover, the induced equivalence
can be used as an abstraction tool to cope with the intricacies buried in the modeling
activity and to control the sheer size of the obtained structures. In particular, space re-
quirements underly the notorious state-explosion problemin model checking[5], a fully
automatic (and quite efficient in time) formal method for verifying finite-state systems1

with respect to temporal logics specifications. Abstraction methods for model checking
are required to be preservative with respect to the logic language used for specifying
the properties of the system. An abstraction method is said to beweakly preservative
for a temporal logicL if whenever a propertyp of L is true in the abstract structure,p

holds also in the concrete model. An abstraction method is said to bestrongly preser-
vativefor a temporal logicL if both true and falseL-properties are preserved from the
abstract structure to the concrete model. Grumberg et al. [13] proved that the simula-
tion preorder is weakly preservative for ACTL∗ and ACTL, the universal fragments of

1 The labeled graphs used to model the system under verification are calledKripke structuresin
the context of Model Checking
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the branching temporal logics CTL and CTL∗ [4], as well as for the universal frag-
ment of theµ-calculus. In [11], it was shown that the simulation equivalence strongly
preserves both the universal and the existential fragment of theµ-calculus. As a conse-
quence, it strongly preserves its sublogics ACTL∗, ECTL∗, ECTL and ACTL, widely
used for model checking. The latter preservation results combined with the existence
of a number of polynomial algorithms for computing (the maximal) simulation on a
labeled graph [2, 3, 6, 10], explains the appealing of simulation-based abstraction meth-
ods in model checking, also w.r.t. other popular behavioralrefinement relations such
as language equivalence and bisimulation [16]. In fact, language equivalence provides
strong preservation of linear temporal properties and large reductions, however its com-
plexity is exponential, whereas the complexity of bisimulation and simulation is poly-
nomial [14, 7, 8]. On the other hand, bisimulation has the advantage (w.r.t. simulation
and language equivalence) of preserving more expressive logics. However this is also a
disadvantage, since the abstract structure is required to be so close to the original model
that the reductions allowed are far less powerful.

State of the Art Among the algorithms for computing the simulation preorder, the
most well known ones are by Henzinger, Henzinger and Kopke [10], Bloom and Paige
[1], Bustan and Grumberg [2, 3], Tan and Cleaveland [6], Gentilini, Piazza, and Poli-
criti [9, 20], and Ranzato and Tapparo [17, 18]. Given a (labelled) graphG with |V |
nodes and|E| edges, let|V≡S

| be the size of the maximum simulation (equivalence)
on G. The algorithm by Ranzato and Tapparo [17] runs inO(|E||V≡S

|) time and
O(|E||V ||V≡S

|) space. It is the best up-to-date simulation procedure as faras time
complexity is concerned. On the other hand, the algorithm in[9] (that originally had a
minor flow, subsequently corrected in [20]) has the best up-to-date space complexity—
O(|V≡S

|2+|V | log(|V≡S
))—and runs inO(|E||V≡S

|2) time. In [18], Ranzato and Tap-
paro proposed a new simulation algorithm featuring an improvement w.r.t. the space-
complexity of their previous procedure, while slightly worsening the time-performance
(of a cubic factor w.r.t.|V≡S

|).

Our Contribution We propose a simulation algorithm that has optimal performances
w.r.t. both time and space on acyclic graphs, outperforming[17, 18, 9]. Namely, our
algorithm usesO(|E||V≡S

|) time andO(|V≡S
|2 + |V | log(|V≡S

|)) bits to compute a
simulation preorder on a given acyclic graph. The time/space improvement w.r.t. [17,
18, 9] relies on computing the maximum simulation proceeding by rank.



2 Preliminaries

In this section we introduce the basic notations we use in therest of the paper.

Definition 1. LetV be a set andQ ⊆ V × V a binary relation overV :

– Q is said to be apreorderoverV if and only ifQ is reflexive and transitive;
– Q is said to be apartial order overV if and only ifQ is reflexive, antisymmetric,

and transitive;
– Q is said to beacyclic if and only if its transitive closure is antisymmetric.

We will useQ+ to refer to the transitive closure ofQ andQ∗ to refer to the reflexive
and transitive closure ofQ.

Notice that if a relation is acyclic, then it is antisymmetric, while the converse does not
hold (unless it is transitive).

Definition 2. A tripleG = 〈V,E,Σ〉 is said to be alabelled graphif and only ifG− =
〈V,E〉 is a finite graph andΣ is a partition overV . We say that two nodesv1, v2 ∈ V

have the samelabel if they belong to the same class ofΣ.

An equivalent way to definelabelled graphsis to use a labelling functionℓ : V → L,
whereL is a finite set of labels (inducing of a partitionΣL of V ). Given a nodev ∈ V

we will use[v]Σ (or [v], if Σ is clear from the context) to denote the class ofΣ to which
v belongs.

Example 1.A Kripke Structureis a labelled graph and, vice-versa, each connected la-
belled graph can be seen as a Kripke Structure in which two worlds satisfy the same set
of atomic propositions if and only if their labels are equal.

Definition 3. LetG = 〈V,E,Σ〉 be a labelled graph. A relation≤⊆ V × V is said to
be asimulation overG if and only if:

1. v ≤ u → [v]Σ = [u]Σ;
2. (v ≤ u ∧ vEv1) → ∃u1(uEu1 ∧ v1 ≤ u1).

In this case we also say thatu simulatesv.
We say thatu andv are sim-equivalent(u ≡s v) if there exist two simulations≤1 and
≤2, such thatn ≤1 m andm ≤2 n.

Notice that a simulation can be neither reflexive nor transitive (e.g. the empty relation
is always a simulation), however the reader can easily verify that given an arbitrary
simulation its reflexive and transitive closure is always a simulation. A simulation≤s

overG is said to bemaximalif for all the simulations≤ overG it holds≤⊆≤s. Given
a labelled graphG = 〈N,E,Σ〉 there always exists a unique maximal simulation≤s

overG. Moreover≤s is a preorder [12].

Example 2.Consider the labelled graphG = 〈V,E,Σ〉 depicted in Figure 1, where
V = {x, y, z}, E = {(x, y), (x, z), (y, z)}, andΣ = {α = {x, y}, β = {z}}. The
maximum simulation preorder onG is given byI ∪ {(y, x)}, whereI denotes the
identity relation overV .
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Fig. 1. A labelled graph.

Given a labelled graphG, thesimulation problemconsists in determining the max-
imum simulation preorder onG, and can be elegantly encoded in terms of acoars-
est partition pair problem[9]. Such a formulation is the engine of the space efficient
procedure in [9, 20] and relies on the fundamental notions ofpartition pair (PP), PP
refinementand PPstability, recalled below.

Definition 4 (Partition Pairs). LetV be a set. A partition pair onV is a pair 〈Σ,R〉,
whereΣ is a partition onV andR is a reflexive relation onΣ.

Given a setV , each preorder relation�P onV induces a corresponding partition pair
〈V≡P

, P 〉, where≡P is the equivalence relation≡P= {(u, v) | u ≺P v ∧ v �P u},
andP = {(α, β) ∈ V≡P

| ∃u ∈ α, ∃v ∈ β.(u �P v)}. In particular, given a labelled
graphG = 〈V,E,Σ〉, we denote by〈V≡S

, S〉 the partition pair onV corresponding to
the maximum simulation preorder�S of G consistent w.r.t.Σ.

Definition 5. Let 〈Σ,R〉, 〈Π,P 〉 be two partition pairs onV :

〈Π,P 〉 ⊑ 〈Σ,R〉 ⇔ Π is finer thanΣ andP ⊆ R(Π)

whereR(Π) denotes the relation onΠ induced byR ⊆ Σ ×Σ, i.e.:

∀α, β ∈ Π((α, β) ∈ R(Π) ⇔ ∃α′, β′((α′, β′) ∈ R ∧ α ⊆ α′ ∧ β ⊆ β′))

Given two sets of nodesα, β ⊆ V we writeα →∃ β to denote that there exists a
nodea ∈ α which reaches a nodeb ∈ β, i.e., (a, b) ∈ E. Similarly,α →∀ β denotes
that each node inα reaches a node inβ.

Definition 6 (Stability). LetG = 〈V,E〉 be a graph, let〈Σ,R〉 be a partition pair on
V . 〈Σ,R〉 is saidstablew.r.t. the transition relation of the graphE iff:

∀α, β ∈ Σ(α →∃ β ⇒
⋃

{δ | δ ∈ R(α)} →∀

⋃

{δ | δ ∈ R(β)}

Definition 7 (Coarsest Partition Pair Problem (CPPP)).Let G = 〈V,E,Σ〉 be a
labelled graph, and consider the identity relationI on Σ. The coarsest partition pair
problem asks to determine the coarsest partition pair〈Π,P 〉 ⊑ 〈Σ, I〉 stable w.r.t.E.

Lemma 1 (CPPP as Simulation Problem).LetG = 〈V,E,Σ〉 be a labelled graph.
The coarsest partition pair problem is well defined and admits as unique solution the
partition pair 〈V≡S

, S〉, corresponding to the maximum simulation preorder onG con-
sistent w.r.t.Σ.



Proof. We show that the unique solution to the CPPP is the partition pair 〈V≡S
, S〉 ⊑

〈Σ, I〉 corresponding to the maximum simulation preorder�S onG = 〈V,E〉 consis-
tent w.r.t.Σ. We start by proving that〈V≡S

, S〉 is stable w.r.t.E. Letα, β ∈ V≡S
and

assume thatα →∃ β. Then, there exist two nodess ∈ α, s′ ∈ β such thats → s′.
Consider an arbitrary nodep ∈

⋃

{δ | δ ∈ S(α)}. Sinces �S p ands → s′, there exists
a nodep′ such thatp → p′ ands′ �S p′. Hence,p′ ∈

⋃

{δ | δ ∈ S(β)}. Our arbitrary
choice ofp ∈

⋃

{δ | δ ∈ S(α)} guarantees that
⋃

{δ | δ ∈ S(α)} →∀

⋃

{δ | δ ∈ S(β)},
i.e. 〈V≡S

, S〉 is stable w.r.tE.
To conclude our thesis, assume by absurd that there exists a partition pair〈Π,P 〉 ⊑

〈Σ, I〉 stable w.r.t.E and such that¬(〈Π,P 〉 ⊑ 〈V≡S
, S〉). Consider the relation

<〈Π,P 〉⊆ V × V , where<〈Π,P 〉= {(s, s′) | ([s]Π , [s′]Π) ∈ P}. By our assumption
stating that¬(〈Π,P 〉 ⊑ 〈V≡S

, S〉), we have that<〈Π,P 〉*�S . Hence, an absurd fol-
lows by proving that<〈Π,P 〉 is a simulation onG = 〈V,E〉 consistent w.r.t.Σ. In
fact, in that case the relation<〈Π,P 〉 ∪ �S⊃�S would be a simulation relation strictly
including the maximum simulation preorder�S . To prove that<〈Π,P 〉 is a simula-
tion on G = 〈V,E〉 consistent w.r.t.Σ, let (s, s′) ∈<〈Π,P 〉. By 〈Π,P 〉 ⊑ 〈Σ, I〉,
we have that[s]Σ = [s′]Σ . Considerp such thats → p. Then[s]Π →∃ [p]Π . Since
〈Π,P 〉 is stable w.r.t.E we have thats′ ∈

⋃

{δ | δ ∈ P ([s]Π)} has an edge to a node
p′ ∈

⋃

{δ | δ ∈ P ([p]Π)}, i.e. to a nodep′ such that(p, p′) ∈<〈Π,P 〉. ⊓⊔

3 An Optimal Simulation Algorithm on Acyclic Graphs

In this section, we introduce an optimal simulation algorithm (w.r.t. both time and
space) on acyclic graphs. Such a procedure relies on solvingthe coarsest partition pair
problem (i.e. computing the maximum simulation preorder) proceeding byrank. The
notion of rank, introduced in Definition 8, allows one to perform a preliminary partition
in the given labelled graph. This is useful to drive the successive computation, as stated
in Lemma 2.

Definition 8. LetG = 〈V,E〉 be an acyclic graph, letv ∈ V . Therankof the nodev is
defined as:

rank(v) =

{

0 if E(v) = ∅,
max{1 + rank(u) | (v, u) ∈ E} otherwise.

Example 3.Consider the labelled graph in Figure 1, described in Example 2. In such a
graph, nodex has rank2, nodey has rank1 and nodez has rank0.

Lemma 2 (Rank & Simulation). LetG = 〈V,E〉 be an acyclic graph, and consider
a partitionΣ onV . Then:

〈V≡S
, S〉 ⊑ 〈V≡R

, R〉

where〈V≡S
, S〉 is the partition pair onV encoding the maximum simulation consistent

w.r.t. Σ, and〈V≡R
, R〉 is the partition pair onV corresponding to the rank-labelling

preorder�R= {(u, v) | rank(u) ≤ rank(v)}.



Proof. By absurd, assume that¬(〈V≡S
, S〉 ⊑ 〈V≡R

, R〉). It follows that the maximum
simulation preorder�S is not included in the relation{(s, s′) | ([s]≡R

, [s′]≡R
) ∈ R},

i.e. there exists two nodess ∈ V , s′ ∈ V such thats �S s′ andrank(s) > rank(s′).
Let r = rank(s) > rank(s′). Sincerank(s) = r, we can determine a sequence of
r nodess1, . . . , sr such thats → s1

∧

1≤i<r si → si+1. By definition of simulation,
there exists a corresponding sequence ofr nodess′1, . . . , s

′
r such that

(s′ → s′1 ∧ s1 �S s′1)
∧

1≤i<r

si → si+1 ∧ si+1 �S s′i+1

Such a sequence of nodes witnesses the absurdrank(s′) ≥ r. ⊓⊔

Table 1 shows our rank-based simulation procedure on acyclic graphs. Such an algo-
rithm consists, mainly, of two phases: A preprocessing stepin line 1–11 and a main
loop in line 12–28.

The preprocessing step performs the rank partitioning of the given labelled graph,
which is then explored proceeding by rank (from the lowest tothe highest rank), within
successive executions of the main loop at line 12. At each iteration i of such a loop
(corresponding to ranki − 1) the transitions targeting nodes having ranki − 1 are
employed to refine the current partition pair, in order to establish the stability property.

Example 4.Consider the labelled graphG = 〈V,E,Σ〉 depicted in Figure 1, illustrated
within Example 2. The algorithmSolveCPPP in Table 1 terminates upon the execution
of the first loop at line3, that uses the information given by the rank to refine the initial
partition pair〈Σ, I〉 to the partition pair〈Π,P 〉, whereΠ = {α = {x}, α1 = {y}, β =
{z}} andP = I ∪ {(α1, α)}. In fact, in this case the preprocessing provided by the
loop at line3 is sufficient to solve the simulation problem.

4 Correctness and Complexity Results

In this section, we prove the correctness of our simulation algorithm on acyclic graphs,
as well as its complexity.

4.1 Correctness

Lemma 3, below, shows that the preprocessing step correctlycomputes the partition
pair induced by the rank labelling of the graph.

Lemma 3. The loop at line3 in the algorithmSolveCPPP(〈V,E〉, 〈Σ, I〉) terminates
computing the partition pair〈Π,P 〉 and the variable rankMax, where:

• rankMax= max{rank(v) | v ∈ V },
• Π ⊑ Σ is the coarsest partition finer than the rank-labelling partition V≡R

,
• P = {(α, β) | rank(α) ≤ rank(β) ∧ ∃γ ∈ Σ(α ⊆ γ ∧ β ⊆ γ)}

Proof. This can be easily proved by induction on the number of loop iterations. ⊓⊔



Algorithm 1 : SOLVECPPP
input : G = 〈V,E〉,〈Σ, I = {(α, α) | α ∈ Σ}〉
output: 〈V≡S

, S〉: partition pair encoding the maximum simulation preorder�S onG
consistent w.r.t.Σ.

begin1

/* Initial refinement & rank-ordering of the classes. */
notRanked := V ; rankMax := −12

repeat3

forall α ∈ Σ | α ⊆ notRanked ∧ α * pre(notRanked) do4

if α 6= α \ pre(notRanked) then5

α1 := α\pre(notRanked);α := α\α1 ; rank(α1) := rankMax+1;6

Σ := Σ ∪ {α1}; sim := sim ∪ {(γ, α1) | (γ, α) ∈ sim} ∪ {(α1, α)}
else7

rank(α) := rankMax+ 18

9

notRanked := pre(notRanked); rankMax := rankMax+ 110

until pre(notRanked) = ∅11

/* Process Σ by rank & refine 〈Σ, sim〉 to establish the
stability prop. ∀(α, β).(α →∃ β ⇒ sim(α) →∀ sim(β)). */

for rk = 1 to rankMax do12

foreachβ ∈ Σ | rank(β) = rk − 1 do13

foreachα | pre(β) ∩ α 6= ∅ do14

if α * pre(sim(β)) then15

α1 := α \ pre(sim(β)); rank(α1) := rank(α);α := α \ α1;16

Σ := Σ ∪ α1

sim := sim ∪ {(α1, δ) | (α, δ) ∈ sim}17

∪{(δ, α1) | (δ 6= α, α) ∈ sim}18

foreachγ | γ * pre(sim(β)) ∧ γ ∈ sim(α) do19

γ1 := γ \ pre(sim(β))20

if γ1 6= γ then21

γ := γ \ γ1; rank(γ1) := rank(γ); Σ := Σ ∪ γ1 sim :=22

sim ∪ {(γ1, δ) | (γ, δ) ∈ sim} ∪ {(δ, γ1) | (δ 6= γ, γ) ∈ sim}
sim := sim \ {(α, γ1)}23

24

25

26

27

end28



Lemma 4 and Theorem 1 define crucial invariants and prove their validity throughout
the execution of the main loop at line12. Such invariants define the correctness of our
simulation algorithm.

Lemma 4. Consider the overall execution of the for-loop at line12 guarded by the
variable1 ≤ rk ≤ rankMax. Whenever a classγ is involved either in a split or in a
refinement of its simulator set

⋃

{β | (γ, β) ∈ sim}, the following statement holds:

rank(γ) ≥ rk

Proof. Denote by〈Σi, simi〉 the partition pair in input to thei-th iteration of the for-
loop at line12. Moreover, ifγ is a class processed within thei-th execution of the
for-loop at lines12, let γi denote the unique classγi ∈ Σi such thatγi ⊇ γ.

Given the above notations, consider thei-th execution of the for-loop at lines12 (for
whichrk = i) and letγ be a class in a partition pair processed within such an iteration.
Assume that eitherγ ⊂ γi, or

⋃

{β | (γ, β) ∈ sim} 6=
⋃

{βi | (γi, βi) ∈ simi}. Then,
there exists a pair of classed{α, β} ⊆ Σi such thatrank(β) = i − 1, α →∃ β and
γi ∈ simi(α). rank(β) = i− 1∧α →∃ β impliesrank(α) ≥ i. Lemma 3 allows then
to conclude thatrank(γ) = rank(γi) ≥ i. ⊓⊔

Theorem 1. The following invariants hold at the beginning of each iteration of the
for-loop at line12, within the the algorithmSolveCPPP(〈V,E〉, 〈Σ0, I〉).

1. For each nodev ∈ V such that rank(v) < rk:

[v]≡S
= α ∈ Σ ∧

⋃

{u | v �S u} =
⋃

{β | (α, β) ∈ sim}

2. For each nodev ∈ V such that rank(v) ≥ rk:

[v]≡S
⊆ α ∈ Σ ∧

⋃

{u | v �S u} ⊆
⋃

{β | (α, β) ∈ sim}

3. For each pair of classesα, β ∈ Σ:

(α →∃ β∧ rank(β) < rk−1) ⇒
⋃

{γ | (α, γ) ∈ sim} →∀

⋃

{γ | (β, γ) ∈ sim}

Proof. By induction on the number of iterations of the for-loop at line11.
Base(rk = 1). The first two items in our statement follow directly from Lemma 2 and
Lemma 3, while the third item holds trivially since no classβ ∈ Σ has a rank strictly
lower thanrk − 1 = 0.
Inductive Step(1 < rk). Giveni ≥ 1, denote by〈Σi, simi〉 the partition pair in input
to thei-th execution of the for-loop at line12. Givenγ ∈ Σi>1, denote byγi−1 the only
class inΣi−1 such thatγi−1 ⊇ γ.

1. In order to prove our inductive step for item(3), consider〈Σi=rk>1, simi=rk>1〉
and letα ∈ Σi such thatα → β ∧ rank(β) < i − 1. By rank(β) < i − 1 and
Lemma 4 we haveβi−1 = β and

⋃

{δ | (β, δ) ∈ simi} =
⋃

{δ | (βi−1, δ) ∈
simi−1} = simβ. Hence, ifrank(β) < (i − 1) − 1 we can conclude our thesis
exploiting the inductive hypothesis for which

⋃

{δ | (αi−1, δ) ∈ simi−1} →∀



simβ. Otherwise, assumerank(β) = i − 1 and suppose by contradiction that
¬(

⋃

{δ | (α, δ) ∈ simi} →∀ simβ). Let α∗ ⊃ α be the superclass ofα at the
moment in whichβ gets selected at line13 with rk = i − 1. Within the execution
of the most internal foreach-loop at line14, if α∗ contains some state that does
not reachsimβ, thenα∗ gets split into the two subclasses:α∗

1 := α∗ \ simβ and
α∗ := α∗ \ α1. By α →∃ β ⊆ simβ, we have that the statementα ⊆ α∗ is true
both before and after such a split. Moreover, the loop at line19 processes each class
γ ∈ sim∗

i−1(α
∗ ⊇ α). If γ contains some state that does not reachsimβ, thenγ

gets split into the two subclassesγ1 := γ\simβ andγ := γ\α1, andγ1 is removed
from the simulators ofα∗ ⊇ α (line 23). Hence, onceβ have been considered at
line 13 within the i − 1-th execution of the for-loop at line12, we have that each
node belonging to a class simulatingα∗ has a successor insimβ. Each subsequent
refinement ofα∗ or its set of simulators will maintain this property, and thus we get
to the contradiction of our assumption¬(

⋃

{δ | (α, δ) ∈ simi} →∀ simβ
2. We now proceed proving the inductive step for item(1). Let i = rk > 1 and

consider the〈Σi, simi〉. Let v ∈ V such thatrank(v) < rk − 1. Then, item(1)
holds by Lemma 4 and by inductive hypothesis. Letv such thatrank(v) = rk− 1.
Then, by inductive hypothesis on item(2) we have:

[v]≡S
⊆ α ∈ Σ ∧

⋃

{u | v �S u} ⊆
⋃

{β | (α, β) ∈ sim} (1)

Moreover, the inductive step already proved on item(3) ensures that:

(α →∃ β∧ rank(β) < rk−1) ⇒
⋃

{γ | (α, γ) ∈ sim} →∀

⋃

{γ | (β, γ) ∈ sim}

(2)
Sincerank(α) = rk−1, any class reached byα has rank strictly lower thanrk−1.
Hence, equations 1 and 2 guarantee that:

[v]≡S
= α ∈ Σ ∧

⋃

{u | v �S u} =
⋃

{β | (α, β) ∈ sim}

completing our inductive step for item(1).
3. Let i = rk > 1 and considerv such thatrank(v) ≥ rk. If rank(v) > rk, than

[v]Σi
= [v]Σi+1

⊆ α by inductive hypothesis. Ifrank(v) = rk, there are two
cases to consider. In the first case,[v]Σi

= [v]Σi+1
(i.e. the class ofv gets not

split within the i-th iteration of the loop at line 13) and we are done. In the second
case,[v]Σi

gets split intoα, α1 within the i-th execution of the loop at line 13. By
contradiction, assume there exist two statesu ∈ α, u′ ∈ α1 such thatu ≡S u′.
By definition ofα, α1, u has a successor into a classβ of rankr < rk, andu′ has
no successor in any classβ′ ∈ sim(β). By inductive hypothesis, this implies that
there existsz such that(u, z) ∈ E andu′ has no successorz′ such thatz ≤S z′,
contradicting our hypothesisu ≡S u′.

⊓⊔

4.2 Complexity

We finally establish the complexity of our simulation algorithm on acyclic graphs. In
particular, Theorem 2 shows that our procedure usesO(|E||V≡S

|) time and requires



O(|V≡S
|2 + |V | log(|V≡S

|)) bits to compute a simulation preorder on a given acyclic
labelled graphG = 〈V,E,Σ〉. Therefore, it has optimal performances w.r.t. both time
and space on acyclic graphs, outperforming [17, 18, 9].

Theorem 2. The algorithmSolveCPPP(G = 〈V,E〉, 〈Σ, I〉) performsO(|V≡S
||E|)

steps and usesO(|V≡S
|2 + |V | log(|V≡S

|)) bits to compute the solution to the coarsest
partition pair problem〈V≡S

, S〉.

Proof. Let r = max{rank(v) | v ∈ V }. The cost of the while-loop at line3 is O(r ∗
|E|) = O(|V≡S

||E|).
The cost of the loop at line12, excluded the execution of the innermost if-statement

at line21, is:

O(Σr
1=1Σβ∈V≡S

,rank(β)=i−1(|pre(β)| ∗ |Σi+1|+ |pre(
⋃

{δ | (β, δ) ∈ sim}|) =

= O(|V≡S
||E|)

In fact, consider a classβ such thatrank(β) = i − 1. It is possible to distinguish
with marks the classes that reach (resp. do not reach/reach with all their nodes) the set
⋃

{δ | (β, δ) ∈ sim} at the costO(pre(
⋃

{δ | (β, δ) ∈ sim}). Moreover, the same cost
allows one to appropriately mark each node inpre(

⋃

{δ | (β, δ) ∈ sim}. Then, fixed
β, rank(β) = i−1, the cost of executing lines14–24without considering the innermost
if-statement, isO(|pre(

⋃

{δ | (β, δ) ∈ sim}|+Σα∈pre(β)|sim(α)|).
The innermost if-statement at lines21–23 is executed only upon the creation of a

new classγ1 and cost globallyO(|V≡S
||E|). In fact, each execution of lines21–23 for

the creation of the new classesγ1, γ \ γ1 from γ, requires only to scan the nodes inγ
and the classes insim(γ), sim−1(γ).

As far as space complexity is concerned we refer to bit complexity without consider-
ing the space required by the graphG, since it is never modified (see, e.g., [15, 2, 3]). In
particular,Σ is stored through an array of length|V | associating to each node its class.
Hence, it requiresO(|V | log(|V≡S

|)) bits.notRanked is a |V | array of bits, labeling
with 1 the nodes which do not have a rank.rank is stored in a|V | array of lists, where
theith list keeps the classes at ranki. Hence it requiresO(|V |+ |V≡S

| log(|V≡S
|)) bits.

Finally, the relationsim is stored in a bit matrix whose size grows up toO(|V≡S
|2)

bits. ⊓⊔

5 Conclusion

We presented an algorithm for computing the maximum simulation quotient and the
simulation preorder on acyclic graphs. Our algorithm is based on a characterization of
the simulation problem as coarsest partition pair problem and on the notion of rank. The
notion of rank is a standard one in well-founded set theory (see, e.g., [19]) and has been
exploited in [7, 8] to define an algorithm for computing the maximum bisimulation.
The algorithm presented in [7, 8] has a linear time complexity in the acyclic case, while
in the general case it allows one to focus the computation on subgraphs of the given
graph. The algorithm we presented here has optimal space/time performances on acyclic
graphs.



On the one hand, its generalization to the general case is still an open problem.
Unfortunately, when moving from acyclic to cyclic graphs the notion of simulation is
not “compositional”, since loops allow to simulate paths ofarbitrary length.

On the other hand, another open problem concerns the possibility of developing a
linear time simulation algorithm for the acyclic case. Again, there seems to be an in-
trinsic higher complexity in the notion of simulation w.r.t. bisimulation which does not
allow to reach the linear time complexity. In particular, while the notion of bisimulation
on acyclic graphs corresponds to equality on well-founded sets, simulation in terms of
set theory is a sort of recursive inclusion.
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