-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Archivio istituzionale della ricerca - Universita degli Studi di Udine

Rank-Based Simulation on Acyclic Graphs

Raffaella Gentilint, Carla Piazza and Alberto Policrifi

! Dip. di Matematica e Informatica, Universita di Perugida Vanvitelli 1, Perugia (IT)
2 Dip. di Matematica e Informatica, Universita di Udine, \lia Scienze 206, Udine (IT).
{raffaella.gentilin} @dmi.unipg.it { piazzdpolicriti } @dimi.uniud.it

Abstract. The simulation preorder is widely used both as a behaviefation in
concurrent systems, and as an abstraction tool to reducateespace in model
checking, were memory requirement is clearly a criticaliéssTherefore, in this
context a simulation algorithm should address both timespate efficiency. In
this paper, we rely on the notion of rank to design an efficgmiulation algo-
rithm. It turns out that such algorithm outperforms—bothidérms of time and in
terms of space—the best simulation algorithms in the liteeg on the class of
acyclic graphs.

1 Introduction

The simulation preorder [12] is a behavioral refinementti@taon labeled graphs,
widely used as a formal tool supporting the design and theraatted reasoning on
complex systems. In particular, simulations plays a rolsvim tasks that are often cru-
cial to guarantee the success of a formal method for systesimgrder computer aided
verification: the systemefinementand the systenabstraction[10]. In this context,
the behavior of a system or a set of programs implementindection of cooperating
units is naturally modeled as a (labeled) graph, whose nbelgibe the possible states
and arrows represent actions. Given a specification of &isyat a labeled graph,
the simulation preorder provides a formal tool for checkivegherG, is correctly im-
plemented (or refined) by the concrete syst&m Moreover, the induced equivalence
can be used as an abstraction tool to cope with the intrisdiged in the modeling
activity and to control the sheer size of the obtained stmest. In particular, space re-
quirements underly the notorious state-explosion prolitemmodel checkingb], a fully
automatic (and quite efficient in time) formal method forifigng finite-state systenis
with respect to temporal logics specifications. Abstractieethods for model checking
are required to be preservative with respect to the logiguage used for specifying
the properties of the system. An abstraction method is salmbtveakly preservative
for a temporal logicC if whenever a property of £ is true in the abstract structune,
holds also in the concrete model. An abstraction methodidstedbe strongly preser-
vativefor a temporal logicC if both true and fals&-properties are preserved from the
abstract structure to the concrete model. Grumberg et 3].dtbved that the simula-
tion preorder is weakly preservative for ACTland ACTL, the universal fragments of

! The labeled graphs used to model the system under verificat@callecKripke structuresn
the context of Model Checking

https://core.ac.uk/display/53344524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the branching temporal logics CTL and CTI[4], as well as for the universal frag-
ment of theu-calculus. In [11], it was shown that the simulation equevede strongly
preserves both the universal and the existential fragnfeheg.-calculus. As a conse-
quence, it strongly preserves its sublogics ACTECTL*, ECTL and ACTL, widely
used for model checking. The latter preservation resultsbioed with the existence
of a number of polynomial algorithms for computing (the nmaal) simulation on a
labeled graph [2, 3, 6, 10], explains the appealing of situtabased abstraction meth-
ods in model checking, also w.r.t. other popular behavitgihement relations such
as language equivalence and bisimulation [16]. In facylage equivalence provides
strong preservation of linear temporal properties ancelaeguctions, however its com-
plexity is exponential, whereas the complexity of bisintiala and simulation is poly-
nomial [14, 7, 8]. On the other hand, bisimulation has theaatlkge (w.r.t. simulation
and language equivalence) of preserving more expresgjiesldHowever this is also a
disadvantage, since the abstract structure is requiregl$o blose to the original model
that the reductions allowed are far less powerful.

State of the Art Among the algorithms for computing the simulation preordee
most well known ones are by Henzinger, Henzinger and Kop&k Bloom and Paige
[1], Bustan and Grumberg [2, 3], Tan and Cleaveland [6], @ientPiazza, and Poli-
criti [9, 20], and Ranzato and Tapparo [17,18]. Given a (leb¢ graphG with |V|
nodes andE| edges, letV=,| be the size of the maximum simulation (equivalence)
on G. The algorithm by Ranzato and Tapparo [17] runsQ E||V=,|) time and
O(|E||V||V=4|) space. It is the best up-to-date simulation procedure aasfdime
complexity is concerned. On the other hand, the algorithif]ifthat originally had a
minor flow, subsequently corrected in [20]) has the bestoigdte space complexity—
O(|V=4 |*+|V]log(|V=4))—and runsirO(| E||V=4 |?) time. In [18], Ranzato and Tap-
paro proposed a new simulation algorithm featuring an im@meent w.r.t. the space-
complexity of their previous procedure, while slightly wening the time-performance
(of a cubic factor w.r.t|V=,|).

Our Contribution We propose a simulation algorithm that has optimal perforcea
w.r.t. both time and space on acyclic graphs, outperformili’rg18, 9]. Namely, our
algorithm use)(|E||V=,|) time andO(|V=,|? + |V'|1log(|V=4])) bits to compute a
simulation preorder on a given acyclic graph. The time/gpagprovement w.r.t. [17,
18, 9] relies on computing the maximum simulation proceginrank

2 Preliminaries

In this section we introduce the basic notations we use imebieof the paper.
Definition 1. LetV be a setand) C V x V a binary relation ovel:

— (@ is said to be greorderoverV if and only if @ is reflexive and transitive;

— (@ is said to be goartial orderoverV if and only if @ is reflexive, antisymmetric,
and transitive;

— @ is said to beacyclic if and only if its transitive closure is antisymmetric.

We will useQ™ to refer to the transitive closure @ and Q* to refer to the reflexive
and transitive closure af).

Notice that if a relation is acyclic, then it is antisymmetrivhile the converse does not
hold (unless it is transitive).

Definition 2. Atriple G = (V, E, X) is said to be dabelled grapfif and only ifG— =
(V, E) is a finite graph and¥ is a partition overl/. We say that two nodeg, v, € V
have the samkabelif they belong to the same class.Bf

An equivalent way to definlabelled graphss to use a labelling functiof: V- — L,
whereL is a finite set of labels (inducing of a partitidry, of V). Given a node € V/
we will use[v] = (or [v], if X is clear from the context) to denote the classiab which
v belongs.

Example 1.A Kripke Structurds a labelled graph and, vice-versa, each connected la-
belled graph can be seen as a Kripke Structure in which twieesatisfy the same set
of atomic propositions if and only if their labels are equal.

Definition 3. LetG = (V, E, X) be a labelled graph. A relatioC V' x V is said to
be asimulation overG if and only if:

1Lv<u— [y =uls;
2. (v<uAvEv) = Jui(uBu; Avr < uq).

In this case we also say thatsimulates.
We say that: andv are sim-equivalentfu =, v) if there exist two simulations; and
<,, such thatn <; m andm <j n.

Notice that a simulation can be neither reflexive nor traresife.g. the empty relation
is always a simulation), however the reader can easily wéhi&t given an arbitrary
simulation its reflexive and transitive closure is alwaysnaudation. A simulation<,
over@ is said to banaximalif for all the simulations< overG it holds <C<;. Given
a labelled graplty = (N, E, X) there always exists a unique maximal simulation
overG. Moreover<; is a preorder [12].

Example 2.Consider the labelled grapi = (V, E, X) depicted in Figure 1, where
V ={x,y,2}, E = {(z,9),(x,2),(y,2)}, and X = {a = {x,y},8 = {z}}. The
maximum simulation preorder of is given byl U {(y,z)}, whereI denotes the
identity relation ovei/.

Fig. 1. A labelled graph.

Given a labelled grapty, thesimulation problentonsists in determining the max-
imum simulation preorder of¥, and can be elegantly encoded in terms afoars-
est partition pair probleni9]. Such a formulation is the engine of the space efficient
procedure in [9, 20] and relies on the fundamental notiongasfition pair (PP), PP
refinemenand PPstability, recalled below.

Definition 4 (Partition Pairs). LetV be a set. A partition pair o is a pair (¥, R),
whereX' is a partition onV and R is a reflexive relation ort.

Given a set/, each preorder relatiod p on V' induces a corresponding partition pair
(V=,, P), where=p is the equivalence relatioap= {(u,v) |u <p v Av <p u},
andP = {(«a,5) € V=, | Ju € a,Fv € B.(u <p v)}. In particular, given a labelled
graphG = (V, E, X), we denote by{V=, S) the partition pair o’ corresponding to
the maximum simulation preordets of G consistent w.r.t>.

Definition 5. Let(X, R), (II, P) be two partition pairs orV:
(I, P) C (¥, R) & IT'is finer thanX and P C R(IT)
whereR(IT) denotes the relation off induced byR C X x X, i.e.:
Va,B € I((a,B) € RUT) & 3,8 (!, 8) e RAaC ' ABCA))

Given two sets of nodes, 8 C V we write« —3 [to denote that there exists a
nodea € a which reaches a nodec g, i.e., (a,b) € E. Similarly, « —v 8 denotes
that each node in. reaches a node ifi.

Definition 6 (Stability). LetG = (V, E') be a graph, lef X, R) be a partition pair on
V. (¥, R) is saidstablew.r.t. the transition relation of the graph iff:

Vo, € X(a—3 8= | {015 € R(@)} »v| {015 € R(B)}

Definition 7 (Coarsest Partition Pair Problem (CPPP)).LetG = (V,E, X)) be a
labelled graph, and consider the identity relatiéron X'. The coarsest partition pair
problem asks to determine the coarsest partition gailr P) C (X, I) stable w.r.t.E.

Lemmal (CPPP as Simulation Problem)LetG = (V, E, ¥) be a labelled graph.
The coarsest partition pair problem is well defined and adrag unique solution the
partition pair (V= S), corresponding to the maximum simulation preordeioon-

sistent w.r.t.Y.

Proof. We show that the unique solution to the CPPP is the partiton(p=,,.S) C
(X, I) corresponding to the maximum simulation preordgron G = (V, E) consis-
tent w.r.t.X. We start by proving thafV=,, S) is stable w.rtE. Leto, 8 € V=, and
assume thatvr —3 3. Then, there exist two nodesc «, s’ € 5 such thats — s’.
Consider an arbitrary nogec | J{d|d € S(«)}. Sinces <g pands — ¢, there exists
a nodep’ such thap — p’ ands’ <g p’. Hencep’ € |J{é | € S(B)}. Our arbitrary
choice ofp € [J{§ |6 € S(a)} guarantees that){s | § € S(a)} —v {0 |5 € S(B)},
i.e.(V=,, S) is stable w.r.tE.

To conclude our thesis, assume by absurd that there exisisiaqm pair(I1, P) C
(X, 1) stable w.rt.E and such that:((II,P) C (V=,,S)). Consider the relation
<(1,pyC V x V, where<(; py= {(s,5") | ([s]m,[s']z) € P}. By our assumption
stating that~((II, P) C (V=,,S)), we have thak; pyZ=s. Hence, an absurd fol-
lows by proving that<;; py is a simulation onG = (V, E) consistent w.r.t>. In
fact, in that case the relation;; py U =52 =5 would be a simulation relation strictly
including the maximum simulation preordets. To prove that< ; py is a simula-
tion on G = (V, E) consistent w.r.tY, let (s,s') €<(q,py. By (II,P) C (X, 1),
we have thafs]x = [s'] 5. Considerp such thats — p. Then[s]; —3 [p]x. Since
(I1, P) is stable w.r.t.E we have that’ € | J{§ | d € P([s];z)} has an edge to a node
p' € U{d |6 € P([p]n)}, i.e. to anode’ such thalp, p’) €< p). 0

3 An Optimal Simulation Algorithm on Acyclic Graphs

In this section, we introduce an optimal simulation aldorit (w.r.t. both time and
space) on acyclic graphs. Such a procedure relies on sdlvingoarsest partition pair
problem (i.e. computing the maximum simulation preordedcpeding byrank The
notion of rank, introduced in Definition 8, allows one to e a preliminary partition
in the given labelled graph. This is useful to drive the sgsise& computation, as stated
in Lemma 2.

Definition 8. LetG = (V, E) be an acyclic graph, let € V. Therankof the nodes is
defined as:

b(v) — 0 if E(v) =0,
rank(v) = max{1 + rank(u) | (v,u) € E} otherwise.

Example 3.Consider the labelled graph in Figure 1, described in Exar@pln such a
graph, node: has rank2, nodey has rankl and node: has ranlQ.

Lemma 2 (Rank & Simulation). Let G = (V, E') be an acyclic graph, and consider
a partition X on V. Then:

<VES ’ S) E <VER’ R>

where(V=, S) is the partition pair on/” encoding the maximum simulation consistent
w.rt. X, and(V=,, R) is the partition pair onV corresponding to the rank-labelling
preorder<g= {(u,v) | rank(u) < rank(v)}.

Proof. By absurd, assume tha{(V=,,S) C (V=,, R)). It follows that the maximum
simulation preorder s is not included in the relatiofi(s, s') | ([s]=5, [s']=r) € R},

i.e. there exists two nodesec V, s’ € V such thats <g s’ andrank(s) > rank(s’).
Let » = rank(s) > rank(s’). Sincerank(s) = r, we can determine a sequence of
r nodessy, ..., s, such thats — s; A\,.,_, si — si+1. By definition of simulation,
there exists a corresponding sequencemddess’, . . ., s,. such that

/ !/ ! /
(s" = s1 As1 =g 87) /\ 8i = Si41 A Sip1 2§ Sipq
1<i<r

Such a sequence of nodes witnesses the alaokds’) > r. O

Table 1 shows our rank-based simulation procedure on acgcdiphs. Such an algo-
rithm consists, mainly, of two phases: A preprocessing stdme 1-11 and a main
loopin line 12-28.

The preprocessing step performs the rank partitioning ®fgilien labelled graph,
which is then explored proceeding by rank (from the lowesh&highest rank), within
successive executions of the main loop at line 12. At eachtiten i of such a loop
(corresponding to rank — 1) the transitions targeting nodes having rank 1 are
employed to refine the current partition pair, in order t@blsh the stability property.

Example 4.Consider the labelled gragh = (V, E, X') depicted in Figure 1, illustrated
within Example 2. The algorithr8olveCPPP in Table 1 terminates upon the execution
of the first loop at line3, that uses the information given by the rank to refine théainit
partition pair(X, I) to the partition paifII, P), wherell = {a = {z},a1 = {y},5 =
{z}}andP = I U {(a1,«)}. In fact, in this case the preprocessing provided by the
loop at line3 is sufficient to solve the simulation problem.

4 Correctness and Complexity Results

In this section, we prove the correctness of our simulatigaréghm on acyclic graphs,
as well as its complexity.

4.1 Correctness

Lemma 3, below, shows that the preprocessing step correathputes the partition
pair induced by the rank labelling of the graph.

Lemma 3. The loop at line3 in the algorithmSolveCPPP((V, E), (¥, I')) terminates
computing the partition pai{I, P) and the variable rankMax, where:

e rankMax= max{rank(v) | v € V'},
e [I C X is the coarsest partition finer than the rank-labelling paon V= .,
o P={(a,p)|rank(a) <rank(f)AFye Z(a CyABC)}

Proof. This can be easily proved by induction on the number of loettons. a

Algorithm 1: SoLveCPPP

o U b~ wWwN

o0 ~

10
11

12
13
14
15
16

17
18
19
20
21
22

23
24
25
26
27
28

input : G = (V,E)(X,I ={(o,a) |ae € X})
output: (V=, S): partition pair encoding the maximum simulation preorgeron G

beg

end

consistent w.r.t¥.
in
[+ Initial refinement & rank-ordering of the classes. =/
notRanked := Vi;rankMaz := —1
repeat
forall @ € X' | a C notRanked A a € pre(notRanked) do
if & # o\ pre(notRanked) then
a1 = a\pre(notRanked); a := a\a1;rank(a) := rankMaz+1;
Y=Y U{a1};sim :=simU{(y,a1) | (7,a) € sim} U {(a1,)}
else
| rank(a):=rankMaz + 1

notRanked := pre(notRanked);rankMax := rankMaz + 1
until pre(notRanked) = ()
[+ Process X by rank & refine (X,sim) to establish the
stability prop. V(e,f8).(a =38 = sim(a) —v sim(B)). */
for rk = 1to rankMaz do
foreach g € X' | rank(8) = rk — 1 do
foreach o | pre(B) Na # 0 do
if o ¢ pre(sim(B3)) then
a1 = a \ pre(sim(B));rank(an) := rank(a); o := a \ ax;
Y =Y U
sim = sim U {(a1,9) | (o,) € sim}
U{(6,a1) | (6 # a,) € sim}
foreach | v € pre(sim(B)) Ay € sim(a) do
~v1:= 7 \ pre(sim(p))
if y1 # 7 then
v =\ yi;rank(y1) := rank(y); X = X U~y sim =
sim U {(’Ylv 6) | (77 6) € Sim} U {(67 ’Yl) | (6 7é 777) € Sim}
sim := sim \ {(a, 1)}

Lemma 4 and Theorem 1 define crucial invariants and prove ¥aédity throughout
the execution of the main loop at lin€. Such invariants define the correctness of our
simulation algorithm.

Lemma 4. Consider the overall execution of the for-loop at lih2 guarded by the
variable1 < rk < rankMax. Whenever a classg is involved either in a split or in a
refinement of its simulator se§{3 | (v, 5) € sim}, the following statement holds:

rank(vy) > rk

Proof. Denote by(Y;, sim;) the partition pair in input to thé-th iteration of the for-
loop at line12. Moreover, ifv is a class processed within tliéh execution of the
for-loop at linesl 2, let~; denote the unique class € X; such thaty; O .

Given the above notations, consider ikt execution of the for-loop at lineé= (for
whichrk = 7) and lety be a class in a partition pair processed within such an iterat
Assume that eithey C v;, or U{8 | (v, 8) € sim} # U{B: | (i, Bi) € sim;}. Then,
there exists a pair of classdd, 5} C X; such thatank(5) =i¢—1, a« —3 f and
vi € sim;(a). rank(B) =i —1 Aa —3 S impliesrank(«) > i. Lemma 3 allows then
to conclude thatank () = rank(~y;) > . O

Theorem 1. The following invariants hold at the beginning of each itesa of the
for-loop at line12, within the the algorithnSolveCPPP((V, E), (X, I)).

1. For each node € V such that ranKv) < rk:

= =a € DA J{ulv <5 u} = J{8] (e, B) € sim}
2. For each node € V such that ranKv) > rk:

=. Cae DAJfulv 2su} < (8] (0. 8) € sim}
3. For each pair of classes, 8 € X:

(=3 BArank(B) < rk—1) = | J{7[(e,7) € sim} = | J{71(8,7) € sim}

Proof. By induction on the number of iterations of the for-loop atli 1.

Base(rk = 1). The first two items in our statement follow directly from Lera 2 and
Lemma 3, while the third item holds trivially since no class X has a rank strictly
lower thanrk — 1 = 0.

Inductive Stegl < rk). Giveni > 1, denote by(X;, sim;) the partition pair in input
to thei-th execution of the for-loop at lin2. Given~y € X;~ 1, denote byy; _; the only
class inX;_; such thaty,;_; D ~.

1. In order to prove our inductive step for itef®), consider X, —, k1, Simi—rk>1)
and leta € X; such thath — S Arank(8) < i — 1. By rank(8) < ¢« — 1 and
Lemma 4 we haves;,_; = g andU{d | (5,9) € sim;} = U{0 | (Bi-1,9) €
sim;—1} = simf. Hence, ifrank(8) < (i — 1) — 1 we can conclude our thesis
exploiting the inductive hypothesis for whidh{é | (a;—1,9) € sim;—1} —v

simf. Otherwise, assumenk(5) = i — 1 and suppose by contradiction that
—(U{d | (a,d) € sim;} —v simf). Leta* D « be the superclass ef at the
moment in which3 gets selected at line3 with k& = i — 1. Within the execution
of the most internal foreach-loop at ling, if o* contains some state that does
not reachsim3, thena* gets split into the two subclasses; := o* \ sim and
a* = o\ a1. By @ —3 8 C simf3, we have that the statementC o* is true
both before and after such a split. Moreover, the loop atllingrocesses each class
v € sim}_;(a* D «a). If v contains some state that does not reaigh3, then~y
gets splitinto the two subclasses:= v\ simg andy := v\ a1, andy; is removed
from the simulators of* O « (line 23). Hence, onces have been considered at
line 13 within the : — 1-th execution of the for-loop at lingé2, we have that each
node belonging to a class simulatingj has a successor iim /3. Each subsequent
refinement ofv* or its set of simulators will maintain this property, andgtwe get
to the contradiction of our assumptietfl J{¢ | (c,) € sim;} —v simf3

2. We now proceed proving the inductive step for it€h. Leti = vk > 1 and
consider thgX;, sim;). Letv € V such thatank(v) < rk — 1. Then, item(1)
holds by Lemma 4 and by inductive hypothesis. Lsuch thatank(v) = rk — 1.
Then, by inductive hypothesis on itef®) we have:

[v]=4 QaeE/\U{uM}js u}QU{BHa,B)ESim} 1)

Moreover, the inductive step already proved on it&nensures that:

(@ =3 BATank(B) < rk—1) = | J{7|(e,7) € sim} =y [J{7](8,7) € sim}

(2)
Sincerank(a) = rk—1, any class reached layhas rank strictly lower thark — 1.
Hence, equations 1 and 2 guarantee that:

[v]=4 :aGE/\U{uM}jSu}:U{ﬁHa,B)Esim}

completing our inductive step for itefn).

3. Leti = rk > 1 and considep such thatrank(v) > rk. If rank(v) > rk, than
[v]z, = [v]z,,, € « by inductive hypothesis. Ifank(v) = rk, there are two
cases to consider. In the first casels, = [v]x,,, (i.e. the class ob gets not
split within the i-th iteration of the loop at line 13) and weealone. In the second
casev]y, gets split intow, oy within the i-th execution of the loop at line 13. By
contradiction, assume there exist two staies «,u’ € a7 such thatu =g '.
By definition of o, a1, u has a successor into a clagsf rankr < rk, andu’ has
no successor in any clags € sim(f5). By inductive hypothesis, this implies that
there exists: such that(u, z) € E andu’ has no successef such that: <g 2/,
contradicting our hypothesis=g u'.

O

4.2 Complexity

We finally establish the complexity of our simulation algbm on acyclic graphs. In
particular, Theorem 2 shows that our procedure W8g%||V=,|) time and requires

O(|V=4]? + |V|log(|V=4|)) bits to compute a simulation preorder on a given acyclic
labelled graptG = (V, E,). Therefore, it has optimal performances w.r.t. both time
and space on acyclic graphs, outperforming [17, 18, 9].

Theorem 2. The algorithmSolveCPPP (G = (V, E), (¥, 1)) performsO(|V=,||E|)
steps and use8(|V=, |> + |V|log(|V=,|)) bits to compute the solution to the coarsest
partition pair problem(V=,, S).

Proof. Let r = max{rank(v) | v € V'}. The cost of the while-loop at lin&is O(r
|E]) = O(|V=4 || E])-

The cost of the loop at ling2, excluded the execution of the innermost if-statement
atline21, is:

O(Z11Zsev ranks)=i— (IPre(B) x| S| + lpre({6] (8,0) € sim}|) =

= O(|V=¢||E])

In fact, consider a clas8 such thatrank(8) = ¢ — 1. It is possible to distinguish
with marks the classes that reach (resp. do not reach/reificialtheir nodes) the set
{0 (B,0) € sim} atthe cosO(pre(|J{d | (8,9) € sim}). Moreover, the same cost
allows one to appropriately mark each nodevir(|J{d | (3,d) € sim}. Then, fixed
B,rank(B) = i—1, the cost of executing lineisl—24 without considering the innermost
if-statement, i) (|[pre(U{d | (8,9) € sim}| + Zocpre(s)lsim(a)l).

The innermost if-statement at lin@$—23 is executed only upon the creation of a
new classy; and cost globally)(|V=, || E|). In fact, each execution of lined 23 for
the creation of the new classes, v \ 1 from v, requires only to scan the nodesqin
and the classes isim(y), sim=*(v).

As far as space complexity is concerned we refer to bit coritylevithout consider-
ing the space required by the gra@hsince it is never modified (see, e.g., [15, 2, 3]). In
particular,X is stored through an array of lendfti| associating to each node its class.
Hence, it require®(|V|log(|V=4])) bits. not Ranked is a|V| array of bits, labeling
with 1 the nodes which do not have a ramknk is stored in V| array of lists, where
theith list keeps the classes at ranklence it require®(|V| + | V=, | log(|V=,)) bits.
Finally, the relationsim is stored in a bit matrix whose size grows up@g|V=, |?)
bits. a

5 Conclusion

We presented an algorithm for computing the maximum sirmandaguotient and the
simulation preorder on acyclic graphs. Our algorithm iselolasn a characterization of
the simulation problem as coarsest partition pair problechan the notion of rank. The
notion of rank is a standard one in well-founded set theag,(8.9., [19]) and has been
exploited in [7, 8] to define an algorithm for computing theximaum bisimulation.
The algorithm presented in [7, 8] has a linear time compjdrithe acyclic case, while
in the general case it allows one to focus the computationubgraphs of the given
graph. The algorithm we presented here has optimal spaegserformances on acyclic
graphs.

On the one hand, its generalization to the general caselli@istopen problem.
Unfortunately, when moving from acyclic to cyclic graphe thotion of simulation is
not “compositional”, since loops allow to simulate pathadfitrary length.

On the other hand, another open problem concerns the pagsibideveloping a
linear time simulation algorithm for the acyclic case. Agahere seems to be an in-
trinsic higher complexity in the notion of simulation w.hisimulation which does not
allow to reach the linear time complexity. In particular,ilglthe notion of bisimulation
on acyclic graphs corresponds to equality on well-foundgsg, simulation in terms of
set theory is a sort of recursive inclusion.

References

1. Bard Bloom and Robert Paige. Transformational design iamplementation of a new
efficient solution to the ready simulation problenScience of Computer Programming
24(3):189-220, June 1995.

2. D. Bustan and O. Grumberg. Simulation based minimizationD.A. McAllester, editor,
Proc. 17th Int'l Conference on Automated Deduction (CAQE, @olume 1831 olLNCS
pages 255-270. Springer, 2000.

3. D. Bustan and O. Grumberg. Simulation based minimizatd@M Transactions on Com-
putational Logic (TOCL)4:181-206, 2003.

4. E. Clarke and E. Emerson. Design and synthesis of synidatton skeletons using
branching-time temporal logic4.ogic of Programspages 52—-71, 1981.

5. E. Clarke, O. Grumberg, and D. Pelddodel CheckingElsevier/MIT press, 2001.

6. R. Cleaveland and L. Tan. Simulation revisited. In T. Maig and W. Yi, editorsProc.
7th Int'l Conference on Tools and Algorithms for the Constien and Analysis of Systems
(TACAS’'01) volume 2031 of NCS pages 480—495. Springer, 2001.

7. A.Dovier, C. Piazza, and A. Policriti. A fast bisimulatialgorithm. In G. Berry, H. Comon,
and A. Finkel, editorsProceedings of Computer Aided Verification (CAV'0@lume 2102
of LNCS pages 79-90. Springer, 2001.

8. A. Dovier, C. Piazza, and A. Policriti. An efficient algmin for computing bisimulation
equivalenceTheoretical Computer Sciencg&l1:221-256, 2004.

9. R. Gentilini, C. Piazza, and A. Policriti. From bisimutat to simulation: Coarsest partition
problems.J. Autom. Reasonin@®1(1):73-103, 2003.

10. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Commusimulations on finite and
infinite graphs. 1B6th Annual Symposium on Foundations of Computer Scier@@€ §o5)
pages 453-462. IEEE Computer Society Press, 1995.

11. K. Laiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. &dem. Preserving abstractions for
the verification of concurrent systenf@rmal Methods in System Desjdi(1):11-44, 1995.

12. R. Milner. A calculus of communicating systems. In G. &amd J. Hartmanis, editors,
Lecture Notes on Computer Sciepngelume 92. Springer, 1980.

13. O. Grumberg and D.E. Long. Model checking and modulafigation. ACM Transactions
on Programming Languages and systef(3):843-871, May 1994.

14. R. Paige and R. E. Tarjan. Three partition refinementithgns. SIAM Journal on Comput-
ing, 16(6):973-989, 1987.

15. C. H. Papadimitriou.Computational complexity Addison-Wesley Publishing Company,
Inc., 1994.

16. D. Park. Concurrency on automata and infinite sequenbesoretical Computer Science
pages 167-183, 1981.

17. F.Ranzato and F. Topparo. A new efficient simulationvadence algorithm. IProceedings
of Logics in Computer Science (LICS’Qppges 171-180, 2007.

18. F. Ranzato and F. Topparo. Saving space in a time effiimotation algorithm. IfProceed-
ings of Int. Conference on Application of Concurrency tot&ysdesign (ACSD’09pages
60-69, 2009.

19. J. E. RubinSet Theory for the Mathematiciailew York: Holden-Day, 1967.

20. R. van Glabbeek and B. Ploeger. Correcting a spaceegffgimulation algorithm. I#ro-
ceedings of Int. Conference on Computer Aided Verificatt08), pages 517-529, 2008.

