1,001 research outputs found

    Formalization and Model Checking of BPMN Collaboration Diagrams with DD-LOTOS

    Get PDF
    Business Process Model and Notation (BPMN) is a standard graphical notation for modeling complex business processes. Given the importance of business processes, the modeling analysis and validation stage for BPMN is essential. In recent years, BPMN notation has become a widespread practice in business process modeling because of these intuitive diagrams. BPMN diagrams are built from basic elements. The major challenge of BPMN diagrams is the lack of formal semantics, which leads to several interpretations of the concerned diagrams. Hence, this work aims to propose an approach for checking BPMN collaboration diagrams to guarantee some properties of smooth functioning of systems modeled by BPMN notation. The verification approach used in this work is based on model checking techniques. The approach proposes as a first step a formal semantics of the collaboration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the transformation of collaboration diagrams into DD-LOTOS. This transformation is guided by applying the inference rules of the formal semantics of the DD-LOTOS formal language, and we then use the UPPAAL model checker to check the absence of deadlock, safety properties, and liveness properties

    Analysis and Verification of Service Contracts

    Get PDF

    Extempore: The design, implementation and application of a cyber-physical programming language

    Get PDF
    There is a long history of experimental and exploratory programming supported by systems that expose interaction through a programming language interface. These live programming systems enable software developers to create, extend, and modify the behaviour of executing software by changing source code without perceptual breaks for recompilation. These live programming systems have taken many forms, but have generally been limited in their ability to express low-level programming concepts and the generation of efficient native machine code. These shortcomings have limited the effectiveness of live programming in domains that require highly efficient numerical processing and explicit memory management. The most general questions addressed by this thesis are what a systems language designed for live programming might look like and how such a language might influence the development of live programming in performance sensitive domains requiring real-time support, direct hardware control, or high performance computing. This thesis answers these questions by exploring the design, implementation and application of Extempore, a new systems programming language, designed specifically for live interactive programming

    Correctness Issues on MARTE/CCSL constraints

    Get PDF
    International audienceThe UML Profile for Modeling and Analysis of Real-Time and Embedded systems promises a general modeling framework to design and analyze systems. Lots of works have been published on the modeling capabilities offered by MARTE, much less on available verification techniques. The Clock Constraint Specification Language (CCSL), first introduced as a companion language for MARTE, was devised to offer a formal support to conduct causal and temporal analysis on MARTE models.This work relies on a state-based semantics for CCSL to establish correctness properties on MARTE/CCSL specifications. We propose and compare two different techniques to build the state-space of a specification. One is an extension of some previous work and is based on extended finite state machines. It relies on integer linear programming to solve the constraints and reduce the state-space. The other one is based on an intentional representation and uses pure Boolean abstractions but offers no guarantee to terminate when the specification is not safe.The approach is illustrated on one simple example where the architecture plays an important role. We describe a process where the logical description of the application is progressively refined to take into account the execution platform through allocation

    Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications

    Full text link
    This paper presents a transformational approach for model checking two important classes of metric temporal logic (MTL) properties, namely, bounded response and minimum separation, for nonhierarchical object-oriented Real-Time Maude specifications. We prove the correctness of our model checking algorithms, which terminate under reasonable non-Zeno-ness assumptions when the reachable state space is finite. These new model checking features have been integrated into Real-Time Maude, and are used to analyze a network of medical devices and a 4-way traffic intersection system.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    When Operation Technology Meets Information Technology: Challenges and Opportunities

    Get PDF
    Industry 4.0 has revolutionized process innovation while facilitating and encouraging many new possibilities. The objective of Industry 4.0 is the radical enhancement of productivity, a goal that presupposes the integration of Operational Technology (OT) networks with Information Technology (IT) networks, which were hitherto isolated. This disruptive approach is enabled by adopting several emerging technologies in Enterprise processes. In this manuscript, we discuss what we believe to be one of the main challenges preventing the full employment of Industry 4.0, namely, the integration of Operation Technology networking and Information Technology networking. We discuss the technical challenges alongside the potential tools while providing a state-of-the-art use case scenario. We showcase a possible solution based on the Asset Administration Shell approach, referring to the use case of camera synchronization for collaborative tasks
    corecore