111 research outputs found

    Simulating the universe on an intercontinental grid of supercomputers

    Full text link
    Understanding the universe is hampered by the elusiveness of its most common constituent, cold dark matter. Almost impossible to observe, dark matter can be studied effectively by means of simulation and there is probably no other research field where simulation has led to so much progress in the last decade. Cosmological N-body simulations are an essential tool for evolving density perturbations in the nonlinear regime. Simulating the formation of large-scale structures in the universe, however, is still a challenge due to the enormous dynamic range in spatial and temporal coordinates, and due to the enormous computer resources required. The dynamic range is generally dealt with by the hybridization of numerical techniques. We deal with the computational requirements by connecting two supercomputers via an optical network and make them operate as a single machine. This is challenging, if only for the fact that the supercomputers of our choice are separated by half the planet, as one is located in Amsterdam and the other is in Tokyo. The co-scheduling of the two computers and the 'gridification' of the code enables us to achieve a 90% efficiency for this distributed intercontinental supercomputer.Comment: Accepted for publication in IEEE Compute

    Simulating the Universe with MICE: The abundance of massive clusters

    Get PDF
    We introduce a new set of large N-body runs, the MICE simulations, that provide a unique combination of very large cosmological volumes with good mass resolution. They follow the gravitational evolution of ~ 8.5 billion particles (2048^3) in volumes covering up to 450 (Gpc/h)^3. Our main goal is to accurately model and calibrate basic cosmological probes that will be used by upcoming astronomical surveys. Here we take advantage of the very large volumes of MICE to make a robust sampling of the high-mass tail of the halo mass function (MF). We discuss and avoid possible systematic effects in our study, and do a detailed analysis of different error estimators. We find that available fits to the local abundance of halos (Warren et al. (2006)) match well the abundance in MICE up to M ~ 10^{14}\Msun, but significantly deviate for larger masses, underestimating the mass function by 10% (30%) at M = 3.16 x 10^{14}\Msun (10^{15}\Msun). Similarly, the widely used Sheth & Tormen (1999) fit, if extrapolated to high redshift assuming universality, leads to an underestimation of the cluster abundance by 30%, 20% and 15% at z=0, 0.5, 1 for M ~ [7 - 2.5 - 0.8] x 10^{14}\Msun respectively (ν=δc/σ 3\nu = \delta_c/\sigma ~ 3). We provide a re-calibration of the halo MF valid over 5 orders of magnitude in mass, 10^{10} < M/(\Msun) < 10^{15}, that accurately describes its redshift evolution up to z=1. We explore the impact of this re-calibration on the determination of dark-energy, and conclude that using available fits may systematically bias the estimate of w by as much as 50% for medium-depth (z <= 1) surveys. MICE halo catalogues are publicly available at http://www.ice.cat/miceComment: 16 pages, 11 figures. Data publicly available at http://www.ice.cat/mice. New version adds discussion on halo definition (SO vs FoF) and minor modifications. Accepted for publication in MNRA

    Simulating the universe(s) Ill: observables for the full bubble collision spacetime

    Get PDF
    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methods against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating

    Interactions of Satellite Galaxies in Cosmological Dark Matter Halos

    Full text link
    We present a statistical analysis of the interactions between satellite galaxies in cosmological dark matter halos taken from fully self-consistent high-resolution simulations of galaxy clusters. We show that the number distribution of satellite encounters has a tail that extends to as many as 3-4 encounters per orbit. On average 30% of the substructure population had at least one encounter (per orbit) with another satellite galaxy. However, this result depends on the age of the dark matter host halo with a clear trend for more interactions in younger systems. We also report a correlation between the number of encounters and the distance of the satellites to the centre of the cluster: satellite galaxies closer to the centre experience more interactions. However, this can be simply explained by the radial distribution of the substructure population and merely reflects the fact that the density of satellites is higher in those regions. In order to find substructure galaxies we applied (and present) a new technique based upon the N-body code MLAPM. This new halo finder MHF (MLAPM's-Halo-Finder) acts with exactly the same accuracy as the N-body code itself and is therefore free of any bias and spurious mismatch between simulation data and halo finding precision related to numerical effects.Comment: 6 pages, 4 figures, accepted by PASA (refereed contribution to the 5th Galactic Chemodynamics workshop, July 2003

    MPWide: a light-weight library for efficient message passing over wide area networks

    Full text link
    We present MPWide, a light weight communication library which allows efficient message passing over a distributed network. MPWide has been designed to connect application running on distributed (super)computing resources, and to maximize the communication performance on wide area networks for those without administrative privileges. It can be used to provide message-passing between application, move files, and make very fast connections in client-server environments. MPWide has already been applied to enable distributed cosmological simulations across up to four supercomputers on two continents, and to couple two different bloodflow simulations to form a multiscale simulation.Comment: accepted by the Journal Of Open Research Software, 13 pages, 4 figures, 1 tabl

    Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    Full text link
    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities induces a coherent bulk flow over gigaparsec scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.Comment: 33 pages, 17 figures. Minor clarifications added in version 2, conclusions are unchange
    corecore