44,604 research outputs found

    Color-coordinate system from a 13th-century account of rainbows.

    Get PDF
    We present a new analysis of Robert Grosseteste’s account of color in his treatise De iride (On the Rainbow), dating from the early 13th century. The work explores color within the 3D framework set out in Grosseteste’s De colore [see J. Opt. Soc. Am. A 29, A346 (2012)], but now links the axes of variation to observable properties of rainbows. We combine a modern understanding of the physics of rainbows and of human color perception to resolve the linguistic ambiguities of the medieval text and to interpret Grosseteste’s key terms

    Determinantal point process models on the sphere

    Full text link
    We consider determinantal point processes on the dd-dimensional unit sphere Sd\mathbb S^d. These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function defined on Sd×Sd\mathbb S^d\times\mathbb S^d. We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd\mathbb{S}^d, where it becomes essential to specify the eigenvalues and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach

    A LiDAR Point Cloud Generator: from a Virtual World to Autonomous Driving

    Full text link
    3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate point-level labels from a computer game. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic calibration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed

    Detecting the orientation of magnetic fields in galaxy clusters

    Full text link
    Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in Nature Physics, high-resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd
    • …
    corecore