14,508 research outputs found

    Bayesian regression discontinuity designs: Incorporating clinical knowledge in the causal analysis of primary care data

    Get PDF
    The regression discontinuity (RD) design is a quasi-experimental design that estimates the causal effects of a treatment by exploiting naturally occurring treatment rules. It can be applied in any context where a particular treatment or intervention is administered according to a pre-specified rule linked to a continuous variable. Such thresholds are common in primary care drug prescription where the RD design can be used to estimate the causal effect of medication in the general population. Such results can then be contrasted to those obtained from randomised controlled trials (RCTs) and inform prescription policy and guidelines based on a more realistic and less expensive context. In this paper we focus on statins, a class of cholesterol-lowering drugs, however, the methodology can be applied to many other drugs provided these are prescribed in accordance to pre-determined guidelines. NHS guidelines state that statins should be prescribed to patients with 10 year cardiovascular disease risk scores in excess of 20%. If we consider patients whose scores are close to this threshold we find that there is an element of random variation in both the risk score itself and its measurement. We can thus consider the threshold a randomising device assigning the prescription to units just above the threshold and withholds it from those just below. Thus we are effectively replicating the conditions of an RCT in the area around the threshold, removing or at least mitigating confounding. We frame the RD design in the language of conditional independence which clarifies the assumptions necessary to apply it to data, and which makes the links with instrumental variables clear. We also have context specific knowledge about the expected sizes of the effects of statin prescription and are thus able to incorporate this into Bayesian models by formulating informative priors on our causal parameters.Comment: 21 pages, 5 figures, 2 table

    Simulation Genres and Student Uptake: The Patient Health Record in Clinical Nursing Simulations

    Get PDF
    Drawing on fieldwork, this article examines nursing students’ design and use of a patient health record during clinical simulations, where small teams of students provide nursing care for a robotic patient. The student-designed patient health record provides a compelling example of how simulation genres can both authentically coordinate action within a classroom simulation and support professional genre uptake. First, the range of rhetorical choices available to students in designing their simulation health records are discussed. Then, the article draws on an extended example of how student uptake of the patient health record within a clinical simulation emphasized its intertextual relationship to other genres, its role mediating social interactions with the patient and other providers, and its coordination of embodied actions. Connections to students’ experiences with professional genres are addressed throughout. The article concludes by considering initial implications of this research for disciplinary and professional writing courses

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Probing empirical contact networks by simulation of spreading dynamics

    Full text link
    Disease, opinions, ideas, gossip, etc. all spread on social networks. How these networks are connected (the network structure) influences the dynamics of the spreading processes. By investigating these relationships one gains understanding both of the spreading itself and the structure and function of the contact network. In this chapter, we will summarize the recent literature using simulation of spreading processes on top of empirical contact data. We will mostly focus on disease simulations on temporal proximity networks -- networks recording who is close to whom, at what time -- but also cover other types of networks and spreading processes. We analyze 29 empirical networks to illustrate the methods

    Reactive point processes: A new approach to predicting power failures in underground electrical systems

    Full text link
    Reactive point processes (RPPs) are a new statistical model designed for predicting discrete events in time based on past history. RPPs were developed to handle an important problem within the domain of electrical grid reliability: short-term prediction of electrical grid failures ("manhole events"), including outages, fires, explosions and smoking manholes, which can cause threats to public safety and reliability of electrical service in cities. RPPs incorporate self-exciting, self-regulating and saturating components. The self-excitement occurs as a result of a past event, which causes a temporary rise in vulner ability to future events. The self-regulation occurs as a result of an external inspection which temporarily lowers vulnerability to future events. RPPs can saturate when too many events or inspections occur close together, which ensures that the probability of an event stays within a realistic range. Two of the operational challenges for power companies are (i) making continuous-time failure predictions, and (ii) cost/benefit analysis for decision making and proactive maintenance. RPPs are naturally suited for handling both of these challenges. We use the model to predict power-grid failures in Manhattan over a short-term horizon, and to provide a cost/benefit analysis of different proactive maintenance programs.Comment: Published at http://dx.doi.org/10.1214/14-AOAS789 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Testing Modeling Assumptions in the West Africa Ebola Outbreak

    Get PDF
    The Ebola virus in West Africa has infected almost 30,000 and killed over 11,000 people. Recent models of Ebola Virus Disease (EVD) have often made assumptions about how the disease spreads, such as uniform transmissibility and homogeneous mixing within a population. In this paper, we test whether these assumptions are necessarily correct, and offer simple solutions that may improve disease model accuracy. First, we use data and models of West African migration to show that EVD does not homogeneously mix, but spreads in a predictable manner. Next, we estimate the initial growth rate of EVD within country administrative divisions and find that it significantly decreases with population density. Finally, we test whether EVD strains have uniform transmissibility through a novel statistical test, and find that certain strains appear more often than expected by chance.Comment: 16 pages, 14 figure

    Using a virtual cortical module implementing a neural field model to modulate brain rhythms in Parkinson’s disease

    Get PDF
    We propose a new method for selective modulation of cortical rhythms based on neural field theory, in which the activity of a cortical area is extensively monitored using a two-dimensional microelectrode array. The example of Parkinson’s disease illustrates the proposed method, in which a neural field model is assumed to accurately describe experimentally recorded activity. In addition, we propose a new closed-loop stimulation signal that is both space- and time- dependent. This method is especially designed to specifically modulate a targeted brain rhythm, without interfering with other rhythms. A new class of neuroprosthetic devices is also proposed, in which the multielectrode array is seen as an artificial neural network interacting with biological tissue. Such a bio-inspired approach may provide a solution to optimize interactions between the stimulation device and the cortex aiming to attenuate or augment specific cortical rhythms. The next step will be to validate this new approach experimentally in patients with Parkinson’s disease

    Patient Risk and Data Standards in Healthcare Supply Chain

    Get PDF
    Patient safety is one of the most important health care challenges. It is a big concern since 1 in every 10 patients around the world is affected by healthcare errors. The focus of this study is given to preventable adverse events that caused by the errors or system flaw that could have been avoided. In this study, simulation models are developed using Arena to evaluate the impact of GS1 data standards on patient risk in healthcare supply chain. The focus was given to the provider hospital supply chain operations where inventory discrepancy and performance deficiencies in recall, return, and outdate management can directly affect patient safety. Simulation models are developed for various systems and scenarios to compare different performance measures and analyze the impact of GS1. The results indicates that as the validation points are closer to the point of use, the number of recalled or outdated products administered to a patient are still reduced significantly so checking at the bedside or PAR is critical. But validation only at these points may cause some problems such as stock outs; therefore, validating in other locations is also needed
    • 

    corecore