1,925 research outputs found

    Socially Compliant Navigation through Raw Depth Inputs with Generative Adversarial Imitation Learning

    Full text link
    We present an approach for mobile robots to learn to navigate in dynamic environments with pedestrians via raw depth inputs, in a socially compliant manner. To achieve this, we adopt a generative adversarial imitation learning (GAIL) strategy, which improves upon a pre-trained behavior cloning policy. Our approach overcomes the disadvantages of previous methods, as they heavily depend on the full knowledge of the location and velocity information of nearby pedestrians, which not only requires specific sensors, but also the extraction of such state information from raw sensory input could consume much computation time. In this paper, our proposed GAIL-based model performs directly on raw depth inputs and plans in real-time. Experiments show that our GAIL-based approach greatly improves the safety and efficiency of the behavior of mobile robots from pure behavior cloning. The real-world deployment also shows that our method is capable of guiding autonomous vehicles to navigate in a socially compliant manner directly through raw depth inputs. In addition, we release a simulation plugin for modeling pedestrian behaviors based on the social force model.Comment: ICRA 2018 camera-ready version. 7 pages, video link: https://www.youtube.com/watch?v=0hw0GD3lkA

    Modelling shared space users via rule-based social force model

    Get PDF
    The promotion of space sharing in order to raise the quality of community living and safety of street surroundings is increasingly accepted feature of modern urban design. In this context, the development of a shared space simulation tool is essential in helping determine whether particular shared space schemes are suitable alternatives to traditional street layouts. A simulation tool that enables urban designers to visualise pedestrians and cars trajectories, extract flow and density relation in a new shared space design and achieve solutions for optimal design features before implementation. This paper presents a three-layered microscopic mathematical model which is capable of representing the behaviour of pedestrians and vehicles in shared space layouts and it is implemented in a traffic simulation tool. The top layer calculates route maps based on static obstacles in the environment. It plans the shortest path towards agents' respective destinations by generating one or more intermediate targets. In the second layer, the Social Force Model (SFM) is modified and extended for mixed traffic to produce feasible trajectories. Since vehicle movements are not as flexible as pedestrian movements, velocity angle constraints are included for vehicles. The conflicts described in the third layer are resolved by rule-based constraints for shared space users. An optimisation algorithm is applied to determine the interaction parameters of the force-based model for shared space users using empirical data. This new three-layer microscopic model can be used to simulate shared space environments and assess, for example, new street designs

    Quantitative Description of Pedestrian Dynamics with a Force based Model

    Full text link
    This paper introduces a space-continuous force-based model for simulating pedestrian dynamics. The main interest of this work is the quantitative description of pedestrian movement through a bottleneck. Measurements of flow and density will be presented and compared with empirical data. The results of the proposed model show a good agreement with empirical data. Furthermore, we emphasize the importance of volume exclusion in force-based models.Comment: 4 pages, 7 figures, 2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT 2009), 15-18 September 2009, in Milano, Italy, 200

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Role Playing Learning for Socially Concomitant Mobile Robot Navigation

    Full text link
    In this paper, we present the Role Playing Learning (RPL) scheme for a mobile robot to navigate socially with its human companion in populated environments. Neural networks (NN) are constructed to parameterize a stochastic policy that directly maps sensory data collected by the robot to its velocity outputs, while respecting a set of social norms. An efficient simulative learning environment is built with maps and pedestrians trajectories collected from a number of real-world crowd data sets. In each learning iteration, a robot equipped with the NN policy is created virtually in the learning environment to play itself as a companied pedestrian and navigate towards a goal in a socially concomitant manner. Thus, we call this process Role Playing Learning, which is formulated under a reinforcement learning (RL) framework. The NN policy is optimized end-to-end using Trust Region Policy Optimization (TRPO), with consideration of the imperfectness of robot's sensor measurements. Simulative and experimental results are provided to demonstrate the efficacy and superiority of our method
    corecore