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Abstract  
This work presents an approach for generating video evidence of dangerous situations in crowded scenes. The 
scenarios of interest are those with high safety risk such as blocked exit, collapse of a person in the crowd, and 
escape panic. Real visual evidence for these scenarios is rare or unsafe to reproduce in a controllable way. Thus 
there is a need for simulation to allow training and validation of computer vision systems applied to crowd 
monitoring. The results shown here demonstrate how to simulate the most important aspects of crowds for 
performance analysis of computer based video surveillance systems. 
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1. Introduction 

The problem of understanding and defining what a human crowd is and how it behaves can be 
analysed at different levels. For instance, crowds are represented as an aggregate of 
individuals having a set of motivations and basic rules [1-5]. This representation permits a 
flexible analysis of a large spectrum of crowd densities and complicated behaviours. 
Continuous crowds (high densities) are also represented as fluids and simulations from fluid 
mechanics are applied to represent the crowd flow. Another approach for crowd 
representation is that of a “thinking fluid” [6], working also for continuous crowds allowing 
an analytical model for the flow. The numerical simulation of crowds as a fluid for complex 
geometries or as discrete pedestrians to represent complicated behaviours is well established. 
Most of the work up to date addresses applications in building safety planning [2], crowd 
rendering for virtual world animation [1][21] or motion picture special effects [18]. However, 
in recent years computer vision systems are trying to model and interpret different sorts of 
human activities [7] including the behaviour of crowds [8]. Most recent computer vision 
systems for behaviour understanding rely on a statistical model. In order to build such models 
usually there is the need for large amounts of visual data with examples of the activities to be 
learnt. In other application domains such as gesture recognition [11], cargo bay activity [11-
12] and office activity recognition [13] the reproducibility and complexity of the scene 
elements are simpler, whereas gathering interesting crowd behaviours in a surveillance 
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context is much more challenging. In the crowd surveillance domain there is the additional 
issue of legal restrictions for gathering statistically significant CCTV data from public 
surveillance systems. Given the practical complexities of gathering crowd video evidence and 
the need for repeatable and predictable ways to generate video evidence of crowd behaviour 
our work applies recent techniques of crowd simulation as discrete pedestrians to visual 
evidence synthesis. The visual evidence generation simulates CCTV video for computer 
vision modules performing image understanding. One of the applications of such video 
analysis is the detection of unusual events in the crowd. As an illustration one uses the 
simulated video output to collect long sequences of “normal” crowd behaviour for the training 
of statistical models and short sequences of “abnormalities” are generated to test whether or 
not the statistical model is able to correctly understand the test sequence as an unusual event 
in the crowd. 

This paper is structured as follows. The second section discuses the modeling of events for the 
surveillance scenario and the context where the crowd simulations are applied. The third 
section presents the details of the simulation model for visual evidence generation. The fourth 
section shows results of applying the model for different dangerous crowd scenarios. The fifth 
section draws the final comments and conclusions. 

2. Modelling Behaviour for Surveillance 

Previous work on surveillance systems for crowd monitoring has been applied mainly to 
indoor environments such as underground stations [15]. They concentrate on detecting events 
in crowds such as overcrowding and congestion, detection of unusual and forbidden 
directions of motion, intrusion and detection of stationary people in forbidden areas. These 
systems use prior knowledge about the scene to i) set the limits for event detection and ii) 
model abnormal situations. Recently there has been a series of attempts to use computer 
vision to automatically learn and recognize human activities [16-17]. These systems attempt 
to understand visual data to derive a set of behaviours and activities, which can be used for 
recognition and classification. However, there has been no attempt to date of applying such 
techniques to model the activities and behaviours of a large group of individuals. Using such 
techniques for large groups of people, such as crowds, assumes that the normal behaviour of 
the crowd can be learnt from long sequences of observations. This behavioural model then 
can be used to evaluate the degree of abnormality for unusual or emergency events. In order 
to achieve this goal, reliable and reproducible data of people’s movements is necessary to test 
the modelling assumptions. 

3. Simulation Model 

The assumptions for the simulation are that pedestrians in the crowd react to their 
environment, other individuals, entrances/exists and obstacles, using a set of basic rules and 
local observations. This simplification is appropriate for simulating dangerous situations. If 
they were too smart and had knowledge of the whole world they would not put themselves in 
danger. One model of particular interest, which allows for these modelling assumptions, is the 
social force mode [2-3]. It assumes that the interaction between pedestrians and their world is 
modelled by a force corresponding to the motivation of a pedestrian to move in a given 
direction at a certain speed. Forces representing the need to deviate from other pedestrians and 
obstacles counterbalance the motivational force. This simulation framework easily provides a 
compact representation for two of the main behavioural aspects of a pedestrian in a crowd: 



following a given path and performing collision avoidance with obstacles. The motion 
behaviour derived from these two key aspects represents the crowd accurately enough in a 
CCTV surveillance domain.  

After simulating a realistic pattern of motion for the crowd the next task is to render an image 
representation. For this the dimensions of the simulated world correspond to measurements of 
a real location. To position the world objects in the simulation the world is discretized to a 
grid of 1 cm2. To represent objects on the simulated world back into the real world, the 
ground plane of the simulated world is mapped on the real world image ground plane using a 
homography [10] transformation. The homography is computed with measurements from the 
real scene [19]. Overlaying image sprites representing pedestrians on the real scene image 
performs the final image rendering. The sprite area is scaled as a function of their relative 
depth in the image to represent their relative distance from the camera. The next subsections 
detail the simulation model for the pedestrian motion. 

3.1. Pedestrian Path Model 

The desired pedestrian path is modeled as a series of control points shown in figure 1. The 
beginning point defines the dimensions of the entrance area (Earea) for pedestrians. The 
intermediary way points for each pedestrian are obtained by adding uniform noise ([Upath_x, 
Upath_y) to the original user specified way point coordinates resulting in a diverse set of way 
points per pedestrian. Each pedestrian attempts to follow its unique variant of the path. The 
ending point is located over a pre-defined exit representing the final goal for a pedestrian 
leaving the scene. 

begin

way points

exit  
Figure 1: Model for the pedestrian path. 

3.2. Pedestrian Body Model 

The body model for the pedestrian on the ground plane is defined as a circle of area 900 cm2 
[5], which agrees with statistics of population size distribution and permits the simulation of 
interesting pedestrian densities, i.e. approaching 10 people per square meter in situations of 
panic and overcrowding. If the pedestrian were made too large there would be a self-imposed 
limit in the simulation allowing for an inbuilt safety factor in the pedestrian densities. The 
pedestrian body is considered uncompressible and the simulation does not take into account 
crushing or deformation effects in the crowd. 

 



3.3. Pedestrian Motion Model 

The simulation model for pedestrian motion is based on a modification of the social force 
model described in [2] and [3]. In the modified version the interaction forces are simplified to 
not consider friction effects and same group attraction, and to use hard potentials for the 
repulsive forces. The model has been augmented with the path model instead of using a single 
goal attraction potential, allowing a richer range of behaviors for the pedestrians that compose 
the simulation. The simulation is updated for all pedestrians at a desired frame rate. The 
change of velocities between frames is represented by the following acceleration equation: 
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where, 

• m(i) mass of i-th pedestrian  

• v(i) actual velocity of i-th pedestrian 

• Fint internal force on the i-th pedestrian 

• FCA repulsion force among pedestrians for collision avoidance 

The desired motion direction ed is given by, 
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where, 

• Wp (i) p-th point on the path that leads to the final destination of the i-th pedestrian  

• P(i) current position of the i-th pedestrian 

• θ is the motion direction angle towards the goal 

The actual velocity v(i) is defined based on the current force interactions upon the i-th 
pedestrian. These forces are divided into i) internal forces, which measure the degree of 
motivation of a pedestrian to reach its goal and ii) repulsive forces acting among the i-th 
pedestrian the other pedestrians and obstacles. To simplify the evaluation of these forces in 
the pedestrian motion all pedestrian are assumed to have equal mass (1 Kg). 

Internal forces: 
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where, 

• Fmot models the attraction for the current destination of the i-th pedestrian 
)(/)()()( iivimiF d

mot τ= , where vd(i) is the desired velocity and τ(i) is the adaptation 
time for the i-th pedestrian and m(i) its mass. 

Repulsive Forces: 
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where, 

• n number of pedestrians plus obstacles in the collision avoidance radius 

• Frep(P(j),P(i)) the repulsion force between pedestrians j and i  

• d0,d1,d2 reference distances for the repulsion force intensity 

• r0,r1,r2 repulsion force intensities 

• rav repulsion force in case of collision 

• rnd_x and rnd_y uniform random coordinates biased in the direction of the goal θ.  

 

The biasing procedure is given by: 
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where, 

• U[x,y] is a uniform random distribution between x and y 

• γ  is the biasing factor (typical value γ = .2) 

• α is the avoidance angle 

 

In (7) the angle θ is the same as in (2) and the randon deviations for collision avoidance are 
obtained relative to θ. The change in position P(i) is given by the velocity v(i) = dP(i)/dt.  The 
desired velocities for the pedestrians are given by a Gaussian distribution of typical mean 
vd

mean = 1.5 m/s and typical standard deviation vd
σ= 0.5 m/s. The desired velocity distribution 

is truncated at one standard deviation. The maximum velocity is set to 3 m/s. The typical 
values for other simulation parameters are listed in Table 1. 

 

 



Table 1: Simulation parameters. 
Parameter Additional Description Typical Values 
Ww world ground plane width 14.80 m. 
Wh world ground plane height 7.50m 
Earea pedestrian entrance area 0.36 m2 

FR frame rate 25 frames/second 
PGR pedestrian generation rate 0.1-0.001 ped./frame 
PBR pedestrian body radius 0.01692 m 
d0 repulsion outer distance 1.80 m 
d1 repulsion middle distance 1.00 m 
d2 repulsion inner distance 0.60 m 
r0 outer repulsion force 1.5 Kg*m/s2 

r1 middle repulsion force 3 Kg*m/s2 
r2 inner repulsion force 4.5 Kg*m/s2 
rav collision repulsion force 9 Kg*m/s2 

4. Simulation Results 

The results for the crowd simulation are used to render a frame representing visual evidence 
of the crowd motion, see Figure 2. This figure shows a simulated scenario where two distinct 
groups enter the scene and leave through the same exit. The visual information from the 
simulation rendering is used to compute the crowd’s optical flow. The computer vision 
modules use this information to infer the crowd’s actions and behaviour. 

(a)

(b)

(c)

Figure 2: Simulation graphical output. a) Simulated world ground plane with two pedestrian groups 
following distinct paths. The mean paths are lines. Pedestrians on the given path have different shapes. 

b) Rendering of the simulation on the image plane. c) Optical flow field computed for the rendered 
image frames, arrows indicate flow direction and lighter colours more intense flow. 



Using the crowd simulations we are able to represent different emergency situations. To 
demonstrate this we show quantitative examples for two emergency scenarios: i) blocked exit 
at the lower right and ii) person collapse. In the blocked exit scenario the exit in figure 2 is 
blocked after 2000 simulated frames. Using the assumption that the people in the back of the 
crowd are unable to react to this situation and keeps traveling in their normal routes we 
observe the build up of the pedestrian density after the blockage. This situation is shown in 
Figure 3 and the visual data is ready for analysis by the computer vision modules. 

The person collapse scenario is depicted in Figure 4, where a person collapses in the middle 
of the crowd, at frame 4000, and the other pedestrians start to strongly avoid running over that 
person. Figure 5 shows the mean delay for a pedestrian to cross the scene. The person 
collapse increases this mean delay due to the avoidance action taken by the remaining 
pedestrians. Figure 6 shows a qualitative assessment of the simulation results where we 
observe the formation of lanes given two opposite pedestrian flows. This is one of the self-
organizing aspects of the crowd behaviour that emerge from social force models. We 
acknowledge that crowd simulations are hard to prove or validate. However like in [2] and [3] 
the experiments show that the quantitative effects are as one intuitively expects. For more 
qualitative results see the URLs: a) for the normal case 
http://homepages.inf.ed.ac.uk/eaneto/normal.avi; b) for the exit blocking scenario 
http://homepages.inf.ed.ac.uk/eaneto/blocked.avi; c) for the person collapse scenario 
http://homepages.inf.ed.ac.uk/eaneto/fall.avi; d) for the lane formation in crossed flows 
http://homepages.inf.ed.ac.uk/eaneto/crossedflows.avi. 

Figure 3: Person density for the blocked exit scenario. The exit is blocked at frame 2000. 

 
Figure 4: Illustration of person collapse scenario. Left, notice the hole in crowd caused by avoiding the 

collapsed person. Right, respective rendered image. 
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Figure 5: Mean delay to leave the scene for the person collapse scenario. The person collapses at frame 4000. 
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Figure 6: Example of lane formation given by the simplified social force model for two opposite flows. The 
image shows the mean values for the motion direction on the simulated ground plane after 9000 frames. The 

arrows indicate the main paths for the observed lanes. The colour (shade) encodes the average simulated motion 
direction at each point. Note the clearly distinct path regions and some turbulence where the paths are adjunct 

and at the crossing points. 

5. Conclusions 

This work presented a crowd simulation approach to generate visual evidence for training and 
testing of image understanding systems in computer vision. The main contribution is the 
generation of visual evidence for crowd emergency situations where such evidence is rare or 
hard to obtain. The results of the visual simulation are ready to be applied to computer vision 
systems that infer crowd behaviour from visual evidence, e.g. crowd density or optical flow. 
Although the simulation rendering has enough quality to train and test behaviour recognition 
in computer vision systems a better rendering strategy would allow for the representation of 
more subtle behavioral variations in the crowd. For instance visually representing with more 
accuracy the transitory states from a small group of people to a larger crowd, where details of 
individuals are more noticeable and not well represented by simple sprites. Such details would 
be better rendered by the projection of a pedestrian 3-D model at the cost of extra 



computational expenses [9]. The simulation model can also be extended to incorporate more 
detailed behavioral model of the individuals in the crowd, for instance by applying the cost 
models for pedestrian motion in [20] to a dense crowd. 
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