1,309 research outputs found

    Simulating Windows-Based Cyber Attacks Using Live Virtual Machine Introspection

    Get PDF
    Static memory analysis has been proven a valuable technique for digital forensics. However, the memory capture technique halts the system causing the loss of important dynamic system data. As a result, live analysis techniques have emerged to complement static analysis. In this paper, a compiled memory analysis tool for virtualization (CMAT-V) is presented as a virtual machine introspection (VMI) utility to conduct live analysis during simulated cyber attacks. CMAT-V leverages static memory dump analysis techniques to provide live system state awareness. CMAT-V parses an arbitrary memory dump from a simulated guest operating system (OS) to extract user information, network usage, active process information and registry files. Unlike some VMI applications, CMAT-V bridges the semantic gap using derivation techniques. This provides increased operating system compatibility for current and future operating systems. This research demonstrates the usefulness of CMAT-V as a situational awareness tool during simulated cyber attacks and measures the overall performance of CMAT-V

    Master of puppets: analyzing and attacking a botnet for fun and profit

    Full text link
    A botnet is a network of compromised machines (bots), under the control of an attacker. Many of these machines are infected without their owners’ knowledge, and botnets are the driving force behind several misuses and criminal activities on the Internet (for example spam emails). Depending on its topology, a botnet can have zero or more command and control (C&C) servers, which are centralized machines controlled by the cybercriminal that issue commands and receive reports back from the co-opted bots. In this paper, we present a comprehensive analysis of the command and control infrastructure of one of the world’s largest proprietary spamming botnets between 2007 and 2012: Cutwail/Pushdo. We identify the key functionalities needed by a spamming botnet to operate effectively. We then develop a number of attacks against the command and control logic of Cutwail that target those functionalities, and make the spamming operations of the botnet less effective. This analysis was made possible by having access to the source code of the C&C software, as well as setting up our own Cutwail C&C server, and by implementing a clone of the Cutwail bot. With the help of this tool, we were able to enumerate the number of bots currently registered with the C&C server, impersonate an existing bot to report false information to the C&C server, and manipulate spamming statistics of an arbitrary bot stored in the C&C database. Furthermore, we were able to make the control server inaccessible by conducting a distributed denial of service (DDoS) attack. Our results may be used by law enforcement and practitioners to develop better techniques to mitigate and cripple other botnets, since many of findings are generic and are due to the workflow of C&C communication in general.First author draf

    Selecting Countermeasures for ICT systems Before They are Attacked

    Get PDF
    A countermeasure is any change to a system to reduce the probability it is successfully attacked. We propose a model based approach that selects countermeasures through multiple simulations of the behaviors of an ICT system and of intelligent attackers that implement sequences of attacks. The simulations return information on the attacker sequences and the goals they reach we use to compute the statistics that drive the selection. Since attackers change their sequences as countermeasures are deployed, we have defined an iterative strategy where each iteration selects some countermeasures, updates the system models and runs the simulations to discover any new attacker sequence. The discovery of new sequences starts a new iteration. The Haruspex suite automates the proposed approach. Some of its tools acquire information on the target system and on the attackers and build the corresponding models. Another tool simulates the attacks through the models of the system and of the attackers. The tool to select countermeasures invokes the other ones to discover how countermeasures influence the attackers. We apply the whole suite to three systems and discuss how the connection topology influences the countermeasures to adop

    Master of Puppets: Analyzing And Attacking A Botnet For Fun And Profit

    Full text link
    A botnet is a network of compromised machines (bots), under the control of an attacker. Many of these machines are infected without their owners' knowledge, and botnets are the driving force behind several misuses and criminal activities on the Internet (for example spam emails). Depending on its topology, a botnet can have zero or more command and control (C&C) servers, which are centralized machines controlled by the cybercriminal that issue commands and receive reports back from the co-opted bots. In this paper, we present a comprehensive analysis of the command and control infrastructure of one of the world's largest proprietary spamming botnets between 2007 and 2012: Cutwail/Pushdo. We identify the key functionalities needed by a spamming botnet to operate effectively. We then develop a number of attacks against the command and control logic of Cutwail that target those functionalities, and make the spamming operations of the botnet less effective. This analysis was made possible by having access to the source code of the C&C software, as well as setting up our own Cutwail C&C server, and by implementing a clone of the Cutwail bot. With the help of this tool, we were able to enumerate the number of bots currently registered with the C&C server, impersonate an existing bot to report false information to the C&C server, and manipulate spamming statistics of an arbitrary bot stored in the C&C database. Furthermore, we were able to make the control server inaccessible by conducting a distributed denial of service (DDoS) attack. Our results may be used by law enforcement and practitioners to develop better techniques to mitigate and cripple other botnets, since many of findings are generic and are due to the workflow of C&C communication in general
    • …
    corecore