42 research outputs found

    Interior point methods and simulated annealing for nonsymmetric conic optimization

    Get PDF
    This thesis explores four methods for convex optimization. The first two are an interior point method and a simulated annealing algorithm that share a theoretical foundation. This connection is due to the interior point method’s use of the so-called entropic barrier, whose derivatives can be approximated through sampling. Here, the sampling will be carried out with a technique known as hit-and-run. By carefully analyzing the properties of hit-and-run sampling, it is shown that both the interior point method and the simulated annealing algorithm can solve a convex optimization problem in the membership oracle setting. The number of oracle calls made by these methods is bounded by a polynomial in the input size. The third method is an analytic center cutting plane method that shows promising performance for copositive optimization. It outperforms the first two methods by a significant margin on the problem of separating a matrix from the completely positive cone. The final method is based on Mosek’s algorithm for nonsymmetric conic optimization. With their scaling matrix, search direction, and neighborhood, we define a method that converges to a near-optimal solution in polynomial time

    A Note on Uncertainty Quantification for Maximum Likelihood Parameters Estimated with Heuristic Based Optimization Algorithms

    Full text link
    Gradient-based solvers risk convergence to local optima, leading to incorrect researcher inference. Heuristic-based algorithms are able to ``break free" of these local optima to eventually converge to the true global optimum. However, given that they do not provide the gradient/Hessian needed to approximate the covariance matrix and that the significantly longer computational time they require for convergence likely precludes resampling procedures for inference, researchers often are unable to quantify uncertainty in the estimates they derive with these methods. This note presents a simple and relatively fast two-step procedure to estimate the covariance matrix for parameters estimated with these algorithms. This procedure relies on automatic differentiation, a computational means of calculating derivatives that is popular in machine learning applications. A brief empirical example demonstrates the advantages of this procedure relative to bootstrapping and shows the similarity in standard error estimates between this procedure and that which would normally accompany maximum likelihood estimation with a gradient-based algorithm

    Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier

    Full text link
    This paper explores a surprising equivalence between two seemingly-distinct convex optimization methods. We show that simulated annealing, a well-studied random walk algorithms, is directly equivalent, in a certain sense, to the central path interior point algorithm for the the entropic universal barrier function. This connection exhibits several benefits. First, we are able improve the state of the art time complexity for convex optimization under the membership oracle model. We improve the analysis of the randomized algorithm of Kalai and Vempala by utilizing tools developed by Nesterov and Nemirovskii that underly the central path following interior point algorithm. We are able to tighten the temperature schedule for simulated annealing which gives an improved running time, reducing by square root of the dimension in certain instances. Second, we get an efficient randomized interior point method with an efficiently computable universal barrier for any convex set described by a membership oracle. Previously, efficiently computable barriers were known only for particular convex sets

    Escaping the Local Minima via Simulated Annealing: Optimization of Approximately Convex Functions

    Full text link
    We consider the problem of optimizing an approximately convex function over a bounded convex set in Rn\mathbb{R}^n using only function evaluations. The problem is reduced to sampling from an \emph{approximately} log-concave distribution using the Hit-and-Run method, which is shown to have the same O∗\mathcal{O}^* complexity as sampling from log-concave distributions. In addition to extend the analysis for log-concave distributions to approximate log-concave distributions, the implementation of the 1-dimensional sampler of the Hit-and-Run walk requires new methods and analysis. The algorithm then is based on simulated annealing which does not relies on first order conditions which makes it essentially immune to local minima. We then apply the method to different motivating problems. In the context of zeroth order stochastic convex optimization, the proposed method produces an ϵ\epsilon-minimizer after O∗(n7.5ϵ−2)\mathcal{O}^*(n^{7.5}\epsilon^{-2}) noisy function evaluations by inducing a O(ϵ/n)\mathcal{O}(\epsilon/n)-approximately log concave distribution. We also consider in detail the case when the "amount of non-convexity" decays towards the optimum of the function. Other applications of the method discussed in this work include private computation of empirical risk minimizers, two-stage stochastic programming, and approximate dynamic programming for online learning.Comment: 27 page

    Random Walk Approach to Regret Minimization

    Get PDF
    We propose a computationally efficient random walk on a convex body which rapidly mixes to a time-varying Gibbs distribution. In the setting of online convex optimization and repeated games, the algorithm yields low regret and presents a novel efficient method for implementing mixture forecasting strategies
    corecore