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1
Introduction

Mathematical optimization is about making a best possible choice. A problem
may have many feasible solutions, and we are interested in finding the best of
these solutions. To be precise, we will try to minimize a certain objective function
over a certain feasible set. How hard this is to do depends on the properties
of the objective function and the feasible set. For instance, a linear objective
function and a feasible set defined by linear inequalities yield a so-called linear
program, which was the first problem type to receive much research interest. More
generally, convex programming concerns the minimization of a convex objective
function over a convex feasible set.

In this thesis, we analyze several classes of algorithms for convex program-
ming, emphasizing both computational complexity and practical performance.
Our focus is on interior point methods, simulated annealing algorithms, and an-
alytic center cutting plane methods. This chapter provides a bird’s-eye view of
these algorithms.

1
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1.1 Interior Point Methods

Linear programming became popular after Dantzig developed the simplex method
in 1947, as he recalls in his account [31]. He recognized that it suffices to con-
sider only the vertices of the feasible set: if one keeps moving from a vertex to
an adjacent vertex with a better objective value, one eventually reaches an opti-
mal solution. Armed with this method, researchers could find an optimal solution
to large scale problems in – usually – very reasonable time. For this reason, the
simplex method is still one of the most-used approaches for solving linear pro-
gramming problems today. The method does have a major drawback though: on
some instances, it takes a very long time to find an optimal solution. Researchers
therefore tried to find algorithms that work in polynomial time on all instances.

The first polynomial-time algorithm for linear programming was given by
Khachiyan [61] in 1979, who introduced an ellipsoid method for this problem.
While this result was theoretically very important, it only outperformed the sim-
plex method on specifically constructed families of instances.

A more competitive alternative was presented in 1984, when Karmarkar [59]
introduced another polynomial-time algorithm to solve linear programming prob-
lems. Where the simplex method would travel between the vertices of the feasible
set, Karmarkar’s new algorithm would traverse the interior of the feasible set. This
interior point method boasted performance that could rival the simplex method.
But the ideas Karmarkar developed also gave rise to theoretical offspring: re-
searchers such as Nesterov and Nemirovskii [85] recognized that an interior-point
approach can be used to minimize a convex objective function over a convex set,
a problem referred to as convex programming.

Let us illustrate the main idea behind (short-step) interior point methods with
a simple example; a more formal introduction to this topic can be found in the
textbook by Renegar [95]. Suppose we want to solve the convex programming
problem

min
x∈R2
{x1 : x2

1 + x2
2 ≤ 1}. (1.1)

This requires a so-called barrier function for the feasible set {x ∈ R2 : x2
1+x2

2 ≤ 1}.
Informally, a barrier is a function that has the interior of the feasible set as its do-
main, tends to infinity as we approach the boundary of the feasible set, and is
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in some well-defined sense smooth. For the Euclidean ball, the function x 7→
− log(1− x2

1 − x2
2) suffices. The minimizer (0,0) of this function can be approx-

imated with unconstrained minimization techniques such as Newton’s method.
We then add a positive multiple of the objective to the barrier – for the sake of
simplicity, say we consider x 7→ x1 − log(1 − x2

1 − x2
2). If this addition does not

change the function too much, the minimizer of the function also does not shift
too much. Starting from our approximation of the previous minimizer (0,0), we
can then again use unconstrained minimization techniques to approximate the
minimizer of the new function x 7→ x1 − log(1 − x2

1 − x2
2). The weight on the

objective is then increased, and this scheme is repeated a number of times. All
the minimizers thus approximated lie on the curve

�
z(η) : η > 0, z(η) is the minimizer of x 7→ ηx1 − log(1− x2

1 − x2
2)
	

,

which is called the central path. See Figure 1.1 for an illustration.
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Figure 1.1: Three iterations of an interior point method to solve problem (1.1)
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Intuitively, increasing the weight on the objective function means the mini-
mizer shifts towards an optimal solution of (1.1). Indeed, it can be shown that
following the central path to a point near its end is sufficient to generate a near-
optimal solution to (1.1).

Whether a convex programming problem can be solved by interior point meth-
ods is therefore mainly determined by the availability of a barrier for the feasible
set. In principle, such a barrier exists for every convex set that does not contain
lines, as Nesterov and Nemirovskii [85] showed, but only certain sets have one
that we know in closed form. These sets include the nonnegative orthant Rn

+
that is so instrumental in linear programming, for which we can use the function
x 7→ −∑n

i=1 log x i . As a generalization, one can use the function X 7→ − log det X
as a barrier for the set of symmetric positive semidefinite matrices. And similar to
what we saw above, (t, x) 7→ − log(t2 − ‖x‖2) serves as a barrier for the second
order cone {(t, x) ∈ Rn+1 : ‖x‖ ≤ t}.

These three cones are all symmetric, meaning that they are closed, convex,
self-dual with respect to the Euclidean c.q. trace inner product, and have a tran-
sitive automorphism group; see Jordan et al. [55] for a complete characterization
of symmetric cones. For these cones, Nesterov and Todd [87, 88] introduced what
became known as the Nesterov-Todd directions, which lead to successful imple-
mentations in e.g. SeDuMi [104] and MOSEK [78].

This thesis is mainly concerned with feasible sets that cannot be described by
symmetric cones. Two examples are the exponential cone

�
x ∈ R3 : x1 ≥ x2ex3/x2 , x2 > 0

	∪ �x ∈ R3 : x1 ≥ 0, x2 = 0, x3 ≤ 0
	

,

and, for any t ∈ (0,1), the three-dimensional power cone

�
x ∈ R3 : x t

1 x1−t
2 ≥ |x3|

	
.

The lack of symmetry in these cones means that solvers cannot use the Nesterov-
Todd directions. The search for alternatives (see Chapter 10 for references) yielded
the method described by Dahl and Andersen [30], which is also implemented in
the commercial solver MOSEK 9 [78]. Dahl and Andersen developed their algo-
rithm to work well in practice, and did not provide a running time analysis. In
Chapter 10, we provide a theoretical foundation for their algorithm.
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But this algorithm does not cover all convex programing problems. There are
convex sets for which no efficiently computable barrier exists, unless P = NP. One
of those sets is the copositive cone, which consists of the symmetric matrices X
such that y>X y ≥ 0 for all y ≥ 0; see Motzkin [79] for the origins of copositivity.
To use an interior point method to solve copositive programming problems, we
will use a barrier whose derivatives we can approximate.

1.2 Hit-and-Run Sampling and Simulated Annealing

We do have a membership oracle for the copositive cone: we can test for any given
matrix whether it is copositive (see Section 8.2), even though Murty and Kabadi
[81] showed this problem is co-NP-complete. With such an oracle, we can use a
Markov chain Monte Carlo method to generate samples from a probability dis-
tribution over the feasible set. In this thesis, we will use hit-and-run sampling,
originally introduced by Smith [102] for the uniform distribution in 1984, and
later generalized to absolutely continuous distributions by e.g. Bélisle et al. [11].
In short, this method picks a random line through the current iterate and inter-
sects this line with the feasible set (if we only have a membership oracle, this
intersection can be approximated by the bisection method). The next iterate is
then drawn from the target distribution restricted to the chord. This is effectively
a one-dimensional sampling problem, which is usually much easier than high-
dimensional sampling. An illustration is given in Figure 1.2.

−1 0 1

−1

0

1

x1

x 2

Step 1

−1 0 1

−1

0

1

x1

x 2

Step 2

−1 0 1

−1

0

1

x1

x 2

Step 3

Figure 1.2: Three steps of hit-and-run sampling applied to the uniform distribu-
tion over {x ∈ R2 : x2

1 + x2
2 ≤ 1}
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Sampling can be geared towards optimization in a number of ways. One of
the more classical approaches is to use simulated annealing, which was first pro-
posed by Kirkpatrick et al. [63] for combinatorial optimization, and later applied
to convex programming by Kalai and Vempala [56]. In real-world annealing, a
piece of metal is heated for a certain time, then slowly cooled to make it more
workable. The simulated version of this process involves a family of distributions
known as Boltzmann distributions. For the problem (1.1) and some temperature
T > 0, simulated annealing looks at probability distributions whose density (with
respect to the Lebesgue measure) is proportional to (x1, x2) 7→ exp(−x1/T ) on
the feasible set. The idea is to generate a sample from such a distribution, and
then use that sample to generate a new sample from a distribution with a lower
temperature. This is repeated until the temperature is sufficiently low, at which
point most of the distribution’s probability mass is concentrated near an optimal
solution. The means of the considered distributions lie on the heat path, which is
defined as (∫

B(0,1) xe−〈c,x〉/T dx
∫
B(0,1) e

−〈c,x〉/T dx
: T > 0

)
,

where B(0, 1) = {x ∈ R2 : x2
1 + x2

2 ≤ 1} is the unit ball in R2. See Figure 1.3 for
an illustration.

If one compares Figures 1.1 and 1.3, it seems the interior point method and the
simulated annealing algorithm that we sketched follow the same path. Indeed,
Abernethy and Hazan [1] showed that the heat path and the central path coincide
for an interior point method that uses the entropic barrier by Bubeck and Eldan
[21].

The entropic barrier is interesting because its derivatives have a stochastic
interpretation. For instance, the Hessian of the entropic barrier at some x is
the inverted covariance matrix of the Boltzmann distribution whose mean is x .
This stochastic interpretation allows us to approximate the barrier’s derivatives
through sampling. With a sampling method such as hit-and-run, all we need is a
membership oracle to approximate the gradient and Hessian of the entropic bar-
rier, with which we can solve (1.1). This will be shown in Chapter 6 with the tools
developed in Chapters 2 to 5.

Because of the close relation between interior point methods and simulated
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Figure 1.3: Three stages of simulated annealing to solve problem (1.1)

annealing that Abernethy and Hazan [1] established, we can also critically analyze
Kalai and Vempala’s algorithm [56] with these same tools. This is the topic of
Chapter 7.

Both of these methods – the interior point method from Chapter 6 and the sim-
ulated annealing algorithm by Kalai and Vempala [56] – can be used for optimiza-
tion over the copositive cone. The number of oracle calls made by these methods
is, as we will show, asymptotically bounded by a polynomial, even though the
calls themselves correspond to an NP-hard problem. However, we will see that
this number of oracle calls is still so large that these methods are not competitive
with e.g. the ellipsoid method. We therefore also investigate an alternative that
is significantly faster in practice, even if it lacks an analysis of its computational
complexity.
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1.3 Analytic Center Cutting Plane Methods

The minimizer of a barrier is known as its analytic center. The name already
suggests that an analytic center is somehow a central point in the barrier’s domain.
This fact is used by a specific class of cutting plane algorithms known as analytic
center cutting plane methods, due to Goffin and Vial [43]. In general, cutting plane
algorithms maintain some outer approximation of the set of optimal solutions.
They take a query point from inside this outer approximation – in the case of
analytic center cutting plane methods, this is the approximation’s analytic center.
If the query point lies in the feasible set, any optimal solution has an objective
value that is at least as good as the query point’s, and this information can be
used to shrink the outer approximation. Alternatively, if the query point can be
separated from the feasible set, this also allows us to shrink the approximation.
An example is shown in Figure 1.4.

Analytic center cutting plane methods turn out to perform quite well in prac-
tice; see Goffin and Vial [44, Section 6] and the references therein. We therefore
propose such a method to solve copositive programming problems in Chapter 8.
In Chapter 9, we compare this method to the alternatives we touched upon above,
and find that it indeed performs relatively well. The main drawback is that we
do not analyze the running time of our method: in designing an algorithm that
performs well in practice, we make some design choices that would be difficult to
analyze rigorously. These include taking deep cuts (which means that we often
have to start approximating an analytic center from outside the barrier’s domain)
and pruning the least relevant constraints. Nevertheless, the empirical evidence
should convince even a skeptical reader that out of the approaches we discuss,
this one is the most promising in practice.

1.4 Thesis Outline

We recall the fundamentals of interior point theory in Chapter 2. This is largely
a collection of results from the textbook by Renegar [95], although we add some
details to his proofs. We use a different definition of a function’s conjugate, but
this has no consequences other than sign changes.

The entropic barrier of Bubeck and Eldan [21] is formally introduced in Chap-
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Figure 1.4: Three iterations of an analytic center cutting plane method to solve
problem (1.1)

ter 3, along with its most important properties. We then propose and analyze a
short-step interior point method that uses this barrier, under the assumption that
its derivatives can be computed exactly. The iteration complexity of this method
turns out to be the same as that of short-step methods in the literature, e.g. Rene-
gar [95]. The difficulty in using the entropic barrier therefore lies in using its
approximate derivatives.

To approximate these derivatives, we will use hit-and-run sampling (see Smith
[102], Bélisle et al. [11]). Building on work by Lovász and Vempala [71], it will
be shown in Chapter 4 that one can generate samples that approximately follow
a Boltzmann distribution, provided one has some information from a Boltzmann
distribution close to it.
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These samples are used in Chapter 5 to approximate the mean and covariance
of a Boltzmann distribution. We carefully analyze the quality of such approxi-
mations when the samples are not exactly from the correct distribution, and not
exactly independent, as is the case when using hit-and-run sampling. This analysis
is conceptually similar to earlier work by Kannan et al. [58].

It is then possible to analyze a sampling-based short-step interior point method
in Chapter 6. The main assumption on the feasible set is that it admits a member-
ship oracle, such that this method is widely applicable.

As an alternative to interior point methods, we consider the simulated anneal-
ing algorithm by Kalai and Vempala [56] in Chapter 7. With the tools developed
in Chapters 4 and 5, we can rigorously analyze this algorithm. Moreover, we
propose some modifications to improve its practical performance.

In Chapter 8, we develop a method aimed solely at practical performance. This
analytic center cutting plane method (see Goffin and Vial [43]) was designed to
solve copositive programming problems, and does not come with a formal com-
plexity guarantee.

The proposed methods will be compared against each other and the ellipsoid
method in Chapter 9. The analytic center cutting plane method from Chapter 8
seems to be the most appealing in practice, and also seems to scale reasonably
well.

Chapter 10 moves the scope to somewhat more structured problems: opti-
mization problems over proper cones that admit a barrier with readily computable
derivatives. The cones in question do not even have to be self-dual, though. An al-
gorithm that works well in practice on these problems was presented by Dahl and
Andersen [30], and we provide some theoretical foundation for this algorithm.
In particular, we prove polynomial time convergence of a method that uses their
scaling matrix, search direction, and neighborhood.

1.5 Contributions to the Literature

This thesis is based on the following articles:
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[7] R. Badenbroek and J. Dahl. An algorithm for nonsymmetric conic optimiza-
tion inspired by mosek. arXiv preprint arXiv:2003.01546, 2020

[8] R. Badenbroek and E. de Klerk. Complexity analysis of a sampling-
based interior point method for convex optimization. arXiv preprint
arXiv:1811.07677, 2018

[9] R. Badenbroek and E. de Klerk. Simulated annealing with hit-and-run for
convex optimization: rigorous complexity analysis and practical perspec-
tives for copositive programming. arXiv preprint arXiv:1907.02368, 2019

[10] R. Badenbroek and E. de Klerk. An analytic center cutting plane method to
determine complete positivity of a matrix. arXiv preprint arXiv:2006.05319,
2020

These articles are used in the chapters of this thesis as follows:

Chapter 2 Background material
Chapter 3 Background material
Chapter 4 Based on [8, Sections 2.3 and 4]
Chapter 5 Based on [8, Sections 2.4 and 5]
Chapter 6 Improves on [8, Section 6]
Chapter 7 Based on [9, Sections 1.1, 4, 5.3, and 5.4] and [10, Section 1]
Chapter 8 [10, Sections 1 and 2] and [7, Section 1]
Chapter 9 Based on [9, Sections 5.1 and 5.2] and [10, Section 3]
Chapter 10 Based on [7], excluding the proofs from [7, Sections 4, 5, and 6]
Appendix A Background material
Appendix B [8, Section 3.1]
Appendix C Based on the proofs from [7, Sections 4, 5, and 6]
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2
Properties of Self-Concordant Barriers

In this chapter, we collect the foundations of the interior point method theory
in the notation that will be used throughout the thesis. After defining the gra-
dient and Hessian, we will discuss self-concordant barriers in Section 2.1. Next,
we consider the conjugate function and its properties in Section 2.2, and show
that conjugation preserves self-concordance in Section 2.3. Finally, in Section 2.4
we consider an important situation where conjugation also preserves the barrier
property: when the domain of the barrier is a cone.

The results in this chapter are mostly standard tools from the field of interior
point methods. Aside from rephrasing them in our notation, we add some details
to the proofs from Renegar [95].

2.1 Derivatives and Self-Concordant Barriers

We start with some preliminary definitions, which follow the notation from Rene-
gar [95]. We fix a reference inner product 〈·, ·〉 on Rn, which induces a norm ‖ · ‖
and a norm topology. For two linear operators A and B, we write A� B whenever

13
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〈x , Ax〉 ≥ 〈x , Bx〉 for all x ∈ Rn. Any self-adjoint, positive definite linear operator
A induces a new inner product 〈·, ·〉A by 〈x , y〉A := 〈x , Ay〉. The norm induced by
〈·, ·〉A will be denoted by ‖ · ‖A. For any norm ‖ · ‖ on Rn, the operator norm ‖A‖
for a linear operator A is given by max{‖Ax‖ : ‖x‖ ≤ 1}.

A functional is a function that maps into R. The gradient and Hessian of some
functional f will depend on the reference inner product.

Definition 2.1 ([95, page 6]). Let f be a functional such that dom f is an open
subset of Rn. Then, f is differentiable at θ ∈ dom f if there exists a vector g(θ ) ∈
Rn such that

lim
‖∆θ‖→0

f (θ +∆θ )− f (θ )− 〈g(θ ),∆θ 〉
‖∆θ‖ = 0.

The vector g(θ ) is called the gradient of f at θ with respect to 〈·, ·〉.
Definition 2.2 ([95, page 9]). Let f be a functional such that dom f is an open
subset of Rn. Then, f is twice differentiable if it is continuously differentiable at
θ ∈ dom f and there exists a bounded linear operator H(θ ) : Rn→ Rn such that

lim
‖∆θ‖→0

‖g(θ +∆θ )− g(θ )−H(θ )∆θ‖
‖∆θ‖ = 0.

The linear operator H(θ ) is called the Hessian of f at θ with respect to 〈·, ·〉.
We denote the gradient and Hessian with respect to some other inner product

〈·, ·〉A by gA and HA respectively, where A is a positive definite self-adjoint linear
operator. It can be shown that gA(θ ) = A−1 g(θ ) and HA(θ ) = A−1H(θ ), provided
that the value of f does not depend on the chosen inner product (see e.g. Theo-
rems 1.2.1 and 1.3.1 in Renegar [95]). For brevity, define the local inner product
〈·, ·〉θ := 〈·, ·〉H(θ ) and the local norm ‖ · ‖θ := ‖ · ‖H(θ ) for any θ ∈ Rn and let gθ
and Hθ be the gradient and Hessian of f with respect to the local inner product
〈·, ·〉θ .

The class of self-concordant functions plays an important role in the theory
of interior point methods. The change in the Hessians of these functions when
taking a small step is bounded by the size of the step (as measured in the local
norm). We use the definition by Renegar [95].

Definition 2.3 ([95, page 23]). Let f be a twice continuously differentiable,
strictly convex functional such that dom f is an open and convex subset of Rn.
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Then, f is self-concordant if, for all θ0 ∈ dom f and θ1 ∈ Rn such that ‖θ1−θ0‖θ0
<

1, the following two properties hold:

(i) θ1 ∈ dom f .

(ii) For all nonzero v ∈ Rn, we have

1− ‖θ1 − θ0‖θ0
≤ ‖v‖θ1

‖v‖θ0

≤ 1
1− ‖θ1 − θ0‖θ0

, (2.1)

or equivalently,

(1− ‖θ1 − θ0‖θ0
)2H(θ0)� H(θ1)�

1
(1− ‖θ1 − θ0‖θ0

)2
H(θ0). (2.2)

It can be seen that the sum of a self-concordant functional and a linear func-
tional on Rn must also be self-concordant, since the self-concordance of a func-
tional is entirely determined by its Hessians.

One may expect that if the change in the Hessians of some function is bounded,
something similar can be said about the inverse Hessians. An application of the
following result from Horn and Johnson [53] shows that this is the case. Horn
and Johnson’s original proof concerns positive definite matrices, so we include a
proof to show that their statement also holds in the setting of linear operators.

Lemma 2.4 ([53, Corollary 7.7.4(a)]). Let A, B be positive definite, self-adjoint
linear operators from Rn to Rn. Then, A� B if and only if B−1 � A−1.

Proof. If S : Rn→ Rn is some invertible linear operator, then 〈x , (A−B)x〉 ≥ 0 for
all x ∈ Rn if and only if 〈S y, (A− B)S y〉 ≥ 0 for all y ∈ Rn. Hence,

A� B if and only if S>AS � S>BS, (2.3)

where S> is the adjoint of S. Applying (2.3) with S = A−1/2 shows that A � B
is equivalent to I � A−1/2BA−1/2, that is, all eigenvalues of A−1/2BA−1/2 are at
most 1. The vector v is an eigenvector for A−1/2BA−1/2 with eigenvalue λ if and
only if B1/2A−1/2v is an eigenvector for B1/2A−1B1/2 with eigenvalue λ. Hence, all
eigenvalues of B1/2A−1B1/2 are also at most 1, meaning I � B1/2A−1B1/2. Another
application of (2.3) with S = B−1/2 completes the proof.
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This lemma shows that (2.2) is equivalent to

(1− ‖θ1 − θ0‖θ0
)2H(θ1)

−1 � H(θ0)
−1 � 1

(1− ‖θ1 − θ0‖θ0
)2

H(θ1)
−1, (2.4)

and therefore (2.1) is equivalent to

1− ‖θ1 − θ0‖θ0
≤
‖v‖−1

θ0

‖v‖−1
θ1

≤ 1
1− ‖θ1 − θ0‖θ0

, (2.5)

where ‖ · ‖−1
θ

is the norm induced by H(θ )−1 for any θ ∈ Rn.
It should be noted that our definition of self-concordance is not the original

one by Nesterov and Nemirovskii [85]. Their definition assumes the function f is
three times differentiable, which we define first. To do so, we will use L(U; V ) to
denote the space of linear operators from the vector space U to the vector space
V . The third derivative is a Fréchet derivative, just like the gradient and Hessian
from Definitions 2.1 and 2.2. We refer the reader to Appendix A for details.

Definition 2.5 ((A.4) in Appendix A.4). Let f be a functional such that dom f is an
open subset of Rn. Then, f is three times differentiable if it is twice continuously
differentiable at θ ∈ dom f and there exists a bounded linear operator T (θ ) :
Rn→ L(Rn;Rn) such that

lim
‖∆θ‖→0

‖H(θ +∆θ )−H(θ )− T (θ )∆θ‖
‖∆θ‖ = 0,

where the norm in the numerator is the operator norm on L(Rn;Rn). The linear
operator T (θ ) is called the third derivative of f at θ with respect to 〈·, ·〉.

We are now ready to show that Definition 2.3 is equivalent to the definition of
self-concordance by Nesterov and Nemirovskii [85], provided that f is three times
continuously differentiable. This was originally shown by Renegar [95], but we
provide some details on the proof in the appendix.

Theorem 2.6 ([95, Theorem 2.5.3]). Let f be a three times continuously differen-
tiable, strictly convex functional such that dom f is an open subset of Rn. Then, f is
self-concordant if and only if the following two properties hold:
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(i) For any sequence {θk} ⊂ dom f that converges to a point on the boundary of
dom f , we have f (θk)→∞.

(ii) For any θ ∈ dom f and ∆θ ∈ Rn, the function φ(t) := f (θ + t∆θ ) satisfies
φ′′′(t)≤ 2φ′′(t)3/2 for all t ∈ domφ.

Proof. See Appendix A.

We end this section with another important concept from the theory of interior
point methods: the complexity parameter. Some self-concordant functionals have
such a parameter, and it often appears in the complexity analysis of interior point
methods that rely on these functionals. We again use the definition by Renegar
[95].

Definition 2.7 ([95, page 35]). A functional f is a (self-concordant) barrier if it
is self-concordant and

ϑ f := sup
θ∈dom f

‖gθ (θ )‖2θ ,

is finite. The value ϑ f is called the complexity parameter of the barrier f .

The barrier property of f is often applied directly, that is, to upper bound
‖gθ (θ )‖θ for some θ ∈ dom f , or through the following result.

Theorem 2.8 ([95, Theorem 2.3.3]). Let f be a self-concordant barrier. Then, for
any θ0,θ1 ∈ dom f ,

〈g(θ0),θ1 − θ0〉< ϑ f .

2.2 The Conjugate and its Derivatives

A function f : Rn → R has a dual of sorts, called the conjugate function. It is
invaluable for defining the entropic barrier (see Chapter 3) as well as primal-dual
interior point methods. For the sake of consistency, we phrase the definition and
properties of the conjugate in terms of Rn, but these statements can easily be
generalized to arbitrary Hilbert spaces.
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Definition 2.9. Let f be a functional such that dom f is an open subset of Rn.
Then, the conjugate of f is defined by

f ∗(x) := sup
θ∈dom f

{〈θ , x〉 − f (θ )}.

In the remainder of this section, we establish some basic properties of the
conjugate: its domain, gradient, and Hessian. In Section 2.3, we look at self-
concordance of the conjugate.

Before we determine the domain of the conjugate function, let us fix some
notation that we will use in the analysis. Denote the open ball with radius r
around θ0 ∈ Rn, as measured in the reference norm ‖ · ‖, by B(θ0, r). Moreover,
let Bθ (θ0, r) be the open ball with radius r around θ0, as measured in the local
norm ‖·‖θ . Finally, let 〈·, ·〉−1

θ
be the inner product induced by H(θ )−1, and ‖·‖−1

θ

the corresponding norm.
Our proof follows that of Renegar [95], although he uses a different definition

of the conjugate.

Proposition 2.10 ([95, Proposition 3.3.3]). Let f be a twice continuously differen-
tiable, strictly convex functional such that dom f is an open and convex subset of Rn.
Then, the gradient map g : dom f → Rn is injective. If f is self-concordant, then

dom f ∗ = {g(θ ) : θ ∈ dom f }, (2.6)

and dom f ∗ is open.

Proof. Suppose θ1,θ2 ∈ dom f satisfy g(θ1) = g(θ2) = x . Then they both maxi-
mize the strictly concave function

θ 7→ 〈θ , x〉 − f (θ ), (2.7)

and hence θ1 = θ2, proving that g is injective. Moreover, because (2.7) has a
maximizer θ1, we have x = g(θ1) ∈ dom f ∗. In other words,

{g(θ ) : θ ∈ dom f } ⊆ dom f ∗. (2.8)

Next suppose x ∈ dom f ∗. Then f ∗(x) is finite, and therefore (2.7) is bounded
above. If f is self-concordant, Theorem 2.2.8 in Renegar [95] shows (2.7) has
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a maximizer θ ∈ dom f . This maximizer must satisfy g(θ ) = x , and we may
therefore conclude that

dom f ∗ ⊆ {g(θ ) : θ ∈ dom f }.

Combined with (2.8), we find (2.6).
Finally, we show that dom f ∗ is open if f is self-concordant via the suggestion

in Renegar’s proof. Let θ ∈ dom f and consequently, g(θ ) ∈ dom f ∗. Let∆x ∈ Rn

be a vector satisfying
‖∆x‖−1

θ < 1
4 . (2.9)

(In particular, all∆x in B(0, 1
4 λmin(H(θ )1/2)) satisfy (2.9), where λmin(H(θ )1/2)

is the smallest eigenvalue of H(θ )1/2, which by assumption is positive.) Define
v = H(θ )−1∆x , and observe that

‖v‖θ =
Æ
〈v, H(θ )v〉=

Æ
〈H(θ )−1∆x ,∆x〉= ‖∆x‖−1

θ < 1
4 .

Noting that 3t2

(1−t)3 ≤ 9t2 for t ∈ [0, 1
4], Proposition 2.2.10 in Renegar [95] shows

that if ‖v‖θ ≤ 1
4 , then there exists a vector u ∈ Bθ (v, 9‖v‖2

θ
) such that θ + u ∈

dom f and
g(θ + u) = g(θ ) +∆x .

Consequently, g(θ ) +∆x ∈ dom f ∗, which shows dom f ∗ is open.

Having established the domain of the conjugate f ∗, our next goal is describing
the gradient g∗ and Hessian H∗ of f ∗. Before we can do that, we cite a general
version of the inverse function theorem from Lang [66].

Theorem 2.11 ([66, Chapter I, Theorem 5.2]). Let V , W be normed vector spaces,
and let V ′ ⊆ V be an open subset of V . Let φ : V ′ → W be a k times continu-
ously differentiable mapping, where k ≥ 1. If at some point θ ∈ V ′, the Fréchet
derivative Dφ(θ ) is an invertible linear operator, then φ has a k times continuously
differentiable local inverse φ−1 : W ′→ V in a neighborhood W ′ around φ(θ ), i.e.

φ(φ−1(x)) = x ∀x ∈W ′.

We now establish relationships between the derivatives of f and f ∗. Such
relationships can be found for convex functionals under some mild conditions (see
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Rockafellar [96, Corollary 23.5.1] and Crouzeix [29]), but we restrict ourselves to
self-concordant functionals to keep the proof concise. We again follow the proof
from Renegar [95], but provide some details on the application of Theorem 2.11.

Theorem 2.12 ([95, Theorem 3.3.4]). Let f be a self-concordant functional. Then,
f ∗ is twice continuously differentiable. If moreover θ ∈ dom f and x satisfy x =
g(θ ), then

g∗(x) = θ and H∗(x) = [H(θ )]−1.

Proof. Proposition 2.10 shows that g : dom f → dom f ∗ is invertible. The first
differential of g at θ ∈ dom f is the Hessian H(θ ). Since it was assumed that
H(θ ) is positive definite for all θ ∈ dom f , we see that H(θ ) is invertible. Hence,
Theorem 2.11 shows that, for any θ ∈ dom f , g has a continuously differentiable
inverse g−1 around g(θ ). It is shown in Proposition 2.10 that dom f ∗ = {g(θ ) :
θ ∈ dom g}, and hence for any x ∈ dom f ∗, the mapping x 7→ g−1(x) is continu-
ously differentiable.

Let us define θ (x) := g−1(x) for all x ∈ dom f ∗. Since g(θ (x)) = x , we have

f ∗(x) = 〈θ (x), x〉 − f (θ (x)), (2.10)

for all x ∈ dom f ∗. We know that x 7→ θ (x) is continuously differentiable, and
therefore f ∗ is as well. To determine its derivative, we first differentiate f ∗1 (x) :=
〈θ (x), x〉. Denote the Fréchet derivative of θ (x) by Dθ (x), and the adjoint of
Dθ (x) by (Dθ (x))>. We then claim that the derivative of f ∗1 is g∗1(x) = θ (x) +
(Dθ (x))>x . To see this, note that

lim
‖∆x‖↓0

1
‖∆x‖ | f ∗1 (x +∆x)− f ∗1 (x)− 〈g∗1(x),∆x〉|

= lim
‖∆x‖↓0

1
‖∆x‖ |〈θ (x +∆x), x +∆x〉 − 〈θ (x), x〉 − 〈θ (x) + (Dθ (x))>x ,∆x〉|

= lim
‖∆x‖↓0

1
‖∆x‖ |〈θ (x +∆x)− θ (x), x +∆x〉 − 〈x , Dθ (x)∆x〉|

= lim
‖∆x‖↓0

1
‖∆x‖ |〈θ (x +∆x)− θ (x)− Dθ (x)∆x , x〉|= 0.

(2.11)
Second, the derivative of f ∗2 (x) := f (θ (x)) is given by the chain rule (see Theo-
rem A.2) as the linear operator g∗2(x) = g(θ (x)) ◦ Dθ (x). Applying this operator
to ∆x gives

g∗2(x)[∆x] = 〈g(θ (x)), Dθ (x)∆x〉= 〈(Dθ (x))>g(θ (x)),∆x〉,
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so in vector form, we have g∗2(x) = (Dθ (x))
>g(θ (x)) = (Dθ (x))>x . Combining

this fact with (2.11) gives the derivative of (2.10) as

g∗(x) = θ (x) + (Dθ (x))>x − (Dθ (x))>x = θ (x).

Recall that x 7→ θ (x) is continuously differentiable, so g∗ is continuously dif-
ferentiable. This shows that f ∗ is twice continuously differentiable. Differenti-
ating the identity g(θ (x)) = x with respect to x using the chain rule (see e.g.
Theorem A.2) gives H(θ (x))Dθ (x) = I , showing

H∗(x) = Dθ (x) = H(θ (x))−1.

2.3 Self-Concordance of the Conjugate

Now that we have some information about the gradient and the Hessian of the
conjugate, we can show that f ∗ is self-concordant if and only if f itself is self-
concordant.

Before we do so, we extend our notation once more. Let 〈·, ·〉∗x and ‖ · ‖∗x
be the local inner product and local norm induced by H∗(x), where x ∈ dom f .
Moreover, let B∗x(y, r) be the open ball with radius r around a fixed y ∈ dom f ,
as measured in the local norm ‖ · ‖∗x .

Theorem 2.13 ([95, Theorem 3.3.1]). Let f be a twice continuously differentiable,
strictly convex functional such that dom f is an open and convex subset of Rn. Then,
f is self-concordant if and only if f ∗ is self-concordant.

Proof. The proof of the “only if” implication is the same as in Renegar [95], but
again we provide some additional details. Pick any θ ∈ dom f and x ∈ dom f ∗

such that g(θ ) = x . By Theorem 2.12, we then have for all y, z ∈ Rn,

〈y, z〉∗x = 〈y, H∗(x)z〉= 〈y, H(θ )−1z〉= 〈H(θ )−1 y, H(θ )−1z〉θ , (2.12)

and consequently,
‖y‖∗x = ‖H(θ )−1 y‖θ = ‖y‖−1

θ . (2.13)

Assume f is self-concordant. By Theorem 2.5.2 in Renegar [95], if we show
that

B∗x(x , 1
4) ⊆ dom f ∗, (2.14)
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and

limsup
‖∆x‖↓0

‖I −H∗x(x +∆x)‖∗x
‖∆x‖∗x

≤ 2, (2.15)

where H∗x(x +∆x) := H∗(x)−1H∗(x +∆x), then f ∗ is self-concordant.
Towards proving (2.14), let ∆x ∈ B∗x(0, 1

4). Then by (2.13), ∆x satisfies
(2.9). By the same argument as in the proof of Proposition 2.10, there exists a

u ∈Bθ (H(θ )
−1∆x , 9‖H(θ )−1∆x‖2θ ), (2.16)

such that θ + u ∈ dom f and g(θ + u) = g(θ ) +∆x . Since g(θ + u) must lie in
dom f ∗ and g(θ ) = x , we have that (2.14) holds. Moreover, (2.16) and (2.13)
demonstrate that

‖u‖θ ≤ ‖H(θ )−1∆x‖θ + 9‖H(θ )−1∆x‖2θ = ‖∆x‖∗x + 9(‖∆x‖∗x)2. (2.17)

To prove (2.15), note that since H(θ ) has full rank, and by application of
(2.12) and (2.13),

‖I −H∗x(x +∆x)‖∗x = max
w∈Rn

|〈H(θ )w, [I −H∗x(x +∆x)]H(θ )w〉∗x |
(‖H(θ )w‖∗x)2

= max
w∈Rn

|〈w, H(θ )−1[I −H∗x(x +∆x)]H(θ )w〉θ |
‖w‖2

θ

= ‖I −H(θ )−1H∗x(x +∆x)H(θ )‖θ .

Using the expressions from Theorem 2.12 gives

‖I −H∗x(x +∆x)‖∗x = ‖I −H(θ )−1H∗(x)−1H∗(x +∆x)H(θ )‖θ
= ‖I −H(θ )−1H(θ )H(θ + u)−1H(θ )‖θ
= ‖I −Hθ (θ + u)−1‖θ . (2.18)

Since f is self-concordant, Theorem 2.2.1 in Renegar [95] and (2.17) show

‖I −Hθ (θ + u)−1‖θ ≤
1

(1− ‖u‖θ )2
− 1≤ 1

(1− ‖∆x‖∗x + 9(‖∆x‖∗x)2)2
− 1.

Combined with (2.18), we thus find

lim sup
‖∆x‖↓0

‖I −H∗x(x +∆x)‖∗x
‖∆x‖∗x

≤ lim sup
t↓0

�
1

t(1− t + 9t2)2
− 1

t

�
= 2,



Chapter 2. Properties of Self-Concordant Barriers 23

where the equality follows from l’Hôpital’s rule. This establishes (2.15) and thus
f ∗ is self-concordant.

To prove the reverse implication, it suffices to note that ( f ∗)∗ = f by the
Fenchel-Moreau theorem ( f is proper, lower semi-continuous and convex).

2.4 Conjugates of Barriers over Cones

Theorem 2.13 shows that a function is self-concordant if and only if its conjugate
is self-concordant too. The reader may wonder if such a relation also holds for
the barrier property. In general, the answer is no. The entropic barrier – to be
introduced in Chapter 3 – is one example where f is not a barrier, but f ∗ is. There
is however an important case where f being a barrier implies f ∗ being a barrier:
when f is logarithmically homogeneous. Let us first define this property as in
Renegar [95], and then show the claim.

Definition 2.14 ([95, page 42]). Let K ⊆ Rn be a proper cone, i.e. a cone that
is convex, closed, pointed, and full-dimensional. Then, a self-concordant barrier
f : intK→ R is logarithmically homogeneous if for all θ ∈ intK and t > 0,

f (tθ ) = f (θ )− ϑ f log t. (2.19)

We will often abbreviate ‘logarithmically homogeneous self-concordant barrier’ to
‘LHSCB’.

By computing the first and second derivative of both sides of (2.19) with re-
spect to θ (see Theorem A.2 for the chain rule for Fréchet derivatives), we see
that a LHSCB f satisfies

g(tθ ) = 1
t g(θ ) (2.20)

H(tθ ) = 1
t2 H(θ ), (2.21)

for all θ ∈ dom f and t > 0. Taking the derivative of (2.20) with respect to t
shows H(tθ )θ = − 1

t2 g(θ ), implying for t = 1 that

θ = −gθ (θ ). (2.22)



24 IPM and SA for Nonsymmetric Conic Optimization

We will now show that a LHSCB f has a conjugate that is also a LHSCB. Ad-
ditionally, we will show that the complexity parameter of f ∗, defined as

ϑ f ∗ := sup
x∈dom f ∗

(‖g∗x(x)‖∗x)2,

is equal to ϑ f . We again largely follow the proof by Renegar [95], but providing a
different argument that the interior of the polar cone is contained in {g(θ ) : θ ∈
dom f }, and that f ∗ is logarithmically homogeneous.

Theorem 2.15 ([95, Theorem 3.3.1]). Let f be a LHSCB with dom f = intK,
where K ⊆ Rn is a proper cone. Then f ∗ is a LHSCB with domain int(K◦), where
K◦ := {x ∈ Rn : 〈θ , x〉 ≤ 0 ∀θ ∈ K}. Moreover, ϑ f ∗ = ϑ f .

Proof. We first show that dom f ∗ = int(K◦). By Proposition 2.10, it suffices to
show that {g(θ ) : θ ∈ dom f }= int(K◦).

Pick any θ0,θ1 ∈ intK. By Theorem 2.8, we have

〈g(θ0), tθ1 − θ0〉< ϑ f ,

for any t > 0. Letting t tend to infinity, we see that 〈g(θ0),θ1〉 ≤ 0, showing
g(θ0) ∈ K◦. Since {g(θ ) : θ ∈ dom f } is open by Proposition 2.10, we have
{g(θ ) : θ ∈ dom f } ⊆ int(K◦).

Conversely, pick an x ∈ int(K◦). We will argue that there exists a θ ∈ dom f
such that g(θ ) = x , that is, the function φ(θ ) := f (θ )− 〈θ , x〉 has a minimizer.
Since x ∈ int(K◦), it satisfies 〈θ , x〉 < 0 for all θ ∈ K, meaning there exists an
α > 0 such that

−〈θ , x〉 ≥ α for all θ ∈ K with ‖θ‖= 1.

For all θ ∈ intK with ‖θ‖ = 1 and t > 0, we therefore have by logarithmic
homogeneity

φ(tθ ) = f (tθ )− 〈tθ , x〉= f (θ )−ϑ f log t − t〈θ , x〉 ≥ φ(θ )−ϑ f log t +α(t − 1).

In other words, there exists some t∗ > 1 such that for all t ≥ t∗, we have φ(tθ )≥
φ(θ ). We thus see that

inf
θ
{φ(θ ) : θ ∈ intK}= inf

θ
{φ(θ ) : θ ∈ intK,‖θ‖ ≤ t∗}. (2.23)
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As a consequence of Theorem 2.6(i), there exists a closed inner approximation K′

of intK such that the values of φ on int(K) \K′ are irrelevant for minimization.
Consequently,

inf
θ
{φ(θ ) : θ ∈ intK,‖θ‖ ≤ t∗}= inf

θ
{φ(θ ) : θ ∈ K′,‖θ‖ ≤ t∗},

which has a minimizer by Weierstrass’ Theorem. Combined with (2.23), we see
that φ has a minimizer on intK, showing that int(K◦) ⊆ {g(θ ) : θ ∈ dom f }.

To show that f ∗ is a self-concordant barrier with complexity parameter ϑ f ,
note that by Theorem 2.12 and (2.22),

ϑ f ∗ = sup
x∈dom f ∗

(‖g∗x(x)‖∗x)2 = sup
θ∈dom f

‖θ‖2θ = sup
θ∈dom f

‖gθ (θ )‖2θ = ϑ f .

Finally, logarithmic homogeneity of f ∗ follows from the fact that for any x ∈
dom f ∗ and t > 0,

f ∗(t x) = sup
θ∈dom f

{〈θ , t x〉 − f (θ ) + [ f (tθ )− f (tθ )]}

= sup
θ∈dom f

�〈tθ , x〉 − f (tθ )− ϑ f log t
	

= f ∗(x)− ϑ f log t = f ∗(x)− ϑ f ∗ log t.



26 IPM and SA for Nonsymmetric Conic Optimization



3
A Simple Interior Point Method Using the

Entropic Barrier

In this chapter, we focus on a particular self-concordant barrier: the entropic
barrier, as proposed by Bubeck and Eldan [21]. This barrier can be defined on
any convex body, and its gradients and Hessians may be approximated through
sampling. As we will see in later chapters, it is possible to generate sufficiently
good samples using a technique called hit-and-run sampling, which only requires
a membership oracle for the feasible set. Hence, the entropic barrier can be used
for interior point methods on very general sets.

Before we continue, let us define this entropic barrier.

Definition 3.1. Let S ⊂ Rn be a convex body. The log-partition function f : Rn→
R associated with S is defined as

f (θ ) := log

∫

S
e〈θ ,x〉 dx .

Its conjugate f ∗ is called the entropic barrier.

27
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The derivatives of the log-partition function and the entropic barrier have an
interpretation in terms of so-called Boltzmann distributions over the convex body
S. Let us define these distributions first, and then discuss their relevance to the
log-partition function and the entropic barrier.

Definition 3.2. Let S ⊂ Rn be a convex body, and let θ ∈ Rn. Then, the Boltzmann
distribution with parameter θ is the probability distribution supported on S having
density with respect to the Lebesgue measure proportional to x 7→ e〈θ ,x〉.

As we will prove below, the gradient g : Rn → intS of the log-partition func-
tion f assigns to each θ ∈ Rn the mean of the Boltzmann distribution with pa-
rameter θ . On the other hand, the gradient g∗ : intS → Rn of the entropic barrier
f ∗ maps a point x ∈ intS to the θ ∈ Rn such that the mean of the Boltzmann
distribution with the parameter θ is x . This interpretation can offer a bit of in-
tuition why f ∗ is a barrier for S: as one lets x ∈ intS approach the boundary
of S, the Boltzmann distribution that has mean x will have to concentrate more
and more probability mass near the boundary of S. This will cause the norm of
the parameter of the Boltzmann distribution, i.e. the norm of g∗(x), to tend to
infinity.

The name of the entropic barrier derives from the fact that, at some x ∈ intS,
the entropic barrier equals the negative entropy of the Boltzmann distribution
whose mean is x , as was shown by e.g. Wainwright and Jordan [109, The-
orem 3.4(a)]. The negative entropy of a probability density φ : S → R+ is∫
S φ(y) logφ(y)dy , but we will not use this concept – we mention it only for

etymological reasons.
We provide an overview of the most important properties of the entropic bar-

rier in Section 3.1. In Section 3.2, we consider the complexity parameter of this
barrier for the Euclidean unit ball, which suggests there are convex bodies where
this parameter is smaller than the number of variables. Section 3.3 proposes an
interior point method tailored to the entropic barrier. We analyze this method
in Section 3.4 under the idealistic assumption that we can compute the barrier’s
gradients and Hessians exactly. The next chapters will deal with the more realistic
case that we have to use sampling to approximate these derivatives.

The analysis of a simplified method serves two purposes. First, it demon-
strates that using the entropic barrier in itself does not significantly increase the
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algorithm’s number of iterations. Instead, the number of oracle calls in later chap-
ters is largely determined by the complexity of the sampling routines. Moreover,
this analysis lays some of the foundations for the more realistic discussion in later
chapters.

The properties of the entropic barrier are already known, although we derive
the derivatives of the log-partition function more formally than in the existing
literature. The proposed interior point method is new, even though it is closely
related to an algorithm by De Klerk et al. [35]. The analysis of our method has
also not appeared before, but it is largely traditional.

3.1 Properties of the Entropic Barrier

Before we summarize the most important properties of the entropic barrier, let us
introduce a piece of notation. If φ is a measurable function whose domain is the
convex body S, we define for any θ ∈ Rn

Eθ [φ(X )] :=

∫
S φ(x)e

〈θ ,x〉 dx∫
S e〈θ ,x〉 dx

.

In other words, Eθ [φ(X )] is the expected value of φ applied to a random variable
X following a Boltzmann distribution with parameter θ . Note that we suppress
the dependence on S; this should cause no confusion, as no other convex bodies
will be introduced.

The following properties were originally shown by Klartag [64] and Bubeck
and Eldan [21]. However, we derive the derivatives of the log-partition function
more formally. Recall that the first, second, and third Fréchet derivatives of f at
θ are denoted by g(θ ), H(θ ), and T (θ ), respectively. Recall moreover that g∗

denotes the gradient of f ∗.

Proposition 3.3 ([64, Lemma 3.1], [21, Theorem 1]). Let S ⊂ Rn be a convex
body, and let f and f ∗ be its associated log-partition function and entropic barrier,
respectively. Then,

(i) g(θ )[w] = 〈Eθ [X ], w〉 for all w ∈ Rn, or in vector notation, g(θ ) = Eθ [X ],
for all θ ∈ Rn.
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(ii) H(θ )[v, w] = Eθ [〈X−Eθ [X ], v〉〈X−Eθ [X ], w〉] for all v, w ∈ Rn and θ ∈ Rn.

(iii) T (θ )[u, v, w] = Eθ [〈X − Eθ [X ], u〉〈X − Eθ [X ], v〉〈X − Eθ [X ], w〉] for all
u, v, w ∈ Rn and θ ∈ Rn.

(iv) f is self-concordant with dom f = Rn.

(v) f ∗ is self-concordant with dom f ∗ = intS.

(vi) The function g is a bijection from Rn to intS, and g∗ is its inverse.

Proof. (i): Let f̃ (θ ) := exp( f (θ )) =
∫
S e〈θ ,x〉 dx such that f (θ ) = log( f̃ (θ )). By

the chain rule (see Theorem A.2), we have for all θ , w ∈ Rn,

g(θ )[w] =
1

f̃ (θ )
g̃(θ )[w] =

g̃(θ )[w]∫
S e〈θ ,x〉 dx

,

where g̃(θ ) is the gradient of f̃ at θ . It therefore remains to show that g̃(θ )[w] =∫
S〈w, x〉e〈θ ,x〉 dx . Indeed,

0≤ lim
‖w‖↓0

| f̃ (θ +w)− f̃ (θ )− ∫S〈w, x〉e〈θ ,x〉 dx |
‖w‖

= lim
‖w‖↓0

��∫
S

�
e〈w,x〉 − 1− 〈w, x〉� e〈θ ,x〉 dx

��
‖w‖

≤
∫

S
lim
‖w‖↓0

��e〈w,x〉 − 1− 〈w, x〉
��

‖w‖ e〈θ ,x〉 dx = 0,

where the second inequality is due to the dominated convergence theorem and
the upper bound is equal to zero because et − 1− t = o(t2).

(ii): Using the quotient rule from Theorem A.4, we find for all θ , v ∈ Rn

H(θ )[v] =
1∫

S e〈θ ,x〉 dx
H̃(θ )[v]− 1�∫

S e〈θ ,x〉 dx
�2 g̃(θ )[v] g̃(θ ),

where H̃(θ ) is the Hessian of f̃ at θ . We claim that, for any w ∈ Rn, H̃(θ )[v, w] =
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∫
S〈v, x〉〈w, x〉e〈θ ,x〉 dx , since

0≤ lim
‖v‖↓0

max
w:‖w‖=1

�� g̃(θ + v)[w]− g̃(θ )[w]− ∫S〈v, x〉〈w, x〉e〈θ ,x〉 dx
��

‖v‖

= lim
‖v‖↓0

max
w:‖w‖=1

��∫
S

�
e〈v,x〉 − 1− 〈v, x〉� 〈w, x〉e〈θ ,x〉 dx

��
‖v‖

≤
∫

S
lim
‖v‖↓0

��e〈v,x〉 − 1− 〈v, x〉
��

‖v‖ ‖x‖e〈θ ,x〉 dx = 0,

where we now also use the Cauchy-Schwarz inequality and the boundedness of S
to apply the dominated convergence theorem. In conclusion,

H(θ )[v, w] =
1∫

S e〈θ ,x〉 dx
H̃(θ )[v, w]− 1�∫

S e〈θ ,x〉 dx
�2 g̃(θ )[v] g̃(θ )[w]

= Eθ [〈X , v〉〈X , w〉]−Eθ [〈X , v〉]Eθ [〈X , w〉]
= Eθ [〈X −Eθ [X ], v〉〈X −Eθ [X ], w〉].

(iii): Can be shown in a way similar to (ii).
(iv): We check the conditions of Theorem 2.6 for f . First, by definition the

domain of f is Rn, which has no boundary. The first condition therefore holds
vacuously. Second, it follows from Bubeck and Eldan [21, Lemma 2] that for any
θ , u ∈ Rn,

Eθ [〈X −Eθ [X ], u〉3]≤ 2
�
Eθ [〈X −Eθ [X ], u〉]�3/2.

By (ii) and (iii), this statement is equivalent to T (θ )[u, u, u]≤ 2(H(θ )[u, u])3/2 for
all θ , u ∈ Rn. Hence, Lemma A.8 shows that the second condition of Theorem 2.6
also holds, proving that f is self-concordant.

(v): It was shown by Klartag [64, Lemma 3.1] that {g(θ ) : θ ∈ Rn} = intS.
Since f is self-concordant, Proposition 2.10 proves that dom f ∗ = intS, and The-
orem 2.13 proves f ∗ is self-concordant.

(vi): By Proposition 2.10, g is injective. The bijection is established through
Klartag’s result [64, Lemma 3.1] that {g(θ ) : θ ∈ Rn} = intS. Theorem 2.12
shows g∗ is the inverse of g.

The results (i) and (ii) above show that the derivatives of the log-partition
function f have a stochastic interpretation. The gradient g(θ ) corresponds to the



32 IPM and SA for Nonsymmetric Conic Optimization

expected value of a Boltzmann distribution with parameter θ , and H(θ ) is the
covariance operator of the same distribution. For this reason, we will use where
appropriate the notation

x(θ ) := g(θ ) and Σ(θ ) := H(θ ), where f (θ ) = log

∫

S
e〈θ ,x〉 dx .

By Proposition 3.3(vi), g∗ and g are each other’s inverses. Hence, if f is the log-
partition function, g∗ assigns to each x ∈ intS the θ ∈ Rn such that g(θ ) = x .
We therefore also introduce the notation

θ (x) := g∗(x), where f (θ ) = log

∫

S
e〈θ ,x〉 dx .

A summary of the notation and properties of the log-partition function and its
conjugate is presented in Table 3.1.

Log-partition function f Entropic barrier f ∗

Function f (θ ) = log
∫
S e〈θ ,x〉 dx f ∗(x) = supθ∈Rn{〈θ , x〉 − f (θ )}

Gradient g(θ ) = Eθ [X ] = x(θ ) g∗(x) = θ (x) such that g(θ (x)) = x

Hessian H(θ ) = Σ(θ ) H∗(x) = H(g∗(x))−1 = Σ(θ (x))−1

Domain θ ∈ Rn x ∈ intS

Table 3.1: Overview of the properties of the log-partition function and its conju-
gate, the entropic barrier

So far we have seen that the entropic barrier is a self-concordant functional
with domain intS. As its name suggests though, the entropic barrier is moreover
a barrier in the sense of Definition 2.7, as shown by Bubeck and Eldan [21].

Theorem 3.4 ([21, Theorem 1]). Let S ⊂ Rn be a convex body, and let f ∗ be its
associated entropic barrier. Then, f ∗ is a self-concordant barrier on S with complexity
parameter

ϑ f ∗ ≤
�
1+ 100

Æ
log(n)/n

�
n,

for n≥ 80.
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The proof of this theorem depends on the fact that by Proposition 3.3(vi) and
Theorem 2.12,

ϑ f ∗ = sup
x∈dom f ∗

(‖g∗x(x)‖∗x)2

= sup
x∈intS

〈g∗(x), H∗(x)−1 g∗(x)〉

= sup
θ∈Rn
〈g∗(g(θ )), H∗(g(θ ))−1 g∗(g(θ ))〉

= sup
θ∈Rn
〈θ ,Σ(θ )θ 〉= sup

θ∈Rn
‖θ‖2θ ,

(3.1)

such that the bound on ϑ f ∗ can be established through a careful analysis of the
variance along the direction θ of the Boltzmann distribution with parameter θ .
For instance, it can be shown that if S is the hypercube [0,1]n in Rn, the com-
plexity parameter satisfies ϑ f ∗ = n. For general domains S, such an analysis goes
somewhat outside the scope of this thesis, so we refer the reader to Bubeck and
Eldan [21]. They use technical log-concavity arguments to show that 〈θ ,Σ(θ )θ 〉
can be upper bounded by the variance of a certain normal random variable. The
constants in Theorem 3.4 are not fundamental to their proof.

It is worth noting that ϑ f ∗ will only be used as an upper bound. If the value
of ϑ f ∗ is unknown, it is therefore allowed to replace ϑ f ∗ by its upper bound from
Theorem 3.4.

The entropic barrier has some interesting applications. For instance, we use
it to derive a non-trivial lower bound on the spectrum of Σ(θ ) for any θ ∈ Rn in
Appendix B.

3.2 The Complexity Parameter of the Entropic Barrier for
the Unit Ball

Although we did not prove Theorem 3.4 for general convex bodies, we will con-
sider (3.1) for the special case where intS = B(0,1), the unit ball in Rn, and
〈·, ·〉 is the Euclidean inner product. This choice is interesting because numerical
evidence presented below suggests that ϑ f ∗ =

1
2(n+ 1). For n > 1, this is, to our

knowledge, the only set where it is suspected that ϑ f ∗ < n, i.e. where the bound
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in Theorem 3.4 is significantly off. (Note that ϑ f ∗ =
1
2(n+1) would still be signif-

icantly worse than the complexity parameter 1 of the logarithmic barrier for the
unit ball.) It follows from (3.1) that

ϑ f ∗ = sup
θ∈Rn
Eθ [〈X −Eθ [X ],θ 〉2] = sup

θ∈Rn

�
Eθ [〈X ,θ 〉2]− 〈Eθ [X ],θ 〉2

	
.

For every θ ∈ Rn, there exists a rotation matrix Q with |detQ| = 1 such that
〈θ ,Q y〉 = ‖θ‖y1 for all y ∈ Rn. Using the fact that the volume of an (n − 1)-
dimensional ball with radius r is rn−1 times some factor depending only on n, we
see that

〈Eθ [X ],θ 〉=
∫
B(0,1)〈θ , x〉e〈θ ,x〉 dx
∫
B(0,1) e

〈θ ,x〉 dx

=

∫
B(0,1) ‖θ‖y1e‖θ‖y1 dy
∫
B(0,1) e

‖θ‖y1 dy
=

∫ 1
−1 ‖θ‖y1

�q
1− y2

1

�n−1
e‖θ‖y1 dy1

∫ 1
−1

�q
1− y2

1

�n−1
e‖θ‖y1 dy1

.

The final expression cannot be computed in closed form, but it can be approxi-
mated numerically for fixed n and ‖θ‖. Similarly,

Eθ [〈X ,θ 〉2] =
∫
B(0,1)〈θ , x〉2e〈θ ,x〉 dx

∫
Bn

e〈θ ,x〉 dx

=

∫
B(0,1) ‖θ‖2 y2

1 e‖θ‖y1 dy
∫
B(0,1) e

‖θ‖y1 dy
=

∫ 1
−1 ‖θ‖2 y2

1

�q
1− y2

1

�n−1
e‖θ‖y1 dy1

∫ 1
−1

�q
1− y2

1

�n−1
e‖θ‖y1 dy1

.

Numerical approximation of Eθ [〈X ,θ 〉2]− 〈Eθ [X ],θ 〉2] for different values of n
and ‖θ‖ using Matlab’s integral function yields Figure 3.1, which suggests that
ϑ f ∗ =

1
2(n+ 1).

3.3 Statement of a Simple Interior Point Method

With the main properties of the entropic barrier established, let us show that this
barrier could be used to solve convex optimization problems. To be precise, we
will consider the problem

min
x∈S 〈c, x〉, (3.2)
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Figure 3.1: Numerical approximation of 〈θ ,Σ(θ )θ 〉 for the Euclidean unit ball
B(0, 1) in Rn

where S ⊂ Rn is a convex body, and c ∈ Rn. There are a number of self-concordant
barriers that we could define over S, such as the entropic barrier or the universal
barrier from Nesterov and Nemirovskii [85]. The main problem is that the deriva-
tives of these barriers can usually not be computed in closed form. The derivatives
of the universal barrier at x ∈ S could be approximated through sampling from
the polar set {v ∈ Rn : 〈v, y − x〉 ≤ 1∀y ∈ S}. However, the derivatives of the
entropic barrier can be approximated through sampling directly from S, which is
more attractive if we only have a membership oracle for S. In this chapter, we
will assume for simplicity’s sake that we can compute the gradients and Hessians
of the entropic barrier exactly.

One might argue that under this assumption, one could simply cite the analysis
from any short-step interior point method (such as Section 2.4.2 in Renegar [95]).
To make our analysis more realistic, we will not use the standard Newton step.
The reason we would be interested in this change is the following: short-step
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interior point methods start with an approximate minimizer to

f ∗η (x) := η〈c, x〉+ f ∗(x),

for some η > 0, then increase η by a fixed factor to η+, and take a (usually
Newton) step to find an approximate minimizer to f ∗η+ , and so on. In case of the
entropic barrier, the Newton step at x ∈ dom f ∗ to minimize f ∗η would be

−H∗(x)−1[ηc + g∗(x)] = −Σ(θ (x))[ηc + θ (x)]. (3.3)

In reality, we usually do not know θ (x), so it will have to be approximated. Like-
wise, Σ(θ ) is generally unknown for any θ ∈ Rn, and will therefore also have to
be approximated. Both these approximations introduce errors, and the composi-
tion of these errors in Σ(θ (x)) is inconvenient to analyze. Abernethy and Hazan
[1, Appendix D] therefore propose to use the Hessian at

z(η) := argmin
x∈dom f ∗

f ∗η (x) = argmin
x∈dom f ∗

{η〈c, x〉+ f ∗(x)},

the minimizer of f ∗η . Since this minimizer satisfies 0 = ηc + g∗(z(η)), Theo-
rem 2.12 shows

z(η) = g(−ηc) = x(−ηc). (3.4)

Then, the following step could be used instead of (3.3):

−H∗(z(η))−1[ηc + g∗(x)] = −H(−ηc)[ηc + g∗(x)]

= −Σ(−ηc)[ηc + θ (x)].
(3.5)

In this case, the parameter of the Boltzmann distribution for which we need to
approximate the covariance is known exactly.

In the remainder of this chapter, we will show that the step (3.5) can be used
in a short-step method that converges in polynomial time. However, we will not
(necessarily) take the full step (3.5). Instead, we will scale the step (3.5) by a
damping parameter γ ∈ [4

5 , 1] to

− γH∗(z(η))−1[ηc + g∗(x)] = −γΣ(−ηc)[ηc + θ (x)], (3.6)

and prove that the method still works. The reason is again due to the particu-
lar properties of the entropic barrier. Because in reality we cannot compute the
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gradient or Hessian of the entropic barrier exactly, they will only be known up
to some error. De Klerk et al. [35] analyze the performance of the step (3.6) for
a particular γ when the Hessian and gradient contain errors. Our purpose is to
analyze the step (3.6) if it is known exactly. This will bridge the gap between [35]
and a classical short-step method that would use (3.3). As we will see, using (3.6)
instead of (3.3) does not make solving the problem (3.2) significantly harder.

The short-step interior point method we will analyze is given in Algorithm 3.1.
Note that we assume to know a starting point near the analytic curve {z(η) : η >
0}, which is known as the central path. Given any point in the interior of S, such a
starting point can be computed using a short-step method similar to Algorithm 3.1,
see Renegar [95, pages 47-48].

Algorithm 3.1 A simple short-step algorithm using the entropic barrier f ∗

Input: entropic barrier f ∗ over a convex body S ⊂ Rn;
objective c ∈ Rn;
optimality tolerance ε > 0;
η0 > 0 and x0 ∈ intS such that ‖x0 − z(η0)‖∗z(η0)

≤ 1
6 .

Output: xk ∈ S such that 〈c, xk〉 ≤minx∈S〈c, x〉+ ε.
1: k← 0
2: while 7

6ϑ f ∗/ηk > ε do
3: ηk+1← η0(1+ 1/(16

Æ
ϑ f ∗))k+1

4: Pick a γk ∈ [4
5 , 1]

5: xk+1← xk − γkH∗(z(ηk+1))−1[ηk+1c + g∗(xk)]
6: k← k+ 1
7: return xk

3.4 Analysis of a Simple Interior Point Method

One of the starting conditions for Algorithm 3.1 is ‖x0−z(η0)‖∗z(η0)
≤ 1

6 . The bulk

of our argument will be dedicated to proving ‖xk−z(ηk)‖∗z(ηk)
≤ 1

6 for all iterations
k. It will then follow that for sufficiently high k, the point xk is near-optimal.

The following lemma, based on Renegar [95], will be central to the analysis
of the distance to the central path.
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Lemma 3.5 (Based on [95, Theorem 2.2.1]). Let f ∗ be a self-concordant functional.
Then, for all z ∈ dom f ∗, y ∈Bz(z, 1) and γ ∈ (0,1],



I − γH∗z (y)


∗

z ≤
1

γ(1− ‖y − z‖∗z)2
− 1.

Proof. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of H∗z (y) (with respect to 〈·, ·〉∗z).
Since the eigenvalues of I − γH∗z (y) are 1− γλi , where i ∈ {1, ..., n}, we have



I − γH∗z (y)


∗

z =max{γλn − 1,1− γλ1}
≤max{γλn − 1, 1

γλ1
− 1}

=max{γ‖H∗z (y)‖∗z − 1, 1
γ‖H∗z (y)−1‖∗z − 1}.

The inequality follows from the fact that if 1−γλ1 ≥ γλn−1, then we must have
2γλ1 ≤ γ(λ1+λn)≤ 2, and hence γλ1 ≤ 1. The result now follows from Equation
(2.1) in Renegar [95].

We can now analyze the progress made to the next minimizer z(ηk+1) of f ∗ηk+1

by the step in Line 5 in Algorithm 3.1.

Lemma 3.6 (Based on [95, Theorems 1.6.2 and 2.2.3]). Let f ∗ be a self-concordant
functional with minimizer z, and let x ∈Bz(z, 1). Define x+ = x − γH∗(z)−1 g∗(x)
for some γ ∈ (0, 1]. Then,

‖x+ − z‖∗z ≤ ‖x − z‖∗z
�

1
γ(1− ‖x − z‖∗z)

− 1

�
.

Proof. Since g∗(z) = 0= g∗z (z),

‖x+ − z‖∗z = ‖x − z − γg∗z (x)‖∗z = ‖x − z − γ[g∗z (x)− g∗z (z)]‖∗z .

Using H∗z (z) = I , it follows from the fundamental theorem of calculus (see e.g.
Theorem 1.5.6 in Renegar [95]) that

‖x+ − z‖∗z =





x − z − γ

∫ 1

0

H∗z (z + t(x − z))[x − z]dt







∗

z

=







∫ 1

0

�
I − γH∗z (z + t(x − z))

�
[x − z]dt







∗

z

≤ ‖x − z‖∗z
∫ 1

0



I − γH∗z (z + t(x − z))


∗

z dt.
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We then invoke Lemma 3.5 to show that

‖x+ − z‖∗z ≤ ‖x − z‖∗z
∫ 1

0

�
1

γ(1− t‖x − z‖∗z)2
− 1

�
dt,

which completes the proof.

Observe that if γ = 1 and ‖x − z‖∗z < 1
2 , then ‖x+ − z‖∗z < ‖x − z‖∗z , meaning

that we get closer to the minimizer in the z-norm by taking the step from x to x+.

We see that the step in Line 5 in Algorithm 3.1 can be used to approximate the
minimizer z(ηk+1) of f ∗ηk+1

, provided we start close enough to z(ηk+1). Since our
running assumption is that we have an xk close to z(ηk), it suffices to bound the
distance between z(ηk+1) and z(ηk). The next result provides a way to relate the
distance between z(ηk+1) and z(ηk) to the distance between −ηk+1c and −ηkc
(which we know about, since we control the difference between ηk+1 and ηk).
We first state the result in general terms, and then derive a corollary about the
minimizers.

Proposition 3.7. Let f be a self-concordant functional, and let x , y ∈ dom f ∗. If
‖y − x‖∗x < 1,

‖g∗(y)− g∗(x)‖g∗(x) ≤
‖y − x‖∗x

1− ‖y − x‖∗x
. (3.7)

Similarly, if ‖g∗(y)− g∗(x)‖g∗(x) < 1,

‖y − x‖∗x ≤
‖g∗(y)− g∗(x)‖g∗(x)

1− ‖g∗(y)− g∗(x)‖g∗(x)
. (3.8)

Proof. Assuming ‖y − x‖∗x < 1, we will show (3.7). By Theorem 2.12,

‖g∗(y)− g∗(x)‖g∗(x) = ‖g∗(y)− g∗(x)‖H∗(x)−1 = ‖g∗x(y)− g∗x(x)‖∗x .

Since f is self-concordant, f ∗ is also self-concordant by Theorem 2.13. We can
therefore invoke the fundamental theorem of calculus (see e.g. Theorem 1.5.6 in
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Renegar [95]) and Theorem 2.2.1 from Renegar [95] to show

‖g∗(y)− g∗(x)‖g∗(x) = ‖g∗x(y)− g∗x(x)‖∗x

=







∫ 1

0

H∗x(x + t[y − x])[y − x]dt







∗

x

≤ ‖y − x‖∗x
∫ 1

0



H∗x(x + t[y − x])


∗

x dt

≤ ‖y − x‖∗x
∫ 1

0

1
(1− t‖y − x‖∗x)2

dt =
‖y − x‖∗x

1− ‖y − x‖∗x
,

which proves (3.7). The relation (3.8) can be derived in the same manner by
interchanging x and g∗(x), y and g∗(y), and f and f ∗.

As a consequence, the following can now be said about the distance between
z(ηk+1) and z(ηk).

Corollary 3.8. Let f ∗ be a self-concordant barrier, and fix c ∈ Rn. Let η > 0 and
η+ = (1+β/

Æ
ϑ f ∗)η for some β ∈ [0,1). Assume z(η) and z(η+) are well defined.

Then,

‖z(η+)− z(η)‖∗z(η) ≤
β

1− β .

Proof. By (3.4) and Theorem 2.12, we have g∗(z(η)) = −ηc and g∗(z(η+)) =
−η+c. Hence, by (3.8),

‖z(η+)− z(η)‖∗z(η) ≤
‖g∗(z(η+))− g∗(z(η))‖g∗(z(η))

1− ‖g∗(z(η+))− g∗(z(η))‖g∗(z(η))
=
‖(η+ −η)c‖−ηc

1− ‖(η+ −η)c‖−ηc
.

By our choice of η+ and (3.1),

‖(η+−η)c‖−ηc =
η+ −η
η
‖−ηc‖−ηc =

βÆ
ϑ f ∗
‖−ηc‖−ηc ≤

βÆ
ϑ f ∗

q
ϑ f ∗ = β , (3.9)

which completes the proof.

Let us combine Lemma 3.6 and Corollary 3.8 to show that the distance to the
central path remains below 1

6 after taking the step in Line 5 of Algorithm 3.1.
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Lemma 3.9. Let f ∗ be a self-concordant barrier, and fix c ∈ Rn. Let η > 0 and
η+ = (1 + β/

Æ
ϑ f ∗)η for β = 1

16 . Assume z(η) and z(η+) are well defined. Let
x ∈ dom f ∗ such that ‖x − z(η)‖∗z(η) ≤ δ = 1

6 , and define

x+ := x − γH∗(z(η+))−1[η+c + g∗(x)],

where γ ∈ [4
5 , 1]. Then,

‖x+ − z(η+)‖∗z(η+) ≤ δ.

Proof. Since β < 1
2 , Corollary 3.8 shows ‖z(η)− z(η+)‖∗z(η) < 1. Application of

self-concordance (2.1) thus shows

‖x − z(η+)‖∗z(η+) ≤
‖x − z(η+)‖∗z(η)

1− ‖z(η)− z(η+)‖∗z(η)

≤
‖x − z(η)‖∗z(η) + ‖z(η)− z(η+)‖∗z(η)

1− ‖z(η)− z(η+)‖∗z(η)
≤ δ+ β/(1− β)

1− β/(1− β) =
1
4 .

Therefore, Lemma 3.6 shows

‖x+ − z(η+)‖∗z(η+) ≤ ‖x − z(η+)‖∗z(η+)
�

1
γ(1− ‖x − z(η+)‖∗z(η+))

− 1

�

≤ 1
4

�
1

γ(1− 1
4)
− 1

�
≤ 1

6 = δ,

where the final inequality holds for all γ≥ 4
5 .

Algorithm 3.1 thus stays close to the central path. The main thing left to show
is that following the central path eventually yields a near-optimal solution. As
the following result from Renegar [95] demonstrates, this will be the case for
sufficiently large values of η.

Lemma 3.10 ([95, pages 44-45]). Let f ∗ be a self-concordant barrier, and fix c ∈
Rn. Let η > 0, and assume z(η) is well defined. Let x ∈ dom f ∗ such that ‖x −
z(η)‖∗z(η) ≤ δ for some δ ≥ 0. Then,

〈c, x〉 ≤ val+
(1+δ)ϑ f ∗

η
,
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where val :=minx∈S〈c, x〉.
Proof. We have g∗(z(η)) = −ηc, and therefore Theorem 2.8 shows that for all
y ∈ dom f ∗,

〈c, z(η)〉 − 〈c, y〉= 〈g
∗(z(η)), y − z(η)〉

η
<
ϑ f ∗

η
.

Consequently,
〈c, z(η)〉 ≤ val+ ϑ f ∗/η. (3.10)

For a point x ∈ dom f ∗ such that ‖x−z(η)‖∗z(η) ≤ δ, we therefore have by Cauchy-
Schwarz,

〈c, x〉 ≤ 〈c, z(η)〉+ 〈H∗(z(η))−1c, x − z(η)〉∗z(η)
≤ val+

ϑ f ∗

η
+δ‖H∗(z(η))−1c‖∗z(η). (3.11)

To bound ‖H∗(z(η))−1c‖∗z(η), note that for any v ∈ Rn and 0 ≤ t < 1/‖v‖∗z(η),
it holds that z(η) − t v ∈ dom f ∗. Hence, val ≤ 〈c, z(η)〉 − 〈c, v〉/‖v‖∗z(η). For

v = H∗(z(η))−1c, this inequality shows

〈c, z(η)〉 − val≥ 〈c, v〉
‖v‖∗z(η)

=
〈c, H∗(z(η))−1c〉p〈c, H∗(z(η))−1c〉

= ‖H∗(z(η))−1c‖∗z(η).

Combined with (3.11) and (3.10), the above shows that for all x ∈ dom f ∗ such
that ‖x − z(η)‖∗z(η) ≤ δ,

〈c, x〉 ≤ val+
ϑ f ∗

η
+δ(〈c, z(η)〉 − val)≤ val+

(1+δ)ϑ f ∗

η
.

We end this section by proving that O(
Æ
ϑ f ∗ log(ϑ f ∗/ε)) steps suffice for Al-

gorithm 3.1 to reach an ε-optimal solution. The analysis largely follows Renegar
[95].

Proposition 3.11 ([95, pages 45-47]). After

k ≤ 17
q
ϑ f ∗ log

�
7ϑ f ∗

6εη0

�
+ 1= O

�q
ϑ f ∗ log

�
ϑ f ∗

εη0

��
(3.12)

iterations, Algorithm 3.1 will return a solution xk ∈ S with 〈c, xk〉 ≤ val+ ε, where
val :=minx∈S〈c, x〉.
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Proof. Repeated application of Lemma 3.9 shows that ‖xk − z(ηk)‖∗z(ηk)
≤ 1

6 for
all iterations k of Algorithm 3.1. By Lemma 3.10, the proof will be completed by
showing that the number of iterations k before 7

6ϑ f ∗/ηk ≤ ε satisfies (3.12). In
other words, we are looking for the smallest solution k to

7ϑ f ∗

6ε
≤ η0

�
1+

1

16
Æ
ϑ f ∗

�k

.

The smallest k that satisfies this inequality is

k =




log
� 7ϑ f ∗

6εη0

�

log
�

1+ 1
16
p
ϑ f ∗

�



≤ 17

q
ϑ f ∗ log

�
7ϑ f ∗

6εη0

�
+ 1,

where the inequality uses ϑ f ∗ ≥ 1.

Let us briefly summarize this chapter. Due to the properties of the entropic
barrier outlined in Section 3.1, we argued in Section 3.3 that a short-step method
using this barrier and the standard Newton step would be inconvenient to analyze.
Instead, we proposed Algorithm 3.1, where the main difference with a textbook
short-step method is the step in Line 5. However, as we saw above, the worst-case
complexity for Algorithm 3.1 is the same as for traditional short-step methods,
see e.g. Renegar [95, page 47]. In this sense, the entropic barrier does not yet
present any difficulties that lead to a worse complexity for a short-step method.

Of course, there is one problem we sidestepped in this chapter: we generally
do not have access to the derivatives of the entropic barrier, and they will have
to be approximated by sampling. This is the topic of the next few chapters. In
Chapter 4, we will introduce the sampling technique of our choice: hit-and-run
sampling. Chapter 5 shows how this sampling technique can be used to approx-
imate the mean and covariance matrix of a Boltzmann distribution to a desired
accuracy. These tools are used in Chapter 6 to analyze a short-step method us-
ing the entropic barrier where the derivatives are approximated using hit-and-run
sampling.
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4
Hit-and-Run Sampling

As we saw in the last chapter, the gradient and Hessian of the entropic barrier
have a stochastic interpretation. If we want to use this barrier in practice, we
will need to find a way to (approximately) compute its gradient and Hessian.
Since these derivatives are not known in closed form for general domains S, the
most promising approach is sampling. We therefore want to generate samples
from some Boltzmann distribution over a convex body S with a given parameter
θ ∈ Rn.

In this chapter, we explore how this can be done with a technique called hit-
and-run sampling, to be defined in Section 4.1. In order to analyze this procedure,
we collect some background material from probability and measure theory in Sec-
tion 4.2. The chapter concludes in Section 4.3 with an analysis of the mixing time
for hit-and-run applied to the Boltzmann distribution. In other words, we will
investigate how many hit-and-run steps are necessary to find a point that approx-
imately follows the desired Boltzmann distribution.

The chapter largely follows Sections 2.3 and 4 from Badenbroek and De Klerk
[8]. Lemma 4.10 and Corollary 4.13 replace [8, Lemmas 4.4 and 4.6], leading to

45
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a simpler statement of Theorem 4.14.

4.1 Hit-and-Run and its Implementation

The procedure we will use to generate samples is called hit-and-run sampling.
This random walk was introduced for the uniform distribution by Smith [102] and
later generalized to absolutely continuous distributions (see for example Bélisle
et al. [11]). It was shown by Lovász [70] that, after preprocessing, hit-and-run
sampling can generate an approximately uniformly distributed point from O∗(n3)
membership oracle calls, where O∗ suppresses polylogarithmic terms in the prob-
lem parameters. Lovász and Vempala [72] later showed that hit-and-run sampling
can also be used to generate a point that approximately follows a Boltzmann dis-
tribution, while using O∗(n3) oracle calls after preprocessing. The mixing time for
hit-and-run sampling is attractive compared to alternatives such as the ball walk,
as argued in the survey by Vempala [107]. We will use the version of hit-and-run
sampling in Algorithm 4.1, based on Lovász and Vempala [71].

This procedure samples a random direction Di from a normal distribution
N (0,Σ)with mean 0 and covariance matrixΣ (we will see some good choices ofΣ
later). The next iterate X i is then sampled from the desired distribution restricted
to the line through X i−1 in the direction Di , intersected with S. Effectively, this
reduces a high-dimensional sampling problem to a sequence of one-dimensional
sampling problems.

We continue with some comments on the implementation of Algorithm 4.1.
If S is a set which is easy to work with, such as a polyhedron, Line 5 may be im-
plemented in closed form. For general sets for which only a membership oracle
is known, one can use the bisection method to efficiently approximate the end
points of the line segment. If we are using hit-and-run sampling to solve an opti-
mization problem over S, the tolerance in this approximation could be a fraction
of the optimality tolerance. Thus, the number of calls to the membership oracle
by Algorithm 4.1 would be O∗(`). After compensating the optimality tolerance for
the inaccuracy in the end points of the line segments, we are (in the worst case)
in the setting where we can compute the end point of the line segments exactly.
To prevent such trivial complications, we will assume that the end points of the
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Algorithm 4.1 The hit-and-run sampling procedure
Input: convex body S ⊂ Rn;

functionφ : S → R+ proportional to the probability density with respect
to the Lebesgue measure of the distribution to sample from (i.e. the
target distribution);
covariance matrix Σ ∈ Rn×n;
starting point x ∈ S;
number of hit-and-run steps `.

Output: X` following a distribution close to the distribution induced by φ.
1: X0← x
2: Sample directions D1, ..., D` i.i.d. from a N (0,Σ)-distribution
3: Sample P1, ..., P` i.i.d. from a uniform distribution over [0, 1], independent

from D1, ..., D`
4: for i ∈ {1, ...,`} do
5: Determine end points Yi and Zi of the line segment S∩{X i−1+ tDi : t ∈ R}
6: Find s ∈ [0, 1] such that

∫ s
0 φ(Yi+ t(Zi−Yi))dt = Pi

∫ 1
0 φ(Yi+ t(Zi−Yi))dt

7: X i ← Yi + s(Zi − Yi)

8: return X`

line segments can be computed exactly, and that Algorithm 4.1 always uses O∗(`)
oracle calls.

For the sake of completeness, let us illustrate how Line 6 in Algorithm 4.1
could be implemented if the target distribution were a Boltzmann distribution
over S with parameter θ ∈ Rn. In other words, we are looking for the s ∈ [0,1]
such that ∫ s

0

e〈θ ,Yi+t(Zi−Yi)〉 dt = Pi

∫ 1

0

e〈θ ,Yi+t(Zi−Yi)〉 dt.

This condition can equivalently be written as

e〈θ ,Yi+s(Zi−Yi)〉 − e〈θ ,Yi〉

〈θ , Zi − Yi〉
= Pi

e〈θ ,Zi〉 − e〈θ ,Yi〉

〈θ , Zi − Yi〉
,

which has solution

s =
log

�
(1− Pi)e〈θ ,Yi〉 + Pie

〈θ ,Zi〉�− 〈θ , Yi〉
〈θ , Zi − Yi〉

.
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4.2 Divergence of Probability Distributions and Log-Con-
cavity

To analyze the mixing time of hit-and-run applied to a Boltzmann distribution,
we need some more theory. We want to define Radon-Nikodym derivatives, a
generalization of probability density functions. Such a derivative is guaranteed to
exist under two conditions: absolute continuity and σ-finiteness. We first define
absolute continuity.

Definition 4.1. Let (S,F) be a measurable space, and letϕ andψ be measures on
this space. Then, ϕ is absolutely continuous with respect to ψ if ψ(A) = 0 implies
ϕ(A) = 0 for all A∈ F . We write this property as ϕ�ψ.

Next, we call a positive measure ϕ on the measurable space (S,F) σ-finite
if S can be covered by countably many measurable sets with finite measure. In
particular, if ϕ(S) is finite, it is σ-finite by definition.

With these two concepts defined, we can state the Radon-Nikodym theorem,
which provides conditions under which the Radon-Nikodym derivatives exist. Al-
though it was originally proven on general measurable spaces by Nikodym [91,
Theorem IV], we cite the version from Billingsley [15].

Theorem 4.2 ([15, Theorem 32.2]). Let (S,F) be a measurable space, and let ϕ
and ψ be positive, σ-finite measures on (S,F) such that ϕ�ψ. Then, there exists
a measurable function φ : S → R+ such that for all A∈ F ,

ϕ(A) =

∫

A
φ dψ.

Such a function φ is called a Radon-Nikodym derivative of ϕ with respect toψ, and
is denoted by dϕ/dψ or dϕ

dψ .

Note that if one lets S ⊆ Rn and ψ be the Lebesgue measure in the theorem
above, then the Radon-Nikodym derivative of a probability measure ϕ is simply
the familiar probability density function.

One reason for introducing the Radon-Nikodym derivative is that it is used in
our first measure of divergence between probability distributions: the L2-norm.
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Definition 4.3. Let (S,F) be a measurable space. Let ϕ andψ be two probability
distributions over this space, such that ϕ � ψ. Then, the L2-norm of ϕ with
respect to ψ is

‖ϕ/ψ‖ :=

∫

S

dϕ
dψ

dϕ =

∫

S

�
dϕ
dψ

�2

dψ.

To provide some more insight into this definition, we remark that if S ⊆ Rn,
and ϕ and ψ have probability densities φϕ and φψ, respectively, with respect to
the Lebesgue measure, it can be shown that

‖ϕ/ψ‖=
∫

S

φϕ(x)

φψ(x)
φϕ(x)dx .

The second way in which we will measure distance between probability dis-
tributions is by total variation distance.

Definition 4.4. Let (S,F) be a measurable space. For two probability distribu-
tions ϕ and ψ over this space, their total variation distance is

‖ϕ −ψ‖TV := sup
A∈F
|ϕ(A)−ψ(A)|.

A useful property of the total variation distance is that it allows coupling of
random variables, as the following lemma from Levin et al. [68] asserts.

Lemma 4.5 (e.g. [68, Proposition 4.7]). Let X be a random variable on S with
distribution ϕ, and letψ be a different probability distribution on S. If ‖ϕ−ψ‖TV =
p, we can construct another random variable Y on S distributed according toψ such
that P{X = Y }= 1− p.

Another reason to introduce Radon-Nikodym derivatives is that they admit
a convenient interpretation of log-concave measures. We will use the definition
from Saumard and Wellner [98], which defines such measures on (Rn,Bn), where
Bn is the Borel σ-algebra.

Definition 4.6 ([98, Definitions 2.1 and 2.4, Theorem 2.7]). A positive measure
ϕ on (Rn,Bn) is log-concave if for all A, B ∈ Bn and t ∈ (0, 1),

ϕ(tA+ (1− t)B)≥ ϕ(A)tϕ(B)1−t , (4.1)
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where tA+ (1 − t)B := {t x + (1 − t)y : x ∈ A, y ∈ B}. Moreover, a function
φ : Rn→ R+ is log-concave if for all x , y ∈ Rn and t ∈ (0,1),

φ(t x + (1− t)y)≥ φ(x)tφ(y)1−t .

(In other words, if the function φ is strictly positive, then it is log-concave if and
only if x 7→ log(φ(x)) is concave.)

The definition (4.1) of a log-concave probability distribution does not imme-
diately offer a lot of intuition. It is thus convenient to note that log-concave proba-
bility distributions have a log-concave probability density function, and vice versa.
Formally, a probability measure on (Rn,Bn) with full-dimensional support is log-
concave if and only if it admits a log-concave Radon-Nikodym derivative with
respect to the Lebesgue measure (see Saumard and Wellner [98, Theorem 2.7]).
In particular, any Boltzmann distribution over a convex body is log-concave. As
a matter of fact, Boltzmann distributions lie at the boundary of all log-concave
distributions, since the logarithm of their densities is linear.

A considerable body of literature surrounds log-concave probability distribu-
tions, a small part of which we will use. For instance, as we will see later, the
tails of log-concave distributions contain relatively little probability mass. An-
other property is that the level sets of log-concave probability density functions
are convex (see e.g. Section 3.5 in Boyd and Vandenberghe [19]). Let us define
these sets for general probability density functions.

Definition 4.7. Let φ : Rn → R+ be a probability density function supported on
S ⊆ Rn. Then, the level set of (the distribution with density) φ with probability
p ∈ (0, 1) is {x ∈ S : φ(x) ≥ tp}, where tp is chosen such that the integral of φ
over this set equals p.

4.3 Mixing Time

With these preliminaries established, we can start our analysis of the mixing time
of hit-and-run. To approximate the derivatives of the entropic barrier, we should
be able to generate samples from a Boltzmann distribution with parameter θ1 ∈
Rn. Because we are interested in a short-step interior point method, we may
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assume that we already have reasonable approximations of Σ(θ0) for some θ0

close to θ1 (this section will use the notation summarized in Table 3.1 on page
32.). Our goal for this section is to find a walk length ` such that after ` steps,
the hit-and-run sample approximately follows the Boltzmann distribution with
parameter θ1.

The following theorem from Lovász and Vempala [71] is the starting point
of our analysis. We use Eψ[φ(X )] to refer to the expectation of φ(X ), where X
follows the distribution ψ.

Theorem 4.8 ([71, Theorem 1.1]). Let ψ be a log-concave probability distribution
supported on a convex body S ⊆ Rn, and let p > 0. Consider a hit-and-run random
walk as in Algorithm 4.1 with respect to the target distribution ψ from a random
starting point with distribution ϕ supported on S. Assume that the following holds:

(i) the level set of ψ with probability 1
8 contains a ball of radius υ with respect to

‖ · ‖;
(ii) dϕ

dψ(x)≤ M̄ for all x ∈ S \ A for some set A⊆ S with ϕ(A)≤ p;

(iii) Eψ[‖X −Eψ[X ]‖2]≤ Υ 2.

Let ϕ` be the distribution of the current hit-and-run point after ` steps of hit-and-run
sampling applied to ψ, where the directions are chosen from a N (0, I)-distribution.
Then, after

`=

�
1030 n2Υ 2

υ2
log2

�
2M̄nΥ
υp

�
log3

�
2M̄
p

��
,

hit-and-run steps, we have ‖ϕ` −ψ‖TV ≤ p.

Suppose that rather than (ii), we know ‖ϕ/ψ‖ ≤ M , i.e.
∫
S

dϕ
dψ(x)dϕ(x)≤ M .

If A= {x ∈ S : dϕ
dψ(x)> M/p}, then

M ≥
∫

A

dϕ
dψ
(x)dϕ(x)≥ M

p
ϕ(A),

and thus we have ϕ(A) ≤ p. (This construction was also applied by Lovász and
Vempala [72, page 10].) We can therefore set M̄ = M/p in the theorem. If one
additionally applies a transformation x 7→ Σ−1/2 x to S for some invertible matrix
Σ before Theorem 4.8 is applied, we arrive at the following corollary.
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Corollary 4.9 ([8, Corollary 4.2]). Let ψ be a log-concave probability distribution
supported on a convex body S ⊆ Rn, and let p > 0. Consider a hit-and-run random
walk as in Algorithm 4.1 with respect to the target distribution ψ from a random
starting point with distribution ϕ supported on S. Assume that the following holds
for some invertible matrix Σ:

(i) the level set of ψ with probability 1
8 contains a ball of radius υ with respect to

‖ · ‖Σ−1;

(ii) ‖ϕ/ψ‖ ≤ M;

(iii) Eψ
�‖X −Eψ[X ]‖2Σ−1

�≤ Υ 2.

Let ϕ` be the distribution of the hit-and-run point after ` steps of hit-and-run sam-
pling applied to ψ, where the directions are drawn from a N (0,Σ)-distribution.
Then, after

`=

�
1030 n2Υ 2

υ2
log2

�
2MnΥ
υp2

�
log3

�
2M
p2

��
, (4.2)

hit-and-run steps, we have ‖ϕ` −ψ‖TV ≤ p.

In the remainder of this section, we aim to show that the conditions of Corol-
lary 4.9 are satisfied if ϕ and ψ are Boltzmann distributions with parameters θ0

and θ1, respectively, such that ‖θ1−θ0‖θ0
is sufficiently small. Note that Kalai and

Vempala [56] only show these conditions to be satisfied if θ0 and θ1 are collinear.
In studying interior point methods, we are also interested in (small) deviations
from the central path, so it is important to know that the mixing conditions can
be shown to hold for these cases. We remind the reader that it was shown in
Proposition 3.3(iv) that the log-partition function is self-concordant, a fact that
will be used frequently below. In fact, one might say that this self-concordance
alone implies the conditions of Corollary 4.9 holding for Boltzmann distributions.

We begin with Condition (i) from Corollary 4.9. It is different from [8, Lemma
4.4] in that it does not use the ‖ · ‖∗x(θ )-norm. This will simplify the statement of
Theorem 4.14.

Lemma 4.10. Let f be the log-partition function associated with a convex body
S ⊂ Rn. Let q ∈ (0,1) and θ0,θ1 ∈ Rn such that ‖θ1 − θ0‖θ0

< 1. Let φ : Rn → R
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be the density of the Boltzmann distribution with parameter θ1 over S. Let L be the
level set ofφ with probability q. Then, L contains a closed ‖·‖Σ(θ0)−1-ball with radius

q
e

�
1− ‖θ1 − θ0‖θ0

�
.

Proof. It follows from Lemma 5.13 in Lovász and Vempala [74] that L contains a
‖ · ‖Σ(θ1)−1-ball with radius q/e. In other words, there exists some z ∈ L such that
for all y ∈ Rn with ‖y − z‖−1

θ1
≤ q/e it holds that y ∈ L. Thus, for all y ∈ Rn with

‖y − z‖−1
θ0
≤ (1− ‖θ1 − θ0‖θ0

)q/e, (2.5) shows

‖y − z‖−1
θ1
≤

‖y − z‖−1
θ0

1− ‖θ1 − θ0‖θ0

≤ q
e

,

which proves that all such y lie in L.

Next, we prove upper and lower bounds on the L2 norm of two Boltzmann
distributions. This corresponds to Condition (ii) in Corollary 4.9.

Lemma 4.11 ([8, Lemma 4.5]). Let f be the log-partition function associated with
a convex body S ⊂ Rn. Let ϕ0 and ϕ1 be Boltzmann distributions supported on S
with parameters θ0 and θ1 respectively. Then, if ‖θ1 − θ0‖θ0

< 1,

‖ϕ0/ϕ1‖ ≤
exp(−2‖θ1 − θ0‖θ0

)

(1− ‖θ1 − θ0‖θ0
)2

.

Proof. For ease of notation, let θ := θ0 and u := θ1 − θ0. By definition,

‖ϕ0/ϕ1‖= Eθ0

�
dϕ0

dϕ1
(X )

�
=

∫

S

e〈2θ ,x〉

e〈θ+u,x〉 dx

∫
S e〈θ+u,x〉 dx

�∫
S e〈θ ,x〉 dx

�2

=

∫
S e〈θ−u,x〉 dx∫
S e〈θ ,x〉 dx

∫
S e〈θ+u,x〉 dx∫
S e〈θ ,x〉 dx

. (4.3)
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The key observation is that the natural logarithm of (4.3) equals

f (θ + u)− f (θ ) + f (θ − u)− f (θ )

=

∫ 1

0

〈g(θ + tu), u〉dt −
∫ 1

0

〈g(θ − tu), u〉dt

=

∫ 1

0

®
g(θ ) +

∫ 1

0

H(θ + stu)(tu)ds, u

¸
dt

−
∫ 1

0

®
g(θ ) +

∫ 1

0

H(θ − stu)(−tu)ds, u

¸
dt

=

∫ 1

0

t

∫ 1

0

〈H(θ + stu)u, u〉ds dt +

∫ 1

0

t

∫ 1

0

〈H(θ − stu)u, u〉ds dt, (4.4)

where we used the fundamental theorem of calculus twice. By the second in-
equality in (2.1),

〈H(θ + stu)u, u〉= ‖u‖2θ+stu ≤
‖u‖2

θ

(1− st‖u‖θ )2
,

and the same upper bound holds for 〈H(θ−stu)u, u〉. Then, (4.4) can be bounded
above by

2

∫ 1

0

t

∫ 1

0

‖u‖2
θ

(1− st‖u‖θ )2
ds dt = −2[‖u‖θ + ln(1− ‖u‖θ )],

which is nonnegative for 0 ≤ ‖u‖θ < 1. Since (4.4) is the natural logarithm of
(4.3),

‖ϕ0/ϕ1‖ ≤ exp(−2[‖u‖θ + ln(1− ‖u‖θ )]) =
exp(−2‖u‖θ )
(1− ‖u‖θ )2

.

The bound in this lemma are more general than the ones used in Kalai and
Vempala [56, Lemma 4.4]. They consider the case where θ1 = (1+ t)θ0 for some
t ∈ (−1,1). By using the log-concavity of the Boltzmann distribution, they show

‖ϕ0/ϕ1‖ ≤
1

(1+ t)n(1− t)n
, (4.5)

where ϕ0 and ϕ1 are Boltzmann distributions with parameters θ0 and θ1, respec-
tively. This bound may outperform Lemma 4.11, but that comes at the cost of
generality.
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Finally, we show that Condition (iii) in Corollary 4.9 holds. The first step is
computing the expression E[‖X −E[X ]‖2

Σ−1] for random variables X with covari-
ance Σ. (We state this result separately because we will refer to it later.)

Lemma 4.12. Let X be a random variable in Rn with covariance operator Σ, i.e.
Σ[v, w] = E[〈X −E[X ], v〉〈X −E[X ], w〉] for all v, w ∈ Rn. Then,

E
�‖X −E[X ]‖2

Σ−1

�
= n.

Proof. SinceΣ is a positive definite linear operator, it has a spectral decomposition
given by an orthonormal basis v1, ..., vn ∈ Rn and positive reals λ1, ...,λn such that

Σw=
n∑

i=1

λi〈vi , w〉vi and Σ−1w=
n∑

i=1

1
λi
〈vi , w〉vi

for all w ∈ Rn. Consequently,

E
�‖X −E[X ]‖2

Σ−1

�
= E

�〈X −E[X ],Σ−1[X −E[X ]]〉�

=
n∑

i=1

1
λi
E
�〈X −E[X ], vi〉2

�
=

n∑
i=1

1
λi
Σ[vi , vi].

The proof is completed by noting that Σ[vi , vi] = λi for all i.

Condition (iii) in Corollary 4.9 can now be satisfied by an application of self-
concordance. The following is more general than [8, Lemma 4.6], since it does
not assume the reference inner product is Euclidean.

Corollary 4.13. Let f be the log-partition function associated with a convex body
S ⊂ Rn. For all θ0,θ1 ∈ Rn such that ‖θ0 − θ1‖θ0

< 1,

Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ0)−1

�
≤ n
(1− ‖θ0 − θ1‖θ0

)2
.

Proof. By (2.4), Σ(θ0)−1 � (1− ‖θ0 − θ1‖θ0
)−2Σ(θ1)−1, showing

Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ0)−1

�
≤ 1
(1− ‖θ0 − θ1‖θ0

)2
Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ1)−1

�
.

The claim thus follows from Lemma 4.12.
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It is interesting to compare the upper bound in Corollary 4.13 with the one
Kalai and Vempala [56] arrive at through a near-isotropy argument. It is shown
by [56, Lemmas 4.2 and 4.3] that

Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ0)−1

�
≤ 16n‖ϕ1/ϕ0‖max

v∈Rn

Eθ0

�
〈v, X −Eθ0

[X ]〉2
Σ(θ0)−1

�

‖v‖2
Σ(θ0)−1

,

(4.6)
where µ0 and µ1 are Boltzmann distributions with parameters θ0 and θ1, respec-
tively. Observe that for all v ∈ Rn,

Eθ0

�〈Σ(θ0)−1v, X −Eθ0
[X ]〉2�

‖v‖2
Σ(θ0)−1

=
〈Σ(θ0)−1v,Σ(θ0)Σ(θ0)−1v〉

‖v‖2
Σ(θ0)−1

= 1,

and therefore the right hand side of (4.6) is just 16n‖ϕ1/ϕ0‖. If we upper bound
this norm by Lemma 4.11, we find

Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ0)−1

�
≤ 16n exp(−2‖θ1 − θ0‖θ1

)

(1− ‖θ1 − θ0‖θ1
)2

. (4.7)

By the second inequality in (2.1), we have

n
(1− ‖θ0 − θ1‖θ0

)2
≤ n�

1− ‖θ0−θ1‖θ1
1−‖θ0−θ1‖θ1

�2 ≤
16n exp(−2‖θ1 − θ0‖θ1

)

(1− ‖θ1 − θ0‖θ1
)2

,

where the second inequality holds for ‖θ1−θ0‖θ1
≤ 0.438. In this case, the bound

in Corollary 4.13 is stronger than (4.7). Alternatively, if θ0 = (1+ t)θ1 for some
t ∈ (−1,1), (4.5) shows that (4.6) can be bounded by

Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ0)−1

�
≤ 16n
(1+ t)n(1− t)n

. (4.8)

Since (3.1) shows ‖θ1 − θ0‖θ0
= t‖θ0‖θ0

≤ t
p
ϑ, the upper bound from Corol-

lary 4.13 is better than (4.8) as long as t
p
ϑ < 1.

Let us now summarize the results from this section. Since Lemma 4.10 and
Corollary 4.13 differ from the results in [8], the following theorem is also different
from [8, Theorem 4.7].
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Theorem 4.14. Let f be the log-partition function associated with a convex body
S ⊂ Rn. Suppose θ0,θ1 ∈ Rn satisfy ∆θ := ‖θ0 − θ1‖θ0

< 1. Pick ε ≥ 0 and p > 0,
and suppose we have an invertible matrix bΣ(θ0) such that

1
1+ ε

bΣ(θ0)
−1 � Σ(θ0)

−1 � (1+ ε)bΣ(θ0)
−1. (4.9)

Consider a hit-and-run random walk as in Algorithm 4.1 applied to the Boltzmann
distributionϕ1 with parameter θ1 from a random starting point drawn from a Boltz-
mann distribution ϕ0 with parameter θ0. Let ϕ` be the distribution of the hit-and-
run point after ` steps of hit-and-run sampling applied to ϕ1, where the directions
are drawn from a N (0, bΣ(θ0))-distribution. Then, after

`=

�
1030 64e2n3(1+ ε)2

(1−∆θ )4 log2

�
16n
p

n
p

1+ εe1−2∆θ

p2(1−∆θ )4
�

log3

�
2e−2∆θ

p2(1−∆θ )2
��

(4.10)
hit-and-run steps, we have ‖ϕ` −ϕ1‖TV ≤ p.

Proof. We will apply Corollary 4.9 with respect to bΣ(θ0). To do this, we use Lem-
mas 4.10 and 4.11 and Corollary 4.13 to find values of υ, M , and Υ such that the
conditions of Corollary 4.9 are satisfied.

By Lemma 4.10, the level set ofψ with probability 1
8 contains a ‖·‖Σ(θ0)−1-ball

with radius 1
8e (1−‖θ0−θ1‖θ0

). Denote the center of this ball by z ∈ S. Then, for
all y ∈ S with ‖y − z‖bΣ(θ0)−1 ≤ 1

8e
p

1+ε
(1−‖θ0 − θ1‖θ0

), it can be seen from (4.9)
that

‖y − z‖Σ(θ0)−1 ≤p1+ ε‖y − z‖bΣ(θ0)−1 ≤ 1
8e
(1− ‖θ0 − θ1‖θ0

),

and thus y lies in the level set. Therefore, the level set of ψ with probability 1
8

contains a ‖ · ‖bΣ(θ0)−1-ball with radius

1− ‖θ0 − θ1‖θ0

8e
p

1+ ε
=: υ.

Moreover, by Lemma 4.11,

‖ϕ0/ϕ1‖ ≤
exp(−2‖θ1 − θ0‖θ0

)

(1− ‖θ1 − θ0‖θ0
)2
=: M .
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Finally, (4.9) and Corollary 4.13 show

Eθ1

h
‖X −Eθ1

[X ]‖2bΣ(θ0)−1

i
≤ (1+ ε)Eθ1

�
‖X −Eθ1

[X ]‖2
Σ(θ0)−1

�

≤ n(1+ ε)
(1− ‖θ0 − θ1‖θ0

)2
=: Υ 2.

With the values of υ, M , and Υ defined above, Corollary 4.9 proves the result.



5
Approximation Quality with Hit-and-Run

Last chapter’s main result, Theorem 4.14, showed that hit-and-run sampling could
be used to generate samples from distributions close to a desired Boltzmann dis-
tribution. This is a step in the right direction: remember that our goal is to ap-
proximate the gradients and Hessians of the entropic barrier, which have an inter-
pretation in terms of the mean and covariance of certain Boltzmann distributions.
In this chapter, we will investigate how many hit-and-run samples and steps are
needed to approximate the mean and covariance of a Boltzmann distribution.

There are however two complicating factors. First, the hit-and-run samples do
not follow the target distribution, but rather a probability distribution close to it.
(This is already apparent from Theorem 4.14.) Second, it is not hard to imagine
that the distribution of the end point of a hit-and-run random walk depends on
its starting point. Hence, two hit-and-run random walks sharing a starting point
will not be independent. We can therefore only generate samples that do not
follow the target distribution and are not independent. For these reasons, a careful
analysis is needed.

We start in Section 5.1 by quantifying the dependence between different hit-
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and-run samples. Combined with Theorem 4.14, we then have the tools to analyze
how well the mean of a number of hit-and-run samples approximates the mean of
the target distribution. This is the topic of Section 5.2. An analysis with a similar
goal for the covariance will follow in Section 5.3.

This chapter is based on Sections 2.4 and 5 from Badenbroek and De Klerk
[8]. The major contribution of this chapter is the generalization of those results
to arbitrary inner products, not simply the Euclidean one. Moreover, we include
formal proofs of Lemma 5.7 and Corollary 5.8, which were lacking in the litera-
ture.

5.1 Near-Independence for Random Walks

The end point of a random walk such as hit-and-run depends on the starting point
of the walk, but as the walk length increases, this dependence starts to vanish. We
will use the notion of near-independence to quantify this, as in e.g. Lovász and
Vempala [73].

Definition 5.1 ([73, Section 3.2]). Let p > 0. Two random variables X and Y
taking values in measurable space (S,F) are near-independent or p-independent if
for all A, B ∈ F ,

|P{X ∈ A∧ Y ∈ B} − P{X ∈ A}P{Y ∈ B}| ≤ p.

Before we can analyze the near-independence of starting and end points of a
random walk, we need the formal machinery of Markov kernels (see for instance
Heidergott and Hordijk [50]). Intuitively, a Markov kernel assigns to any point in
S a probability distribution over S. Its analogue for discrete space Markov chains
is a transition probability matrix.

Definition 5.2 ([50, Definition 1]). Let (S,F) be a measurable space, and let
B[0,1] be the Borel σ-algebra over [0, 1]. A Markov kernel is a map Q : S ×F →
[0, 1] with the properties

(i) For every x ∈ S, the map B 7→ Q(x , B) for B ∈ F is a probability measure
on (S,F);
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(ii) For every B ∈ F , the map x 7→Q(x , B) for x ∈ S is (F ,B[0, 1])-measurable.

Since Q(x , ·) is a measure for any fixed x ∈ S, we can integrate a func-
tion φ over S with respect to this measure. This integral will be denoted by∫
S φ(y)Q(x , dy). We emphasize again that for any x ∈ S, this expression is just

a Lebesgue integral.
Suppose the Markov kernel Q corresponds to one step of a random walk, i.e.

after one step from x ∈ S, the probability of ending up in B ∈ F is Q(x , B). The
probability that after m ≥ 2 steps a random walk starting at x ∈ S ends up in
B ∈ F is then given by

Qm(x , B) :=

∫

S
Q(y, B)Qm−1(x , dy),

where Q1 :=Q. Another interpretation of Qm(x , B) is the probability of a random
walk ending in B, conditional on the random starting point X of the walk taking
value x . If moreover the starting point of the random walk is not fixed, but follows
a probability distribution ϕ, then the end point of the random walk after m steps
follows distribution ϕQm, defined by

(ϕQm)(B) :=

∫

S
Qm(x , B)dϕ(x),

for all B ∈ F .
The following lemma connects total variation distance to near-independence.

It will ensure that if the distribution of the end point Y of a random walk ap-
proaches some fixed desired distribution ψ, then the start point X of this random
walk and Y are near-independent. The conditions of this lemma may appear to be
somewhat mysterious. The reason we chose them is that they coincide with the
hit-and-run mixing conditions from Corollary 4.9. Thus, the upcoming lemma
can be used to show that – under certain conditions – a hit-and-run sample is
near-independent from its starting point.

A similar relation was established by Lovász and Vempala [73], but we will
use a version that does not assume Y follows the desired distribution ψ.

Lemma 5.3 ([73, Lemma 4.3(a)]). Fix a probability distribution ψ over a set S,
and let Q be a Markov kernel on S. Let ` : R+ → N be a function such that for any
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M̄ ≥ 0, p̄ > 0 and any distribution ϕ̄ satisfying ϕ̄ � ψ and ‖ϕ̄/ψ‖ ≤ M̄, it holds
that

‖ϕ̄Q`(M̄/p̄
2) −ψ‖TV ≤ p̄.

Let M ≥ 0, p > 0, and let ϕ be a distribution such that ϕ � ψ and ‖ϕ/ψ‖ ≤ M.
If X is a random variable with distribution ϕ, and Y is a random variable with
distribution conditional on X = x given by Q`(M/p

2)(x , ·) for any x ∈ S, then X and
Y are 3p-independent.

Proof. Let A and B be measurable subsets of S. As noted in Lovász and Vempala
[73, relation (4)], one has the elementary relation

|P{Y ∈ B ∧ X ∈ A} − P{Y ∈ B}P{X ∈ A}|
= |P{Y ∈ B ∧ X /∈ A} − P{Y ∈ B}P{X /∈ A}| .

We may therefore assume P{X ∈ A}= ϕ(A)≥ 1
2 .

The marginal distribution of Y satisfies

P{Y ∈ B}=
∫

S
Q`(M/p

2)(x , B)dϕ(x) = ϕQ`(M/p
2)(B). (5.1)

Consider the restriction ϕA of ϕ to A, scaled to be a probability measure. Then,

P{Y ∈ B|X ∈ A}= P{Y ∈ B ∧ X ∈ A}
P{X ∈ A}

=

∫
A Q`(M/p

2)(x , B)dϕ(x)

ϕ(A)

=

∫

S
Q`(M/p

2)(x , B)dϕA(x)

= ϕAQ`(M/p
2)(B).

(5.2)

Since ϕ(A)≥ 1
2 , we have dϕA

dϕ (x)≤ 2 for ϕ-almost all x ∈ S. Then,

‖ϕA/ψ‖=
∫

S

�
dϕA

dψ

�2

dψ=

∫

S

�
dϕA

dϕ

�2�dϕ
dψ

�2

dψ≤ 4‖ϕ/ψ‖ ≤ 4M .

Therefore, ‖ϕAQ`(M/p
2) − ψ‖TV = ‖ϕAQ`(4M/(2p)2) − ψ‖TV ≤ 2p by assumption.

Since ‖ϕ/ψ‖ ≤ M , we also have ‖ϕQ`(M/p
2) −ψ‖TV ≤ p by assumption. Hence,
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by combining (5.1) and (5.2) with the triangle inequality and Definition 4.4, it
follows that

|P{Y ∈ B|X ∈ A} − P{Y ∈ B}|
=
���ϕAQ`(M/p

2)(B)−ϕQ`(M/p
2)(B)

���
≤
���ϕAQ`(M/p

2)(B)−ψ(B)
���+
���ψ(B)−ϕQ`(M/p

2)(B)
���

≤ ‖ϕAQ`(M/p
2) −ψ‖TV + ‖ϕQ`(M/p

2) −ψ‖TV

≤ 2p+ p = 3p.

Multiplying both sides of the outermost inequality by P{X ∈ A} shows

|P{Y ∈ B ∧ X ∈ A} − P{Y ∈ B}P{X ∈ A}| ≤ 3pP{X ∈ A} ≤ 3p,

which completes the proof.

Having shown that the start and end point of a random walk are near-in-
dependent, we continue by proving the near-independence of the result of two
independent random walks with the same random starting point. Note that the
randomness of the common starting point is the issue here: if the starting point
were fixed, the end points of the two random walks would be independent.

This analysis is important if we are going to generate many hit-and-run sam-
ples to approximate the derivatives of the entropic barrier. The reader may won-
der why; there are more practically appealing alternatives, such as starting a ran-
dom walk from the end point of the previous random walk. However, Kalai and
Vempala [56] use a common starting point, and we aim to analyze their algorithm
in Chapter 7. As we will see, this choice only leads to a deterioration of the near-
independence by a constant factor, which will not influence the computational
complexity of algorithms based on hit-and-run sampling in this thesis.

Lemma 5.4 ([8, Lemma 2.17]). Let Y1 and Y2 be random variables that are both
p-independent of a random variable X , all supported on a set S. Assume that Y1 and
Y2 are conditionally independent given X and that for all measurable events {Y1 ∈ A}
and {Y2 ∈ B}, the following sets are measurable:

{x ∈ S : P{Y1 ∈ A|X = x} ≥ P{Y1 ∈ A}},
{x ∈ S : P{Y2 ∈ B|X = x} ≥ P{Y2 ∈ B}}.
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Then, Y1 and Y2 are 2p-independent.

Proof. Denote the probability distribution of X by ϕ. We want to bound the fol-
lowing term.

|P{Y1 ∈ A∧ Y2 ∈ B} − P{Y1 ∈ A}P{Y2 ∈ B}|

=

����
∫

S
(P{Y1 ∈ A∧ Y2 ∈ B|X } − P{Y1 ∈ A}P{Y2 ∈ B})dϕ

����

=

����
∫

S
(P{Y1 ∈ A|X }P{Y2 ∈ B|X } − P{Y1 ∈ A}P{Y2 ∈ B})dϕ

���� , (5.3)

where the last equality holds by the conditional independence of Y1 and Y2. We
will use the identity ab−cd = (a−c)(b−d)+(a−c)d+(b−d)c, where a, b, c, d ∈ R.
Selecting a = P{Y1 ∈ A|X = x}, b = P{Y2 ∈ B|X = x}, c = P{Y1 ∈ A}, and
d = P{Y2 ∈ B} allows us to expand (5.3) in an obvious manner. The triangle
inequality then gives

|P{Y1 ∈ A∧ Y2 ∈ B} − P{Y1 ∈ A}P{Y2 ∈ B}|

≤
����
∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})(P{Y2 ∈ B|X } − P{Y2 ∈ B})dϕ

���� (5.4)

+

����
∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})P{Y2 ∈ B}dϕ

���� (5.5)

+

����
∫

S
(P{Y2 ∈ B|X } − P{Y2 ∈ B})P{Y1 ∈ A}dϕ

���� . (5.6)

We will upper bound each of these terms.
For (5.4), we can use Hölder’s inequality as follows.

����
∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})(P{Y2 ∈ B|X } − P{Y2 ∈ B})dϕ

����

≤
√√√∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})2 dϕ

∫

S
(P{Y2 ∈ B|X } − P{Y2 ∈ B})2 dϕ. (5.7)

Define
C := {x ∈ S : P{Y1 ∈ A|X = x} ≥ P{Y1 ∈ A}}.
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Since both P{Y1 ∈ A|X = x} and P{Y1 ∈ A} lie in [0, 1] for all x ∈ S, the square of
their difference can be upper bounded by their absolute difference. Therefore,

∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})2 dϕ

≤
∫

S
|P{Y1 ∈ A|X } − P{Y1 ∈ A}|dϕ

=

∫

C
(P{Y1 ∈ A|X } − P{Y1 ∈ A})dϕ +

∫

S\C
(P{Y1 ∈ A} − P{Y1 ∈ A|X })dϕ

= P{Y1 ∈ A∧ X ∈ C} − P{Y1 ∈ A}P{X ∈ C}
+ P{Y1 ∈ A}P{X /∈ C} − P{Y1 ∈ A∧ X /∈ C} ≤ 2p,

since X and Y1 are p-independent. Because the same holds for P{Y2 ∈ B|X = x}
and P{Y2 ∈ B} for all x ∈ S, (5.7) is upper bounded by 2p.

For (5.5), observe that
����
∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})P{Y2 ∈ B}dϕ

����

= P{Y2 ∈ B}
����
∫

S
(P{Y1 ∈ A|X } − P{Y1 ∈ A})dϕ

����
= P{Y2 ∈ B} |P{Y1 ∈ A} − P{Y1 ∈ A}|= 0.

The same clearly holds for (5.6). Hence,

|P{Y1 ∈ A∧ Y2 ∈ B} − P{Y1 ∈ A}P{Y2 ∈ B}| ≤ 2p.

The measurability condition in this result holds for sufficiently detailed σ-
algebras, and we will quietly assume it holds in the remainder of this thesis.

Recall that Lemma 5.3 can be used to show that a hit-and-run sample is near-
independent from its starting point. By applying Lemma 5.4, the next result
shows that two hit-and-run samples with a common starting point are also near-
independent.

Theorem 5.5 ([8, Lemma 4.3]). Let ψ be a log-concave probability distribution
supported on a convex body S ⊆ Rn, and let p > 0. Suppose the conditions of
Corollary 4.9 are satisfied for some Σ, υ, M, and Υ . Let X be a random variable
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with distribution ϕ supported on S. Consider two hit-and-run random walks as in
Algorithm 4.1, applied toψ, both starting from the realization of X , where all Di and
Pi in one random walk are independent of all Di and Pi in the other random walk.
Let the number of steps ` of both walks be given by (4.2), and call the resulting end
points Y1 and Y2. Then, Y1 and Y2 are 6p-independent.

Proof. Let Q be the Markov kernel of a hit-and-run step, where directions are
chosen from N (0,Σ), and the iterates are drawn fromψ restricted to appropriate
line segments, as defined in Algorithm 4.1. Note that the only dependence of (4.2)
on M and p is through the fraction M/p2. Thus, the conditions in Lemma 5.3
are satisfied. It follows that X and Y1 are 3p-independent, and X and Y2 are
3p-independent. Since the Di and Pi in the random walks are independent, Y1

and Y2 are conditionally independent given X . Therefore, Lemma 5.4 shows the
result.

Since Theorem 4.14 was essentially an application of Corollary 4.9 to Boltz-
mann distributions, Theorem 5.5 also applies to this setting. For ease of reference,
we state this result below.

Corollary 5.6 ([8, Lemma 4.8]). Let S ⊂ Rn be a convex body, and let p > 0. Let
θ0,θ1 ∈ Rn such that the conditions of Theorem 4.14 are satisfied for some ε and
bΣ(θ0). Let X be a random variable following a Boltzmann distribution supported on
S with parameter θ0. Consider two hit-and-run random walks as in Algorithm 4.1,
applied to the Boltzmann distribution with parameter θ1, both starting from the
realization of X , where all Di and Pi in one random walk are independent of all
Di and Pi in the other random walk. Let the number of steps ` of both walks be
given by (4.10), and call the resulting end points Y1 and Y2. Then, Y1 and Y2 are
6p-independent.

5.2 Quality of Mean Approximation

Now that we know that two hit-and-run samples with the same starting point are
near-independent, we can start to analyze how well the mean of a number of
hit-and-run samples approximates the mean of the target Boltzmann distribution.
This analysis requires us to consider the expectation of the inner product of two
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near-independent random variables. As a stepping stone, we first consider one-
dimensional random variables.

It is well known that the expectation of the product of two independent random
variables is the product of their expectations. The next lemma shows that this
almost holds for near-independent random variables. Kannan et al. [58] first
stated this result, but their proof contains errors. (In general E[X ] 6= ∫ a

−a P{X >
x}dx and E[X Y ] 6= ∫ a

−a

∫ b
−b P{X > x , Y > y}dx dy .)

Lemma 5.7 (Based on [58, Lemma 2.7]). Let X and Y be p-independent random
variables in R such that |X | ≤ a and |Y | ≤ b almost surely. Then,

|E[X Y ]−E[X ]E[Y ]| ≤ 4pab.

Proof. Let (Ω,F ,P) be the probability space on which X and Y are defined. Define

X+(ω) :=max{0, X (ω)} and X−(ω) :=max{0,−X (ω)},

and similar for Y , for all ω ∈ Ω. We then have X = X+ − X− and Y = Y+ − Y−,
such that

X (ω)Y (ω) = X+(ω)Y+(ω)−X−(ω)Y+(ω)−X+(ω)Y−(ω)+X−(ω)Y−(ω), (5.8)

for all ω ∈ Ω. Noting that

X+(ω) =

∫ X+(ω)

0

dx =

∫ ∞

0

1{(ω̄, x̄): x̄<X+(ω̄)}(ω, x)dx ,

we can write the expectation of the first term on the right hand side of (5.8) as

E[X+Y+] =

∫

Ω

X+(ω)Y+(ω)dP(ω)

=

∫

Ω

∫ ∞

0

∫ ∞

0

1{(ω̄, x̄ , ȳ): x̄<X+(ω̄), ȳ<Y+(ω̄)}(ω, x , y)dx dy dP(ω).

Since the integrand is nonnegative, Tonelli’s theorem shows we can change the
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order of integration. Hence,

E[X+Y+] =

∫ ∞

0

∫ ∞

0

∫

Ω

1{(ω̄, x̄ , ȳ): x̄<X+(ω̄), ȳ<Y+(ω̄)}(ω, x , y)dP(ω)dx dy

=

∫ ∞

0

∫ ∞

0

P{X+ > x , Y+ > y}dx dy

=

∫ b

0

∫ a

0

P{X > x , Y > y}dx dy.

Following a similar approach, one can show that E[X+] =
∫ a

0 P{X > x}dx and

E[Y+] =
∫ b

0 P{Y > y}dy . By the near-independence property of X and Y , we
therefore have

|E[X+Y+]−E[X+]E[Y+]| ≤ pab.

The other terms in (5.8) can be handled similarly. In conclusion,

|E[X Y ]−E[X ]E[Y ]|= |E[(X+ − X−)(Y+ − Y−)]−E[X+ − X−]E[Y+ − Y−]|
≤ 4pab.

Now we can generalize this result to higher dimensions.

Corollary 5.8. Let X and Y be p-independent random variables in Rn such that
‖X‖ ≤ a and ‖Y ‖ ≤ b almost surely. Let e1, ..., en be an orthonormal basis for Rn

with respect to 〈·, ·〉, and assume x 7→ 〈x , ek〉 is measurable for all k ∈ {1, ..., n}.
Then,

|E[〈X , Y 〉]− 〈E[X ],E[Y ]〉| ≤ 4npab.

Proof. We have X =
∑n

k=1〈X , ek〉ek and Y =
∑n

k=1〈Y, ek〉ek, such that

E[〈X , Y 〉] =
n∑

k=1

E[〈X , ek〉〈Y, ek〉] and 〈E[X ],E[Y ]〉=
n∑

k=1

E[〈X , ek〉]E[〈Y, ek〉].

By Lemma 3.5 in Lovász and Vempala [73], 〈X , ek〉 and 〈Y, ek〉 are p-independent
for all k. Almost surely, |〈X , ek〉| ≤ ‖X‖ ≤ a and |〈X , ek〉| ≤ ‖Y ‖ ≤ b by the
Cauchy-Schwarz inequality. Applying Lemma 5.7 thus shows

|E[〈X , Y 〉]− 〈E[X ],E[Y ]〉| ≤
n∑

k=1

|E[〈X , ek〉〈Y, ek〉]−E[〈X , ek〉]E[〈Y, ek〉]|

≤ 4npab.



Chapter 5. Approximation Quality with Hit-and-Run 69

As with Lemma 5.4, the measurability condition in this result holds for suffi-
ciently detailed σ-algebras. We will quietly assume it holds in the remainder of
this thesis.

As a final tool for our analysis of the mean estimate, we remark that for random
variables Y and Z taking values in a set S and a function φ on S,

E[φ(Y )] = E[φ(Z)] +E[φ(Y )−φ(Z)]
= E[φ(Z)] +E[φ(Y )−φ(Z)|Y 6= Z]P{Y 6= Z}. (5.9)

We are ready to analyze the quality of the mean estimate. The general ap-
proach is the same as in [8, Theorem 5.1], except that we use a general inner
product here. Moreover, the differences between Theorem 4.14 and [8, Theorem
4.7] also lead to a slightly simpler statement of the mixing conditions. We remind
the reader of the notation summarized in Table 3.1 on page 32.

Theorem 5.9. Let f be the log-partition function associated with a convex body
S ⊂ Rn. Assume S is contained in a ball with radius R > 0. Suppose θ0,θ1 ∈ Rn

satisfy ∆θ := ‖θ0 − θ1‖θ0
< 1. Let ρ > 0, ε ≥ 0, and q ∈ (0, 1], and suppose we

have an invertible matrix bΣ(θ0) such that

1
1+ ε

bΣ(θ0)
−1 � Σ(θ0)

−1 � (1+ ε)bΣ(θ0)
−1.

Pick

N ≥ 2n
qρ2

and p ≤ q min{1,ρ2}min{1,λmin(Σ(θ1))}
204n max{1, R2} . (5.10)

Let X be a random starting point drawn from a Boltzmann distribution with param-
eter θ0. Let Y 1, ..., Y N be the end points of N hit-and-run random walks applied to
the Boltzmann distribution with parameter θ1 having starting point X , where the
directions are drawn from a N (0, bΣ(θ0))-distribution, and each walk has length `
given by (4.10). (Note that ` depends on ε, n, p, and ∆θ .) Then, the empirical
mean bx(θ1) := 1

N

∑N
j=1 Y j satisfies

P
�‖bx(θ1)− x(θ1)‖Σ(θ1)−1 ≤ ρ

	≥ 1− q. (5.11)

Proof. Theorem 4.14 ensures that the distributions of the samples Y 1, ..., Y N all
have a total variation distance to the Boltzmann distribution with parameter θ1 of
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at most p. By Corollary 5.6, the samples are pairwise 6p-independent. It therefore
remains to be shown that N pairwise 6p-independent samples with total variation
distance to the Boltzmann distribution with parameter θ1 of at most p are enough
to guarantee (5.11).

We start by investigating an expression resembling the variance of bx(θ1) in
the norm induced by Σ(θ1)−1:

E
�
‖bx(θ1)− x(θ1)‖2Σ(θ1)−1

�

= E



*

1
N

N∑
j=1

�
Y j − x(θ1)

�
,

1
N

N∑
j=1

�
Y j − x(θ1)

�
+

Σ(θ1)−1




=
1

N2

N∑
j=1

E
�

Y j − x(θ1)



2
Σ(θ1)−1

�
(5.12)

+
1

N2

N∑
j=1

∑
k 6= j

E
�


Y j − x(θ1), Y k − x(θ1)
�
Σ(θ1)−1

�
(5.13)

To bound (5.12), note Lemma 4.5 guarantees that for each Y j there exists a Z j

following the Boltzmann distribution with parameter θ1 such that P{Y j 6= Z j} ≤
p. Using (5.9), we have for all j ∈ {1, ..., N},

E
�

Y j − x(θ1)



2
Σ(θ1)−1

�

≤ E
�

Z j − x(θ1)



2
Σ(θ1)−1

�
+ p

�
max
y∈S ‖y − x(θ1)‖2Σ(θ1)−1 − 0

�

≤ n+ p(2R)2λmax(Σ(θ1)
−1) = n+

4pR2

λmin(Σ(θ1))
, (5.14)

where the final inequality also uses Lemma 4.12.
To bound (5.13), note that since Y j and Y k are 6p-independent for all j 6= k, so

are Y j−x(θ1) and Y k−x(θ1). Moreover, ‖Y j−x(θ1)‖Σ(θ1)−1 ≤ 2R
p
λmax(Σ(θ1)−1)

for all j. By Corollary 5.8, we therefore have for all j 6= k,

E
�


Y j − x(θ1), Y k − x(θ1)
�
Σ(θ1)−1

�

≤ 
E �Y j − x(θ1)
�

,E
�
Y k − x(θ1)

��
Σ(θ1)−1 + 4n(6p)(2R)2λmax(Σ(θ1)

−1)

=


E
�
Y j − x(θ1)

�
,E
�
Y k − x(θ1)

��
Σ(θ1)−1 +

96npR2

λmin(Σ(θ1))
. (5.15)
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Using Lemma 4.5 and (5.9) in the same manner as before, we get for all j,


E �Y j − x(θ1)

�


Σ(θ1)−1

≤


E �Z j − x(θ1)

�


Σ(θ1)−1 + p

�
max
y∈S ‖y − x(θ1)‖Σ(θ1)−1 − 0

�

≤ 0+
2pRp

λmin(Σ(θ1))
.

Hence, (5.15) shows

E
�


Y j − x(θ1), Y k − x(θ1)
�
Σ(θ1)−1

�
≤ 4p2R2

λmin(Σ(θ1))
+

96npR2

λmin(Σ(θ1))
.

Combined with (5.12), (5.13), and (5.14), we thus find

E
�
‖bx(θ1)− x(θ1)‖2Σ(θ1)−1

�
≤ n

N
+

4pR2

N λmin(Σ(θ1))
+

4p2R2

λmin(Σ(θ1))
+

96npR2

λmin(Σ(θ1))

≤ qρ2,

where the second inequality uses the values of N and ρ from (5.10). The proof is
completed by applying Markov’s inequality:

P
¦
‖bx(θ1)− x(θ1)‖2Σ(θ1)−1 > ρ

2
©
≤
E
�
‖bx(θ1)− x(θ1)‖2Σ(θ1)−1

�

ρ2
≤ q.

This theorem requires a lower bound on λmin(Σ(θ1)), the smallest eigenvalue
of Σ(θ1). We refer the reader to Appendix B for such a bound.

5.3 Quality of Covariance Approximation

Above, we saw how well the mean of a number of hit-and-run samples approxi-
mates the mean of a Boltzmann distribution. The next step is performing a similar
analysis for the covariance. If Y 1, ..., Y N are random variables, we define the as-
sociated empirical covariance as the linear operator bΣ satisfying

bΣv :=
1
N

N∑
j=1

〈Y j , v〉Y j −
 

1
N

N∑
j=1

〈Y j , v〉
! 

1
N

N∑
j=1

Y j

!
, (5.16)



72 IPM and SA for Nonsymmetric Conic Optimization

for all v ∈ Rn. (Note that for the Euclidean inner product, this is simply the
empirical covariance matrix.)

Our analysis will require a bound on the fourth moment of a log-concave ran-
dom variable with identity covariance.

Lemma 5.10 ([8, Theorem 5.3]). Let X be a log-concave random variable on Rn

with covariance operator Σ, i.e. Σ[v, w] = E[〈X − E[X ], v〉〈X − E[X ], w〉] for all
v, w ∈ Rn. Assume x 7→ ‖x‖Σ−1 is measurable. Then,

E
�‖X −E[X ]‖4

Σ−1

�≤ 65n2.

Proof. Let Y := 1p
n‖X − E[X ]‖Σ−1 , and note that its distribution is log-concave

by the measurability assumption and the log-concavity definition (4.1). Then,
Lemma 4.12 shows E[Y 2] = 1

nE[‖X − E[X ]‖2Σ−1] = 1. Therefore, Lemma 5.7 in
Lovász and Vempala [74] shows that for all t > 1,

P{Y > t} ≤ e1−t . (5.17)

(See also Lemma 3.3 in Lovász and Vempala [73].) Hence,

E
�‖X −E[X ]‖4

Σ−1

�
= n2E[Y 4] = n2

∫ ∞

0

P{Y 4 > s}ds.

By a change of variables s = t4 and (5.17), we get

E
�‖X −E[X ]‖4

Σ−1

�
= n2

∫ ∞

0

P{Y 4 > t4}4t3 dt

≤ n2

∫ 1

0

4t3 dt + n2

∫ ∞

1

4t3e1−t dt = 65n2.

For some θ ∈ Rn and ξ > 0, the next theorem analyzes when the empirical
covariance bΣ approximates Σ(θ ) in the sense that 1

1+ξ
bΣ � Σ(θ ) � (1+ ξ)bΣ. It is

worth noting that by Lemma 2.4,

1
1+ ξ

bΣ� Σ(θ )� (1+ ξ)bΣ if and only if
1

1+ ξ
bΣ−1 � Σ(θ )−1 � (1+ ξ)bΣ−1.

In other words, the next theorem also guarantees that the inverse of bΣ is a good
approximation of the inverse of Σ(θ ).
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The major differences between this theorem and [8, Theorem 5.3] are the
fact this theorem holds for general inner products and has a slightly different re-
sult (5.19). This difference also leads to different constants in (5.18), though
the overall complexity does not change. Finally, the differences between Theo-
rem 4.14 and [8, Theorem 4.7] lead to a slightly simpler statement of the mixing
conditions.

Theorem 5.11. Let f be the log-partition function associated with a convex body
S ⊂ Rn. Assume S is contained in a ball with radius R> 0, and that x 7→ 〈x , v〉〈x , w〉
is a measurable function on S for any v, w ∈ Rn. Suppose θ0,θ1 ∈ Rn satisfy ∆θ :=
‖θ0 − θ1‖θ0

< 1. Let ε ≥ 0 and ξ, q ∈ (0, 1], and suppose we have an invertible
matrix bΣ(θ0) such that

1
1+ ε

bΣ(θ0)
−1 � Σ(θ0)

−1 � (1+ ε)bΣ(θ0)
−1.

Pick

N ≥ 475n2

qξ2
and p ≤ qξ2 min{1,λmin(Σ(θ1))2}

48450n2 max{1, R4} . (5.18)

Let X be a random starting point drawn from a Boltzmann distribution with param-
eter θ0. Let Y 1, ..., Y N be the end points of N hit-and-run random walks applied to
the Boltzmann distribution with parameter θ1 having starting point X , where the
directions are drawn from a N (0, bΣ(θ0))-distribution, and each walk has length `
given by (4.10). (Note that ` depends on ε, n, p, and ∆θ .) Then, the empirical
mean bΣ≈ Σ(θ1) as defined in (5.16) satisfies

P
§

1
1+ ξ

bΣ� Σ(θ1)� (1+ ξ)bΣ
ª
≥ 1− q. (5.19)

Proof. By the argument also used in the proof of Theorem 5.9, Y 1, ..., Y N are
pairwise 6p-independent samples, each with a distribution that has total variation
distance to the Boltzmann distribution with parameter θ1 of at most p. As before,
define bx(θ1) := 1

N

∑N
j=1 Y j .

The remainder of this proof follows an approach similar to Theorem 5.11 from
Kannan et al. [58], although their result only applies to the uniform distribution
and the Euclidean inner product. We want to prove that with probability at least
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1− q,
1

1+ ξ
≤ 〈v, bΣv〉
‖v‖2

θ1

≤ 1+ ξ ∀v ∈ Rn. (5.20)

It is elementary to show 〈v, bΣv〉 = 1
N

∑N
j=1〈Y j − x(θ1), v〉2 − 〈bx(θ1)− x(θ1), v〉2,

so (5.20) is equivalent to the condition that for all v ∈ Rn,

1
1+ ξ

+
〈bx(θ1)− x(θ1), v〉2

‖v‖2
θ1

≤
∑N

j=1〈Y j − x(θ1), v〉2
N‖v‖2

θ1

≤ 1+ξ+
〈bx(θ1)− x(θ1), v〉2

‖v‖2
θ1

.

(5.21)
To ease notation, let P be the linear operator such that

Pv :=
1
N

N∑
j=1

〈Y j − x(θ1), v〉(Y j − x(θ1)) ∀v ∈ Rn. (5.22)

Noting that the left hand side of (5.21) can be upper bounded using Theorem 5.9,
and the right hand side can be lower bounded by 1 + ξ, the condition (5.21)
boils down to showing 〈v, Pv〉/‖v‖2

θ1
≈ 1 for all v ∈ Rn. Equivalently, we would

like to show that 〈v, (Σ(θ1)−1P − I)v〉θ1
/‖v‖2

θ1
≈ 0 for all v. If Σ(θ1)−1P has

eigenvalues λ1, ...,λn with respect to 〈·, ·〉θ1
, we are thus interested in showing

that λ1, ...,λn ≈ 1. One way to accomplish this is by noting

max
v∈Rn

|〈v, (Σ(θ1)−1P − I)v〉θ1
|

‖v‖2
θ1

=max
i
|λi − 1|

=
r

max
i
{(λi − 1)2}

≤
√√√ n∑

i=1

(λi − 1)2, (5.23)

so it suffices to bound the trace of (Σ(θ1)−1P − I)2 from above with high proba-
bility. To apply Markov’s inequality, we will thus look for an upper bound on

E
�
tr
�
Σ(θ1)

−1PΣ(θ1)
−1P

��− 2E
�
tr
�
Σ(θ1)

−1P
��
+ n. (5.24)

Let us start with the second term in (5.24), since it is the easiest to bound.
If v1, ..., vn are the orthonormal eigenvectors corresponding to the eigenvalues
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λ1, ...,λn of Σ(θ1)−1P with respect to 〈·, ·〉θ1
, we have

tr
�
Σ(θ1)

−1P
�
=

n∑
i=1

λi =
n∑

i=1

〈vi ,Σ(θ1)
−1Pvi〉θ1

=
n∑

i=1

〈vi , Pvi〉.

Using the definition (5.22) of P,

tr
�
Σ(θ1)

−1P
�
=

1
N

n∑
i=1

N∑
j=1

〈Y j − x(θ1), vi〉2

=
1
N

N∑
j=1

®
Y j − x(θ1),

n∑
i=1

〈Σ(θ1)
−1[Y j − x(θ1)], vi〉θ1

vi

¸

=
1
N

N∑
j=1

‖Y j − x(θ1)‖2Σ(θ1)−1 ,

where we used the fact that the second line contains a decomposition of the vector
Σ(θ1)−1[Y j − x(θ1)] in the basis v1, ..., vn with respect to 〈·, ·〉θ1

. To bound the
expectation of this term, note that by Lemma 4.5, there exists for each Y j a Z j

following the Boltzmann distribution with parameter θ1 such that P{Y j 6= Z j} ≤
p. It then follows from (5.9) and Lemma 4.12 that

E
�
tr
�
Σ(θ1)

−1P
��≥ E


 1

N

N∑
j=1

‖Z j − x(θ1)‖2Σ(θ1)−1


− p max

y∈S ‖y − x(θ1)‖2Σ(θ1)−1

≥ n− p(2R)2λmax(Σ(θ1)
−1), (5.25)

where the final inequality uses the assumption that S is contained in a ball with
radius R.

We continue by upper bounding the first term in (5.24). We have, by definition
of the trace,

tr
�
Σ(θ1)

−1PΣ(θ1)
−1P

�
=

n∑
i=1

λ2
i =

n∑
i=1

‖Σ(θ1)
−1Pvi‖2θ1

.
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Again using the definition (5.22) of P,

tr
�
Σ(θ1)

−1PΣ(θ1)
−1P

�

=
n∑

i=1







1
N

N∑
j=1

〈Y j − x(θ1), vi〉Σ(θ1)
−1[Y j − x(θ1)]







2

θ1

=
1

N2

n∑
i=1

N∑
j=1

N∑
k=1

〈Y j − x(θ1), vi〉〈Y k − x(θ1), vi〉〈Y j − x(θ1), Y k − x(θ1)〉−1
θ1

.

We can get rid of the outer summation by noting that it decomposes the vector
Σ(θ1)−1[Y k − x(θ1)] in the basis v1, ..., vn with respect to 〈·, ·〉θ1

:

n∑
i=1

〈Y j − x(θ1), vi〉〈Y k − x(θ1), vi〉

=

®
Y j − x(θ1),

n∑
i=1

〈Y k − x(θ1), vi〉vi

¸

=

®
Y j − x(θ1),

n∑
i=1

〈Σ(θ1)
−1[Y k − x(θ1)], vi〉θ1

vi

¸

= 〈Y j − x(θ1), Y k − x(θ1)〉−1
θ1

.

Therefore,

tr
�
Σ(θ1)

−1PΣ(θ1)
−1P

�

=
1

N2

N∑
j=1

N∑
k=1

〈Y j − x(θ1), Y k − x(θ1)〉2Σ(θ1)−1

=
1

N2

N∑
j=1

‖Y j − x(θ1)‖4Σ(θ1)−1 (5.26)

+
1

N2

N∑
j=1

∑
k 6= j

� n∑
i=1

〈Y j − x(θ1), vi〉〈Y k − x(θ1), vi〉
�2

. (5.27)

To upper bound the expectation of (5.26), we use (5.9) and Lemma 5.10 as
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follows:

E


 1

N2

N∑
j=1

‖Y j − x(θ1)‖4Σ(θ1)−1




≤ 1
N2

N∑
j=1

E
�
‖Z j − x(θ1)‖4Σ(θ1)−1

�
+

p
N

max
y∈S ‖y − x(θ1)‖4Σ(θ1)−1

≤ 65n2

N
+

p(2R)4λmax(Σ(θ1)−1)2

N
. (5.28)

To upper bound the expectation of (5.27), we use Lemma 5.7 to find that, for
any j 6= k,

E



� n∑

i=1

〈Y j − x(θ1), vi〉〈Y k − x(θ1), vi〉
�2



=
n∑

i=1

n∑
l=1

E
�〈Y j − x(θ1), vi〉〈Y j − x(θ1), vl〉〈Y k − x(θ1), vi〉〈Y k − x(θ1), vl〉

�

≤
n∑

i=1

n∑
l=1

E
�〈Y j − x(θ1), vi〉〈Y j − x(θ1), vl〉

�
E
�〈Y k − x(θ1), vi〉〈Y k − x(θ1), vl〉

�

+
n∑

i=1

n∑
l=1

4(6p)
�

max
y∈S |〈y − x(θ1), vi〉〈y − x(θ1), vl〉|

�2

.

By (5.9) and the triangle inequality,

��E �〈Y j − x(θ1), vi〉〈Y j − x(θ1), vl〉
�−E �〈Z j − x(θ1), vi〉〈Z j − x(θ1), vl〉

���

≤ p

����max
y,z∈S {〈y − x(θ1), vi〉〈y − x(θ1), vl〉 − 〈z − x(θ1), vi〉〈z − x(θ1), vl〉}

����
≤ p max

y,z∈S {|〈y − x(θ1), vi〉〈y − x(θ1), vl〉|+ |〈z − x(θ1), vi〉〈z − x(θ1), vl〉|}
≤ 2p max

y∈S ‖y − x(θ1)‖2Σ(θ1)−1 ≤ 2p(2R)2λmax(Σ(θ1)
−1).

It was shown in Proposition 3.3(ii) that E[〈Z j − x(θ1), vi〉〈Z j − x(θ1), vl〉] =
Σ(θ1)[vi , vl]. Because vi and vl are orthonormal with respect to 〈·, ·〉θ1

, we have
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that E[〈Z j − x(θ1), vi〉〈Z j − x(θ1), vl〉] is one if i = l and zero otherwise. We
conclude that

E



� n∑

i=1

〈Y j − x(θ1), vi〉〈Y k − x(θ1), vi〉
�2



≤ n
�
1+ 2p(2R)2λmax(Σ(θ1)

−1)
�2
+ n(n− 1)

�
2p(2R)2λmax(Σ(θ1)

−1)
�2

+ 4n2(6p)
�
(2R)2λmax(Σ(θ1)

−1)
�2

.

Combining this bound on the expectation of (5.27) with the bound (5.28) on
the expectation of (5.26) yields

E
�
tr
�
Σ(θ1)

−1PΣ(θ1)
−1P

��

≤ 65n2

N
+

p(2R)4

N λmin(Σ(θ1))2
+

N(N − 1)
N2

�
n

�
1+

2p(2R)2

λmin(Σ(θ1))

�2

+ n(n− 1)

�
2p(2R)2

λmin(Σ(θ1))

�2

+ 4n2(6p)

�
(2R)2

λmin(Σ(θ1))

�2 �

≤ n+ 0.1451qξ2,

for the values of N and p from (5.18). (The constant 0.1451 above is exact.)
Together with (5.25), this yields an upper bound on (5.24) of

E
�
tr
�
(Σ(θ1)

−1P − I)2
��≤ 0.1451qξ2 + 2p

(2R)2

λmin(Σ(θ1))
≤ 0.1453qξ2.

By (5.23) and Markov’s inequality, we therefore have

P

¨
max
w∈Rn

|〈w, (P −Σ(θ1))w〉|
‖w‖2

θ1

> 7
18ξ

«
≤
�

18
7ξ

�2

0.1453qξ2 ≤ 0.9608q.

Applying Theorem 5.9 for ρ = 1
3ξ shows that for the values of N and p in (5.18),

P
�‖bx(θ1)− x(θ1)‖Σ(θ1)−1 >

1
3ξ
	≤ 2qξ2

475ρ2
=

18
475

q ≤ 0.0379q.

Since 0.9608q+ 0.0379q ≤ q,

P

¨
max
w∈Rn

|〈w, (P −Σ(θ1))w〉|
‖w‖2

θ1

≤ 7
18ξ∧ ‖bx(θ1)− x(θ1)‖Σ(θ1)−1 ≤ 1

3ξ

«
≥ 1− q.
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It remains to prove that in this high-probability event, (5.21) holds. To show
the left inequality in (5.21), we first remark that for all ξ ∈ (0,1], 1

1+ξ +
1
9ξ

2 ≤
1− 7

18ξ. Then, we have for all v ∈ Rn,

1
1+ ξ

+
〈bx(θ1)− x(θ1), v〉2

‖v‖2
θ1

≤ 1
1+ ξ

+ ‖bx(θ1)− x(θ1)‖2Σ(θ1)−1

≤ 1
1+ ξ

+ 1
9ξ

2 ≤ 1− 7
18ξ

≤ 〈v,Σ(θ1)v〉
‖v‖2

θ1

−max
w∈Rn

|〈w, (P −Σ(θ1))w〉|
‖w‖2

θ1

≤ 〈v, Pv〉
‖v‖2

θ1

=

∑N
j=1〈Y j − x(θ1), v〉2

N‖v‖2
θ1

.

Finally, the right inequality in (5.21) follows from

∑N
j=1〈Y j − x(θ1), v〉2

N‖v‖2
θ1

≤ 〈v,Σ(θ1)v〉
‖v‖2

θ1

+max
w∈Rn

|〈w, (P −Σ(θ1))w〉|
‖w‖2

θ1

≤ 1+ 7
18ξ≤ 1+ ξ+

〈bx(θ1)− x(θ1), v〉2
‖v‖2

θ1

.

As before, the measurability condition in this theorem is satisfied for detailed
σ-algebras, and we will assume it holds in the remainder of this thesis.

The tools we developed in this chapter are useful if one wants to analyze
sampling-based optimization algorithms. In the next chapters, we will look at
two of those. Chapter 6 proposes an interior point method that uses hit-and-
run sampling to approximate the derivatives of the entropic barrier. After that,
we rigorously analyze Kalai and Vempala’s simulated annealing algorithm [56] in
Chapter 7.
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6
Interior Point Method Using Hit-and-Run

Sampling and the Entropic Barrier

We have seen how we can use hit-and-run sampling to approximate the mean
and covariance of a Boltzmann distribution to a desired accuracy. The reason for
our interest in these objects was that they relate to the derivatives of the entropic
barrier. In Chapter 3, we assumed that we could compute these derivatives exactly.
This was of course unrealistic, so we relax that assumption in this chapter. As such,
we will need the results from Chapter 5 to guarantee that our approximations of
the barrier’s derivatives are sufficiently accurate.

In Section 6.1, we propose an algorithm to approximate the gradient of the
entropic barrier at a given point. This algorithm only uses hit-and-run sampling,
and can therefore be implemented on any convex body for which a membership
oracle is known. With this method, we state a short-step interior point method
that only uses hit-and-run sampling in Section 6.2. As we will see, its asymptotic
complexity will be the same as that of Kalai and Vempala’s algorithm from Chap-
ter 7. We sketch the relationship between the algorithms in this chapter and those
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in the preceding chapters in Figure 6.1.

Interior point method (Algorithm 6.2)
Iterates over xk ∈ S

Gradient approximation (Algorithm 6.1)
Iterates over θi ∈ Rn

Hit-and-run sampling (Algorithm 4.1)
Iterates over X i ∈ S

Bisection method
Iterates over potential end points

Membership oracle

Returns bθ (xk)

Returns samples
for bΣ(−ηkc)

Returns samples for bx(θi)

Returns approximate end points
of line segment through X i

Returns true or false

Figure 6.1: Sketch of the dependencies of the algorithms in Chapter 6

This chapter improves Section 6 from Badenbroek and De Klerk [8]. In Line 6
of Algorithm 6.2 below, we included a test that was not present in [8]. This test
allows us to use constants for various parameters that depended on the problem
dimension in [8]. As a result, here we get a significantly better asymptotic com-
plexity for our short-step method than in [8]. Moreover, the results below apply
to arbitrary inner products.

Let us first recall the setting from Section 3.3. The problem we consider is
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(3.2), that is,
min
x∈S 〈c, x〉, (6.1)

where S ⊂ Rn is a convex body, and c ∈ Rn. Let f and f ∗ be the log-partition
function and the entropic barrier associated with S, respectively. (See Table 3.1
on page 32 for a summary of the notation involving these functions.) For any
η > 0, define

f ∗η (x) := η〈c, x〉+ f ∗(x), (6.2)

and denote its minimizer by z(η), that is, g∗(z(η)) = −ηc. We also saw that
H∗(z(η)) = Σ(−ηc)−1. We want to use the step (3.6), which was

− γH∗(z(η))−1[ηc + g∗(x)] = −γΣ(−ηc)[ηc + θ (x)], (6.3)

for some γ ∈ [0,1] to approximate the minimizer of f ∗η .

6.1 Gradient Approximation

We cannot compute Σ(−ηc) and θ (x) directly, so we will use sampling-based
approximations. The approximation of Σ(−ηc) in (6.3) is conceptually straight-
forward: we generate a number of hit-and-run samples from the Boltzmann dis-
tribution with parameter −ηc and compute the empirical covariance. How to
approximate θ (x) for some x ∈ intS may be less apparent.

We will use the suggestion from Abernethy and Hazan [1, Appendix D], which
involves minimizing a certain functional. For our target x ∈ intS, we introduce
the functional

φ(θ ) := f (θ )− 〈θ , x〉. (6.4)

Note that the minimizer ofφ is θ (x) and that the Hessian ofφ is equal to the Hes-
sian of f . Hence, we are interested in approximating the minimizer of a convex
functionφ. This will be done with respect to the inner product induced byΣ(−ηc)
because we need an approximation bθ (x) of θ (x) such that ‖bθ (x)− θ (x)‖−ηc is
small, in order to analyze (6.3). The gradient of φ at θ ∈ Rn with respect to
〈·, ·〉−ηc isΣ(−ηc)−1[x(θ )−x], which we can approximate if we have good enough
estimates of Σ(−ηc)−1 and x(θ ). With this approximate gradient, we can apply
the results from De Klerk et al. [35] to approximate the minimizer θ (x) of φ.
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The following lemma combines some results from [35]. It shows that even
with the mean and covariance approximations from Chapter 5, we can make
progress to the minimizer θ (x) of (6.4) for a given x ∈ S. The parameter θ̄ is
introduced below to fix an inner product. In the next section, we will set θ̄ = −ηc
for some η > 0.

Lemma 6.1. Let S ⊂ Rn be a convex body, and let f be its associated log-partition
function. Let θ0, θ̄ ∈ Rn and x ∈ S. Let δ < 1 such that ‖θ0−θ̄‖θ̄ ,‖θ (x)−θ̄‖θ̄ ≤ δ.
Let ε≥ 0, and assume we have an approximation bΣ(θ̄ ) of Σ(θ̄ ) such that

1
1+ ε

bΣ(θ̄ )� Σ(θ̄ )� (1+ ε)bΣ(θ̄ ). (6.5)

Moreover, let ρ ≥ 0, and suppose we have an approximation bx(θ ) of x(θ ) for which
it is known that ‖bx(θ0)− x(θ0)‖Σ(θ0)−1 ≤ ρ. Assume α ∈ R satisfies

ρ
p

1+ ε
(1−δ)‖x(θ0)− x‖bΣ(θ̄ )−1

≤ α≤ 2(1−δ)4
(1+ ε)2 + (1−δ)4 . (6.6)

Let θ1 := θ0 − γbΣ(θ̄ )−1[bx(θ0)− x], where

γ=
2(1−δ)2(1+ ε)

(1−α)[(1+ ε)2 + (1−δ)4] −
α(1+ ε)

(1−α)(1−δ)2 .

Then,

‖θ1 − θ (x)‖bΣ(θ̄ ) ≤
�
(1+ ε)2 − (1−δ)4
(1+ ε)2 + (1−δ)4 +α

�
‖θ0 − θ (x)‖bΣ(θ̄ ).

Proof. Let φ be as in (6.4). Note that the minimizer of φ is θ (x) and that the
Hessian of φ is equal to the Hessian of f . It follows from (6.5) and Lemma 2.4
that the approximation bΣ(θ̄ )−1[bx(θ0)− x] for the gradient of φ at θ0 with respect
to the inner product induced by bΣ(θ̄ ) satisfies


bΣ(θ̄ )−1[bx(θ0)− x]− bΣ(θ̄ )−1[x(θ0)− x]



bΣ(θ̄ ) = ‖bx(θ0)− x(θ0)‖bΣ(θ̄ )−1

≤p1+ ε‖bx(θ0)− x(θ0)‖Σ(θ̄ )−1

≤
p

1+ ε
1−δ ‖bx(θ0)− x(θ0)‖Σ(θ0)−1 ,
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where the final inequality used ‖θ0 − θ̄‖θ̄ ≤ δ and (2.5). Since by assumption
‖bx(θ0)− x(θ0)‖Σ(θ0)−1 ≤ ρ,



bΣ(θ̄ )−1[bx(θ0)− x]− bΣ(θ̄ )−1[x(θ0)− x]


bΣ(θ̄ ) ≤ α‖x(θ0)− x‖bΣ(θ̄ )−1 .

Hence, α is a relative bound on the error in the approximation of the gradient.
By the assumption that ‖θ0 − θ̄‖θ̄ ,‖θ (x) − θ̄‖θ̄ ≤ δ, it holds for both θ ∈

{θ0,θ (x)} that

〈v, bΣ(θ̄ )−1Σ(θ )v〉bΣ(θ̄ ) = ‖v‖2θ ≤
‖v‖2

θ̄

(1− ‖θ − θ̄‖θ̄ )2
≤ 1+ ε
(1−δ)2 〈v, I v〉bΣ(θ̄ ),

that is, the eigenvalues of the Hessian of φ at θ with respect to the inner product
induced by bΣ(θ̄ ) are bounded above by (1+ε)/(1−δ)2. Similarly, we can derive
the lower bound (1−δ)2/(1+ ε) on this spectrum.

As noted in the proof of Theorem 5.4 in De Klerk et al. [35], the result on
convergence to the minimizer from Theorem 5.3 in [35] only requires bounds on
the Hessians of φ at θ0 and the minimizer θ (x), and not necessarily at θ1. The
claim thus follows from Theorem 5.3 in [35].

At a first glance, the presence of ‖x(θ0)− x‖bΣ(θ̄ )−1 in (6.6) may seem trouble-
some. If this norm were very small, it would be hard to satisfy the inequality (6.6).
Fortunately, we do not have to proceed with our approximate gradient descent al-
gorithm when this norm is small: if x(θ0) ≈ x , then θ0 is a good approximation
of θ (x).

This idea is formalized in Algorithm 6.1. The algorithm requires, among oth-
ers, a target x ∈ S and an initial guess θ0 ∈ Rn, and tries to find a θi near θ0

such that ‖θi − θ (x)‖θ̄ is smaller than some bound κ with high probability. The
approach is to minimize (6.4) by approximating its gradient with hit-and-run sam-
pling. Note that we fix various constants – this will be convenient when we refer
to Algorithm 6.1 later.

The following theorem provides conditions under which Algorithm 6.1 returns
a θi such that ‖θi − θ (x)‖θ̄ ≤ κ with probability at least 1− q for a small value
of q ∈ (0, 1]. The core of the proof is a repeated application of Lemma 6.1. This
result is loosely based on [8, Theorem 6.1], but here we provide more elegant
bounds.
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Algorithm 6.1 Approximation routine for θ (x)
Input: convex body S ⊂ Rn contained in a ball with radius R≥ 1;

log-partition function f and entropic barrier f ∗ associated with S;
target x ∈ intS, starting point θ0 ∈ Rn, and reference point θ̄ ∈ Rn;
real K such that ‖θ0 − θ (x)‖θ̄ ≤ K = 1

8 and tolerance κ= 1
100 ;

approximation bΣ(θ̄ ) of Σ(θ̄ ) satisfying (6.5) for ε= 1
100 ;

real δ = 1
4 such that (1+ ε)K + ‖θ (x)− θ̄‖θ̄ ≤ δ;

sample X from the Boltzmann distribution with parameter θ̄ ;
number of iterations m; damping parameter γ;
number of samples N ; number of hit-and-run steps `.

Output: θi such that ‖θi − θ (x)‖θ̄ ≤ κ with high probability.
1: for i ∈ {0, ..., m− 1} do
2: Generate Y1, ..., YN by applying hit-and-run sampling to the Boltzmann

distribution with parameter θi , starting the walk from X , taking ` steps,
drawing directions from N (0, bΣ(θ̄ ))-distribution

3: Compute sample mean: bx(θi)← 1
N

∑N
j=1 Yj

4: if ‖bx(θi)− x‖bΣ(θ̄ )−1 ≤ 5
12κ(1−δ)2/

p
1+ ε then

5: return θi

6: else
7: θi+1← θi − γbΣ(θ̄ )−1[bx(θi)− x]

8: return θm

Theorem 6.2. Consider the setting of Algorithm 6.1. Let q ∈ (0,1], and

m=




log (κ/[K(1+ ε)])

log
�
(1+ε)2−(1−δ)4
(1+ε)2+(1−δ)4 +

1+ε
5(1−δ)2

�



, (6.7)

N =
¡

288nm
q(1−δ)2κ2

¤
, (6.8)

p =
q(1−δ)4κ2

29376nR2

�
1
16

��
1

max{1,4R‖θ̄‖}

�4
p
ϑ f ∗

λmin(Σ(0)), (6.9)

and let ` be as in (4.10). (Note that ` depends on ε, n, p, and ∆θ := δ.) Finally,
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set

γ=
10(1−δ)4(1+ ε)

[5(1−δ)2 − (1+ ε)][(1+ ε)2 + (1−δ)4] −
(1+ ε)2

(1−δ)2[5(1−δ)2 − (1+ ε)] .

With these inputs, Algorithm 6.1 returns a θi with

P
�‖θi − θ (x)‖θ̄ ≤ κ

	≥ 1− q.

Proof. We will apply Lemma 6.1 to every iteration i of Algorithm 6.1 until termi-
nation.

The first condition we will investigate is ‖θi − θ̄‖θ̄ ≤ δ. This holds for i = 0,
since

‖θ0 − θ̄‖θ̄ ≤ ‖θ0 − θ (x)‖θ̄ + ‖θ (x)− θ̄‖θ̄
≤ K + ‖θ (x)− θ̄‖θ̄
≤ δ.

The remainder of this proof will show that ‖θi+1 − θ (x)‖bΣ(θ̄ ) ≤ ‖θi − θ (x)‖bΣ(θ̄ )
for all i, meaning that we make progress to the minimizer. Using this inequality
repeatedly, we will see that for all i,

‖θi+1 − θ̄‖θ̄ ≤ ‖θi+1 − θ (x)‖θ̄ + ‖θ (x)− θ̄‖θ̄
≤p1+ ε‖θi+1 − θ (x)‖bΣ(θ̄ ) + ‖θ (x)− θ̄‖θ̄
≤p1+ ε‖θ0 − θ (x)‖bΣ(θ̄ ) + ‖θ (x)− θ̄‖θ̄
≤ (1+ ε)‖θ0 − θ (x)‖θ̄ + ‖θ (x)− θ̄‖θ̄
≤ (1+ ε)K + ‖θ (x)− θ̄‖θ̄ ≤ δ. (6.10)

To find an approximation bx(θi) of x(θi) such that ‖bx(θi)− x(θi)‖Σ(θi)−1 ≤ ρ
(with high probability), we can use Theorem 5.9. Since we already have ‖θi −
θ̄‖θ̄ ≤ δ =∆θ , it remains to state a lower bound on λmin(Σ(θi)). It follows from
(2.2) that Σ(θi)� (1− ‖θi − θ̄‖θ̄ )2Σ(θ̄ )� (1−δ)2Σ(θ̄ ), so

λmin(Σ(θi)) = min
v:‖v‖=1

〈v,Σ(θi)v〉 ≥ (1−δ)2λmin(Σ(θ̄ )).

Hence, an application of Theorem B.3 shows

λmin(Σ(θi))≥ 1
16(1−δ)2

�
1

max{1, 4R‖θ̄‖}

�4
p
ϑ f ∗

λmin(Σ(0)).
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We then apply Theorem 5.9 to see that P{‖bx(θi)− x(θi)‖Σ(θi)−1 ≤ ρ} ≥ 1− q/m,
where ρ = 1

12(1−δ)κ. Below, we assume that

‖bx(θi)− x(θi)‖Σ(θi)−1 ≤ 1
12(1−δ)κ ∀i ∈ {0, ..., m− 1}, (6.11)

and show that this leads to a successful termination of the algorithm. Thus, the
success probability of Algorithm 6.1 will be at least 1− q.

Algorithm 6.1 distinguishes the following two cases in Lines 4 and 6:

(a) ‖bx(θi)− x‖bΣ(θ̄ )−1 ≤ 5
12κ(1−δ)2/

p
1+ ε;

(b) ‖bx(θi)− x‖bΣ(θ̄ )−1 >
5
12κ(1−δ)2/

p
1+ ε.

Let us first show that the algorithm’s termination in Case (a) is successful.
Applying the first inequality in (2.1), (6.10), and Proposition 3.7, it can be seen
that

‖θi − θ (x)‖θ̄ ≤
‖θi − θ (x)‖θi

1− ‖θi − θ̄‖θ̄
≤ ‖θi − θ (x)‖θi

1−δ ≤
‖x(θi)− x‖∗x(θi)

(1−δ)
�
1− ‖x(θi)− x‖∗x(θi)

� .

By the triangle inequality, the assumption (6.11), self-concordance, and (6.10),

‖x(θi)− x‖∗x(θi)
≤ ‖x(θi)− bx(θi)‖Σ(θi)−1 + ‖bx(θi)− x‖Σ(θi)−1

≤ 1
12(1−δ)κ+

‖bx(θi)− x‖Σ(θ̄ )−1

1− ‖θi − θ̄‖θ̄
≤ 1

12(1−δ)κ+
p

1+ ε‖bx(θi)− x‖bΣ(θ̄ )−1

1−δ
≤ 1

12(1−δ)κ+ 5
12(1−δ)κ= 1

2(1−δ)κ,

where the final inequality uses Case (a). Hence, in Case (a), we have

‖θi − θ (x)‖θ̄ ≤
1
2(1−δ)κ

(1−δ)[1− 1
2(1−δ)κ]

<

1
2(1−δ)κ

(1−δ)[1− 1
2]
= κ,

so indeed Algorithm 6.1 terminates successfully.
Next, we will show that in Case (b), we make a certain amount of progress

towards θ (x) by executing Line 7 in Algorithm 6.1. In Case (b), we can satisfy
(6.6) by picking

α=
1+ ε

5(1−δ)2 .
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Lemma 6.1 therefore shows that for all i,

‖θi+1 − θ (x)‖bΣ(θ̄ ) ≤
�
(1+ ε)2 − (1−δ)4
(1+ ε)2 + (1−δ)4 +

1+ ε
5(1−δ)2

�
‖θi − θ (x)‖bΣ(θ̄ ).

With m as in (6.7), we therefore get

‖θm − θ (x)‖θ̄ ≤
p

1+ ε‖θm − θ (x)‖bΣ(θ̄ )
≤p1+ ε

κ

(1+ ε)K
‖θ0 − θ (x)‖bΣ(θ̄ )

≤ (1+ ε) κ

(1+ ε)K
‖θ0 − θ (x)‖θ̄ ≤ κ,

so after m iterations in Case (b), Algorithm 6.1 also terminates successfully.

We conclude this section with a few words on the complexity of Algorithm 6.1
for the configuration in Theorem 6.2. The number of oracle calls is determined
by the number of hit-and-run steps, which is O∗(mN`). Note that the expression
(6.7) for m depends only on constants, so m = O(1). It follows from (6.8) that
N = O(n/q). Finally, the complexity of the walk length (4.10) is

`= O

�
n3

(1−∆θ )4 log2

�
n
p

ne1−2∆θ

p2(1−∆θ )4
�

log3

�
e−2∆θ

p2(1−∆θ )2
��

, (6.12)

which, for fixed ∆θ and the value of p from (6.9), yields

`= O∗
�

n3
�q
ϑ f ∗
�5

log5
�

1
min{1,λmin(Σ(0))2}

��
.

In conclusion, the number of oracle calls by Algorithm 6.1 for the configuration
in Theorem 6.2 is

O∗(mN`) = O∗
�

n4ϑ2.5
f ∗

q
log5

�
1

min{1,λmin(Σ(0))2}
��

. (6.13)

If 〈·, ·〉 were the Euclidean inner product, the value of p in (6.9) could be
made more explicit by replacingλmin(Σ(0))with its lower bound from Lemma B.2.
Then, the number of oracle calls by Algorithm 6.1 for the configuration in Theo-
rem 6.2 would be O∗(n4ϑ2.5

f ∗ /q) = O∗(n6.5/q) by Theorem 3.4.
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6.2 Analysis of a Short-Step Method Using Hit-and-Run
Sampling

Let us now specify the main short-step interior point method in detail. It will de-
pend on a parameter δ∗ = 1

10 and a maximum failure probability q∗. The reader
should keep in mind that the parameters with an asterisk pertain to the method
using the entropic barrier f ∗, while the parameters δ = 1

4 and q used earlier in
this chapter concern a method using f . With this notation, we hope to distinguish
parameters that have similar functions in different algorithms, and that have dif-
ferent values.

Our short-step method is initialized with an x0 ∈ S and η0 > 0 such that
‖x0− z(η0)‖∗z(η0)

≤ δ∗. Moreover, we assume to have an approximation bΣ(−η0c)
of Σ(−η0c) such that

1
1+ ε

bΣ(−η0c)� Σ(−η0c)� (1+ ε)bΣ(−η0c), (6.14)

for some ε > 0. Finally, we also need a sample X0 from the Boltzmann distribution
with parameter −η0c.

In every iteration k, we can start several hit-and-run random walks from a
sample Xk−1 from the Boltzmann distribution with parameter −ηk−1c. With these
hit-and-run samples, we can create an approximation bΣ(−ηkc) ofΣ(−ηkc), where
ηk > ηk−1. Using a result from Chapter 5, we can then show that with high
probability

1
1+ ε

bΣ(−ηkc)� Σ(−ηkc)� (1+ ε)bΣ(−ηkc). (6.15)

We also generate Xk, and use it in a call to Algorithm 6.1 to approximate the
gradient ηkc + θ (xk−1) of f ∗ηk

at xk−1. This approximation ηkc + bθ (xk−1) is such

that ‖bθ (xk−1)− θ (xk−1)‖−ηkc is small. With these two ingredients, we can take a
step of the type (6.3) to xk = xk−1−γbΣ(−ηkc)[ηkc+ bθ (xk−1)] for some γ ∈ [0, 1].

Let us first show that this step is close to (6.3) in a well defined sense. To
simplify the notation, we drop the function arguments and subscripts in the lemma
below. The reasoning is essentially the same as in De Klerk et al. [35], but they
use slightly different assumptions.
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Lemma 6.3 (Based on [35, Theorem 7.6 and Corollary 7.7]). Let η ∈ R, and
c,θ , bθ ∈ Rn. Let bΣ and Σ be self-adjoint linear operators such that

1
1+ ε

bΣ� Σ� (1+ ε)bΣ,

for some ε≥ 0. Then,

‖bΣ[ηc + bθ]−Σ[ηc + θ]‖Σ−1 ≤ (1+ ε)‖bθ − θ‖Σ +
Æ

2ε(1+ ε)‖ηc + θ‖Σ.

Proof. By the triangle inequality,

‖bΣ[ηc+ bθ]−Σ[ηc+θ]‖Σ−1 ≤ ‖bΣ[ηc+ bθ − (ηc+θ )]‖Σ−1 +‖(bΣ−Σ)[ηc+θ]‖Σ−1 .
(6.16)

The first norm on the right hand side of (6.16) equals ‖bΣ[bθ − θ]‖Σ−1 , which can
be bounded by

‖bΣ[bθ − θ]‖Σ−1 ≤p1+ ε‖bΣ[bθ − θ]‖bΣ−1 =
p

1+ ε‖bθ − θ‖bΣ ≤ (1+ ε)‖bθ − θ‖Σ,

where the first inequality uses Lemma 2.4. The second norm on the right hand
side of (6.16) can be bounded by noting that its square satisfies

‖(bΣ−Σ)[ηc + θ]‖2
Σ−1 = ‖bΣ[ηc + θ]‖2

Σ−1 − 2‖ηc + θ‖2bΣ + ‖ηc + θ‖2Σ
≤ (1+ ε)‖ηc + θ‖2bΣ − 2‖ηc + θ‖2bΣ + (1+ ε)‖ηc + θ‖2bΣ
= 2ε‖ηc + θ‖2bΣ
≤ 2ε(1+ ε)‖ηc + θ‖2Σ,

where the first inequality also uses Lemma 2.4.

We see that the distance between the approximation bΣ(−ηkc)[ηkc+ bθ (xk−1)]
and the true gradient Σ(−ηkc)[ηkc + θ (xk−1)] depends in part on ‖bθ (xk−1) −
θ (xk−1)‖−ηkc , which can be made smaller than or equal to κ= 1

100 with high prob-
ability by Theorem 6.2. The results from De Klerk et al. [35] however require this
distance to be upper bounded by a multiple of ‖Σ(−ηkc)[ηkc + θ (xk−1)]‖∗z(ηk)

=
‖ηkc + θ (xk−1)‖−ηkc . Therefore, the short-step method we propose below in Al-
gorithm 6.2 tests if ‖ηkc + θ (xk−1)‖−ηkc is sufficiently large before taking a step.
Alternatively, if ‖ηkc + θ (xk−1)‖−ηkc were very small, we would already have
xk−1 ≈ z(ηk), so we do not need to take a step.
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Algorithm 6.2 Short-step interior point method using hit-and-run sampling and
the entropic barrier
Input: convex body S ⊂ Rn contained in a ball with radius R≥ 1;

log-partition function f and entropic barrier f ∗ associated with S;
normalized (with respect to ‖ · ‖) objective c ∈ Rn;
optimality tolerance ε ∈ (0, 2R];
reals η0 > 0 and δ∗ = 1

10 , and x0 ∈ S such that ‖x0 − z(η0)‖∗z(η0)
≤ δ∗;

approximation bΣ(−η0c) of Σ(−η0c) satisfying (6.14) for ε= 1
100 ;

sample X0 from the Boltzmann distribution with parameter −η0c;
growth parameter β = 1

100 ;
number of iterations m; damping parameter γ;
number of samples N ; number of hit-and-run steps `.

Output: xm ∈ S such that 〈c, xm〉 −minx∈S〈c, x〉 ≤ ε with high probability.
1: for k ∈ {1, ..., m} do
2: ηk← η0(1+ β/

Æ
ϑ f ∗)k

3: Generate Y1k, ..., YNk and Xk by applying hit-and-run sampling to the
Boltzmann distribution with parameter−ηkc, starting the walk from Xk−1,
taking ` steps, drawing directions from N (0, bΣ(−ηk−1c))-distribution

4: bΣ(−ηkc)v← 1
N

∑N
j=1〈Yjk, v〉Yjk − 1

N

∑N
j=1〈Yjk, v〉

�
1
N

∑N
j=1 Yjk

�
∀v ∈ Rn

5: Generate bθ (xk−1) through Algorithm 6.1 with the settings in Theorem 6.2
and q = 1

2q∗/m, θ̄ = −ηkc, θ0 = −ηk−1c, X = Xk

6: if ‖ηkc + bθ (xk−1)‖bΣ(−ηkc) ≤ 1
30 then

7: xk← xk−1

8: else
9: xk← xk−1 − γbΣ(−ηkc)[ηkc + bθ (xk−1)]

10: return xm

The test in Line 6 of Algorithm 6.2 was not present in [8]. There, we always
executed Line 9, so ‖ηkc + θ (xk−1)‖−ηkc had to be bounded away from zero.
This complicated the algorithm’s analysis, because various parameters had to be
dependent on the problem dimension. Not only is Algorithm 6.2 easier to analyze,
but the asymptotic number of oracle calls is also better. The following theorem
provides parameters for which Algorithm 6.2 terminates successfully with high
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probability.

Theorem 6.4. Consider the setting of Algorithm 6.2. Let q∗ ∈ (0, 1], and

m=

¢
log

�
(1+δ∗)ϑ f ∗/(εη0)

�

log
�
1+ β/

Æ
ϑ f ∗
�

¥
, (6.17)

N =

�
969n2m

q∗ε2

�
, (6.18)

p =
q∗ε2

98838n2mR4

�
1

256

��
ε

4R(1+δ∗)(1+ β)ϑ f ∗

�8
p
ϑ f ∗

min{1,λmin(Σ(0))
2},

(6.19)

and let ` be as in (4.10). (Note that ` depends on ε, n, p, and∆θ = β .) Finally, set

γ=
2(871

980)
2

0.4219[1+ (871
980)4]

− 0.5781

0.4219(871
980)2

≈ 0.5712.

With these inputs, Algorithm 6.2 returns a solution xm with

P
n
〈c, xm〉 −min

x∈S 〈c, x〉 ≤ ε
o
≥ 1− q∗.

Proof. Our goal is to prove that, with high probability, ‖xk − z(ηk)‖∗z(ηk)
≤ δ∗ in

each iteration k ∈ {1, ..., m}. The result will then follow from Lemma 3.10 if we
note that

ηm = η0

�
1+

βÆ
ϑ f ∗

�m

≥ (1+δ
∗)ϑ f ∗

ε
.

To show that ‖xk − z(ηk)‖∗z(ηk)
≤ δ∗ for all k, it will be convenient to assume that

all approximations bΣ(−ηkc) satisfy (6.15), and that all calls to Algorithm 6.1 are
successful. We first show that this happens with high probability in iteration k,
provided we have a bΣ(−ηk−1c) satisfying (6.15) and an xk−1 such that ‖xk−1 −
z(ηk−1)‖∗z(ηk−1)

≤ δ∗.
We consider the conditions of Theorem 5.11 to assert that bΣ(−ηkc) satisfies

(6.15) with high probability. Observe first of all that

‖ −ηkc +ηk−1c‖−ηk−1c ≤ β , (6.20)
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by (3.9). Noting that for any k,

ηk ≤ ηm = η0

�
1+

βÆ
ϑ f ∗

�m

≤ (1+δ
∗)ϑ f ∗

ε

�
1+

βÆ
ϑ f ∗

�
≤ (1+δ

∗)(1+ β)ϑ f ∗

ε
,

we have by Theorem B.3 and the assumption that ‖c‖= 1,

λmin(Σ(−ηkc))≥ 1
16

�
1

max{1, 4R‖ −ηkc‖}
�4
p
ϑ f ∗
λmin(Σ(0))

≥ 1
16

�
ε

4R(1+δ∗)(1+ β)ϑ f ∗

�4
p
ϑ f ∗

λmin(Σ(0)).

Hence, Theorem 5.11 shows that

P
§

1
1+ ε

bΣ(−ηkc)� Σ(−ηkc)� (1+ ε)bΣ(−ηkc)
ª
≥ 1− 25q∗

51m
.

Moreover, Xk is equal to a random variable following the Boltzmann distri-
bution with parameter −ηkc with probability at least 1 − p ≥ 1 − 1

102q∗/m by
Theorem 4.14.

Moving on to Line 5 in Algorithm 6.2, we will verify the conditions for The-
orem 6.2. To see that ‖ − ηk−1c − θ (xk−1)‖−ηkc ≤ K , note that by the self-
concordance of f , (6.20) and Proposition 3.7,

‖ −ηk−1c − θ (xk−1)‖−ηkc ≤
‖−ηk−1c − θ (xk−1)‖−ηk−1c

1− ‖−ηkc +ηk−1c‖−ηk−1c

≤
�

1
1− β

� ‖z(ηk−1)− xk−1‖∗z(ηk−1)

1− ‖z(ηk−1)− xk−1‖∗z(ηk−1)

≤ δ∗

(1− β)(1−δ∗) =
100
891

≤ K = 1
8 .

Moreover, we should have (1 + ε)K + ‖ − ηkc − θ (xk−1)‖−ηkc ≤ δ. To this end,
note that

‖ −ηkc − θ (xk−1)‖−ηkc ≤ ‖−ηk−1c − θ (xk−1)‖−ηkc + ‖ −ηkc +ηk−1c‖−ηkc

≤ 100
891 +

‖ −ηkc +ηk−1c‖−ηk−1c

1− ‖−ηkc +ηk−1c‖−ηk−1c

≤ 100
891 +

β

1− β =
109
891 .
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Then (1+ε)K+‖−ηkc−θ (xk−1)‖−ηkc ≤ 0.2486≤ δ = 1
4 . The success probability

of each call to Algorithm 6.1 is therefore at least 1−q = 1− 1
2q∗/m by Theorem 6.2.

Below, we assume that

‖bθ (xk−1)− θ (xk−1)‖−ηkc ≤ κ := 1
100 ∀k ∈ {1, ..., m}, (6.21)

and

1
1+ ε

bΣ(−ηkc)� Σ(−ηkc)� (1+ ε)bΣ(−ηkc) ∀k ∈ {1, ..., m}. (6.22)

and show that this leads to a successful termination of the algorithm. Thus, the
success probability of Algorithm 6.2 will be at least 1− q∗.

Algorithm 6.2 distinguishes the following two cases in Lines 6 and 8:

(a) ‖ηkc + bθ (xk−1)‖bΣ(−ηkc) ≤ 1
30 ;

(b) ‖ηkc + bθ (xk−1)‖bΣ(−ηkc) >
1
30 .

Let us first show that in Case (a), we have ‖xk−1 − z(ηk)‖∗z(ηk)
≤ δ∗, in which

case we could take xk = xk−1. By Proposition 3.7, and the fact that θ (z(ηk)) =
−ηkc,

‖xk−1 − z(ηk)‖∗z(ηk)
≤ ‖ηkc + θ (xk−1)‖−ηkc

1− ‖ηkc + θ (xk−1)‖−ηkc
.

By the triangle inequality and assumptions (6.21) and (6.22), we have in Case
(a),

‖ηkc + θ (xk−1)‖−ηkc ≤ ‖ηkc + bθ (xk−1)‖−ηkc + ‖bθ (xk−1)− θ (xk−1)‖−ηkc

≤p1+ ε‖ηkc + bθ (xk−1)‖bΣ(−ηkc) +κ

≤ 1
30

p
1+ ε+ κ= 1

30

p
1.01+ 1

100

≤ 1
2δ
∗ = 1

20 .

Because δ∗ = 1
10 , we therefore have

‖xk−1 − z(ηk)‖∗z(ηk)
≤

1
2δ
∗

1− 1
2δ
∗ =

1
2δ
∗

19
20

< δ∗.

Now, let us suppose we are in Case (b), such that we take the step in Line 9.
To prove that after this step, we again have ‖xk−z(ηk)‖∗z(ηk)

≤ δ∗, we should first
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bound the initial distance ‖xk−1 − z(ηk)‖∗z(ηk)
. By the self-concordance of f ∗ and

Corollary 3.8,

‖xk−1 − z(ηk)‖∗z(ηk)
≤

‖xk−1 − z(ηk)‖∗z(ηk−1)

1− ‖z(ηk−1)− z(ηk)‖∗z(ηk−1)

≤
‖xk−1 − z(ηk)‖∗z(ηk−1)

1− β/(1− β) .

Using Corollary 3.8 once more, along with the induction hypothesis that ‖xk−1 −
z(ηk−1)‖∗z(ηk−1)

≤ δ∗ yields

‖xk−1 − z(ηk)‖∗z(ηk)
≤
‖xk−1 − z(ηk−1)‖∗z(ηk−1)

+ ‖z(ηk−1)− z(ηk)‖∗z(ηk−1)

1− β/(1− β)
≤ δ

∗ + β/(1− β)
1− β/(1− β) =

109
980 . (6.23)

To invoke the results from De Klerk et al. [35], we need an upper bound on
the relative error in our estimate bΣ(−ηkc)[ηkc + bθ (xk−1)] of the gradient of f ∗ηk

with respect to 〈·, ·〉∗z(ηk)
at xk−1. Using the assumption (6.22), it follows from

Lemma 6.3 that

‖bΣ(−ηkc)[ηkc + bθ (xk−1)]−Σ(−ηkc)[ηkc + θ (xk−1)]‖∗z(ηk)

≤ (1+ ε)κ+
Æ

2ε(1+ ε)‖ηkc + θ (xk−1)‖−ηkc

In Case (b), we have

1
30 < ‖ηkc + bθ (xk−1)‖bΣ(−ηkc)

≤p1+ ε
�‖ηkc + θ (xk−1)‖−ηkc + ‖bθ (xk−1)− θ (xk−1)‖−ηkc

�

≤p1+ ε
�‖ηkc + θ (xk−1)‖−ηkc +κ

�
,

that is,

‖ηkc + θ (xk−1)‖−ηkc >
1

30
p

1+ ε
−κ= 1

3
p

101
− 1

100 .

Consequently, we can express the bound on the relative error in the gradient es-
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timate as

‖bΣ(−ηkc)[ηkc + bθ (xk−1)]−Σ(−ηkc)[ηkc + θ (xk−1)]‖∗z(ηk)

≤
�

(1+ ε)κ
‖ηkc + θ (xk−1)‖−ηkc

+
Æ

2ε(1+ ε)

�
‖ηkc + θ (xk−1)‖−ηkc

≤
 
(1+ ε)κ
1

3
p

101
− 1

100

+
Æ

2ε(1+ ε)

!
‖ηkc + θ (xk−1)‖−ηkc

≤ 0.5781‖ηkc + θ (xk−1)‖−ηkc . (6.24)

As noted in the proof of Theorem 5.4 in De Klerk et al. [35], the result on con-
vergence to the minimizer from Theorem 5.3 in [35] only requires bounds on the
Hessians with respect to 〈·, ·〉∗z(ηk)

of f ∗ηk
at xk−1 and the minimizer z(ηk), and not

necessarily at xk. Since H∗z(ηk)
(z(ηk)) = I , it remains to note that by (6.23), we

have for all v ∈ Rn,

〈v, H∗z(ηk)
(xk−1)v〉∗z(ηk)

= (‖v‖∗xk−1
)2

≤
� ‖v‖∗z(ηk)

1− ‖xk−1 − z(ηk)‖∗z(ηk)

�2

≤ �980
871

�2
(‖v‖∗z(ηk)

)2,

and similarly 〈v, H∗z(ηk)
(xk−1)v ≥

�871
980

�2
(‖v‖∗z(ηk)

)2. It thus follows from Theorem
5.3 in [35], (6.24), and (6.23) that

‖xk − z(ηk)‖∗z(ηk)
≤
 

1− �871
980

�4

1+
�871

980

�4 + 0.5781

!
‖xk−1 − z(ηk)‖∗z(ηk)

≤ (0.8097)109
980

≤ δ∗ = 1
10 .

We end this chapter with a complexity analysis of Algorithm 6.2 with the con-
figuration from Theorem 6.4. To find an asymptotic bound on the value of m in
(6.17), note that for fixed β > 0,

1

log
�
1+ β/

Æ
ϑ f ∗
� = O

�q
ϑ f ∗
�

,
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such that m = O∗(
Æ
ϑ f ∗). Then, the number of samples in (6.18) satisfies N =

O∗(n2
Æ
ϑ f ∗/q

∗). The complexity of the walk length is given by (6.12), which for
the value of p from (6.19) is

`= O∗
�

n3
�q
ϑ f ∗
�5

log5
�

1
min{1,λmin(Σ(0))4}

��
.

In conclusion, the total number of oracle calls by Line 3 in Algorithm 6.2 with the
configuration from Theorem 6.4 is

O∗(mN`) = O∗
�

n5ϑ3.5
f ∗

q∗
log5

�
1

min{1,λmin(Σ(0))4}
��

. (6.25)

The other potential bottleneck is Line 5, which calls Algorithm 6.1 m times. By
(6.13), the number of oracle calls in this line is

O∗
�q

ϑ f ∗
n4ϑ2.5

f ∗

q
log5

�
1

min{1,λmin(Σ(0))2}
��

= O∗
�

n4ϑ3.5
f ∗

q∗
log5

�
1

min{1,λmin(Σ(0))2}
��

for q = 1
2q∗/m. Since ϑ f ∗ = O(n) by Theorem 3.4, the factor (6.25) dominates

the number of oracle calls in Algorithm 6.2. We have thus shown the following.

Theorem 6.5. Consider Algorithm 6.2 with the configuration from Theorem 6.4.
The number of oracle calls by this algorithm is

O∗
�

n5ϑ3.5
f ∗

q∗
log5

�
1

min{1,λmin(Σ(0))4}
��

= O∗
�

n8.5

q∗
log5

�
1

min{1,λmin(Σ(0))4}
��

.

If 〈·, ·〉 were the Euclidean inner product, the value of p in (6.19) could be made more
explicit by replacing λmin(Σ(0)) with its lower bound from Lemma B.2. Then, the
number of oracle calls would be

O∗
�

n5ϑ3.5
f ∗

q∗

�
= O∗

�
n8.5

q∗

�
.



7
Simulated Annealing for Convex

Optimization

The approximation quality tools from Chapter 5 have wider applications than just
the interior point method from Chapter 6. In this chapter, we look at a different
method: the simulated annealing algorithm by Kalai and Vempala [56]. This algo-
rithm was recently connected to the field of interior point methods by Abernethy
and Hazan [1]. They showed that the means of the Boltzmann distributions that
the simulated annealing algorithm encounters lie on the central path of an interior
point method using the entropic barrier, such as the one in Chapter 6. Exploit-
ing this connection, they propose a new temperature schedule for the simulated
annealing algorithm that depends on the entropic barrier’s complexity parameter,
not on the problem dimension.

Our purpose in this chapter is to analyze the complexity of Kalai and Vempala’s
algorithm using Abernethy and Hazan’s temperature schedule. This exercise is
relevant because, in their original paper, Kalai and Vempala only sketch a crucial
proof (i.e. [56, Theorem 4.2]). Abernethy and Hazan’s improved temperature

99
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schedule leans on this analysis, and therefore also lacks a rigorous foundation.
With the tools developed in previous chapters, we can give a formal analysis.
Moreover, we propose some heuristic modifications to the algorithm, and verify
that they improve the algorithm’s numerical performance.

We introduce Kalai and Vempala’s algorithm with Abernethy and Hazan’s tem-
perature scheme in Section 7.1. Section 7.2 shows that this algorithm returns a
solution that is near-optimal with high probability. In Section 7.3 we analyze the
algorithm’s complexity, and compare it with Kalai and Vempala’s original analysis
[56]. Section 7.4 features a numerical experiment, based on which we propose
some heuristic changes to the algorithm. We sketch the relationship between the
algorithms in this chapter and those in the preceding chapters in Figure 7.1.

Simulated annealing (Algorithm 7.1)
Iterates over Tk > 0

Hit-and-run sampling (Algorithm 4.1)
Iterates over X i ∈ S

Bisection method
Iterates over potential end points

Membership oracle

Returns samples for bΣ(−c/Tk)

Returns approximate end points
of line segment through X i

Returns true or false

Figure 7.1: Sketch of the dependencies of the algorithms in Chapter 7

This chapter is based on Sections 1.1, 4, 5.3, and 5.4 from Badenbroek and
De Klerk [9]. Background material on the completely positive cone (to be defined
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in Section 7.4) was taken from the introduction of Badenbroek and De Klerk [10].
Aside from some minor differences due to changes in previous chapters, the main
change in this chapter compared to [9] is that we perform the analysis with respect
to arbitrary inner products. For the sake of concreteness, the convergence and
complexity results will also be stated for the Euclidean inner product as corollaries.

The reader may wish to take note of the notation summarized in Table 3.1 on
page 32.

7.1 Statement of a Simulated Annealing Algorithm

Kalai and Vempala’s algorithm [56] aims to solve problem (3.2), that is,

min
x∈S 〈c, x〉, (7.1)

where c ∈ Rn and S ⊂ Rn is a convex body, through simulated annealing. Sim-
ulated annealing was originally introduced for combinatorial optimization prob-
lems by Kirkpatrick et al. [63]. The method is named after the annealing process
from metallurgy where a metal is first heated for a while, and then slowly cooled
to improve its physical properties. Simulated annealing borrows a temperature
parameter from annealing, and decreases this temperature over the course of the
process. The temperature signifies the randomness in the process in some sense.
It was shown by Hajek [49] that simulated annealing on finite sets converges to
the global optimum if one takes an exponentially long cooling schedule, even for
non-convex problems. Furthermore, simulated annealing has good empirical per-
formance as well and is often used as a heuristic in practice, see Kirkpatrick [62].
For a survey, we refer to Bertsimas et al. [14].

In each iteration k of Kalai and Vempala’s algorithm [56], the temperature Tk

is lowered. Then, hit-and-run samples are generated whose target distribution is
the Boltzmann distribution with parameter θk = −c/Tk. These random walks use
an approximation bΣ(θk−1) of Σ(θk−1) to generate search directions. With these
samples, an approximation bΣ(θk) of Σ(θk) is formed, which will then be used in
the next iteration. As k grows sufficiently large, so does the norm of θk. The
Boltzmann distributions with parameter θk will then concentrate more and more
probability mass close to the set of optimal solutions to (7.1). For sufficiently
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large k, any sample from such a Boltzmann distribution is near-optimal with high
probability.

One thing that needs further clarification is how to decrease the temperature
in each iteration. In their original paper, Kalai and Vempala [56] show that their
algorithm returns a near-optimal solution with high probability for the tempera-
ture update

Tk =
�

1− 1p
n

�
Tk−1, (7.2)

in m= O∗(
p

n) iterations. Abernethy and Hazan [1] propose the alternative tem-
perature update

Tk =

�
1− 1

4
Æ
ϑ f ∗

�
Tk−1, (7.3)

where ϑ f ∗ is the complexity parameter of the entropic barrier over the convex
body S. Abernethy and Hazan show that (7.3) leads to m= O∗(

Æ
ϑ f ∗) iterations.

By Theorem 3.4, we have ϑ f ∗ ≤ n+ o(n) in general, but it is not currently known
if ϑ f ∗ < n for any convex bodies. (We presented numerical evidence in Figure 3.1
that suggests ϑ f ∗ =

1
2(n+ 1) for the Euclidean unit ball in Rn, but did not prove

this formally.) In particular, the temperature update (7.3) only improves on (7.2)
if ϑ f ∗ <

1
16 n, which is not known to hold for any convex body. We therefore

consider a variation on the temperature schedule (7.3) suggested by Abernethy
and Hazan, namely

Tk =

�
1− 1

β
Æ
ϑ f ∗

�
Tk−1 for some β > 1+

1Æ
ϑ f ∗

, (7.4)

which corresponds to (7.3) when β = 4, but gives larger temperature reductions
when β < 4. We will refer to (7.4) as Abernethy-Hazan-type temperature updates.
If ϑ f ∗ < n, this may result in a larger temperature decrease than the Kalai and
Vempala [56] scheme (7.2), for a suitable choice of the parameter β .

The algorithm by Kalai and Vempala [56] that uses a temperature schedule of
the type introduced by Abernethy and Hazan [1] is given in Algorithm 7.1.

One might wonder how to generate a good estimate bΣ(0) of the uniform co-
variance matrix Σ(0) to start Algorithm 7.1. The “rounding the body” procedure
from Lovász and Vempala [73] is suitable for this purpose. It is shown by Theorem



Chapter 7. Simulated Annealing for Convex Optimization 103

Algorithm 7.1 Algorithm by Kalai and Vempala [56] using temperature schedule
of type introduced by Abernethy and Hazan [1]
Input: convex body S ⊂ Rn contained in a ball with radius R≥ 1;

log-partition function f and entropic barrier f ∗ associated with S;
normalized (with respect to ‖ · ‖) objective c ∈ Rn;
optimality tolerance ε ∈ (0,2R];
approximation bΣ(0) of Σ(0) satisfying 1

2
bΣ(0)−1 � Σ(0)−1 � 2bΣ(0)−1;

x0 ∈ S drawn from the uniform distribution over S;
number of iterations m; growth parameter β > 1+ 1/

Æ
ϑ f ∗;

number of samples N ; number of hit-and-run steps `.
Output: Xm ∈ S such that 〈c, Xm〉 −minx∈S〈c, x〉 ≤ ε with high probability.

1: X0← x0

2: θ0← 0
3: T0← 2βR
4: for k ∈ {1, ..., m} do
5: Tk←

�
1− 1/(β

Æ
ϑ f ∗)

�
Tk−1

6: θk←−c/Tk

7: Generate Y1k, ..., YNk and Xk by applying hit-and-run sampling to the
Boltzmann distribution with parameter θk, starting the walk from Xk−1,
taking ` steps, drawing directions from a N (0, bΣ(θk−1))-distribution

8: bΣ(θk)v← 1
N

∑N
j=1〈Yjk, v〉Yjk − 1

N

∑N
j=1〈Yjk, v〉

�
1
N

∑N
j=1 Yjk

�
∀v ∈ Rn

9: return Xm

5.3 in [73] that this procedure returns a bΣ(0) for which

P
�1

2
bΣ(0)� Σ(0)� 2bΣ(0)	≥ 1− 1

n
.

By Lemma 2.4, 1
2
bΣ(0) � Σ(0) � 2bΣ(0) if and only if 1

2
bΣ(0)−1 � Σ(0)−1 �

2bΣ(0)−1, so the starting condition for Algorithm 7.1 can be satisfied by the “round-
ing the body” procedure. The number of calls to the membership oracle for this
procedure is O∗(n4). As we will see in Section 7.3, this number of oracle calls will
be overshadowed by the oracle calls from Algorithm 7.1.
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7.2 Proof of Convergence

Suppose we could show that hit-and-run sampling mixes with the target distribu-
tion in each iteration of Algorithm 7.1. Then, it would suffice to argue that the
final iterate Xm is near-optimal with high probability. Keeping Markov’s inequal-
ity in mind, this near-optimality can be shown if the expected objective value of a
random variable following a low-temperature distribution is close to the optimal
value. This is the topic of the next lemma. It was established by Kalai and Vem-
pala [56] for linear functions, and extended from linear to convex functions by
De Klerk and Laurent [32].

Lemma 7.1 ([32, Corollary 1]). Let S ⊂ Rn be a convex body. For any convex
functional φ : Rn→ R and temperature T > 0, we have

∫
S φ(x)e

−φ(x)/T dx∫
S e−φ(x)/T dx

≤ nT +min
x∈S φ(x).

The main step in the analysis of Algorithm 7.1 is thus to show that we maintain
a good approximation bΣ(θk) of Σ(θk) for all k, to guarantee that the hit-and-run
sampling continues to work in all iterations. This analysis was done with respect
to the Euclidean inner product in [9, Theorem 14], but here we do it for arbitrary
inner products.

Theorem 7.2. Consider the setting of Algorithm 7.1. Let∆θ =
Æ
ϑ f ∗/(β

Æ
ϑ f ∗−1),

q ∈ (0, 1],

m=

¢
log (qε/(4βnR))

log
�
1− 1/(β

Æ
ϑ f ∗)

�
¥

, (7.5)

N =

�
969n2m

q

�
, (7.6)

p =
q

98838mn2R4

�
1

256

�� qε
16nR

�8
p
ϑ f ∗

min{1,λmin(Σ(0))
2}, (7.7)

and let ` be as in (4.10). (Note that ` depends on ε= 1, n, p, and ∆θ .) With these
inputs, Algorithm 7.1 returns a solution Xm with

P
n
〈c, Xm〉 −min

x∈S 〈c, x〉 ≤ ε
o
≥ 1− q.
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Proof. Throughout all iterations k of Algorithm 7.1, we want to maintain the con-
ditions that Xk is equal to a sample from the Boltzmann distribution with param-
eter θk, and

1
2
bΣ(θk)

−1 � Σ(θk)
−1 � 2bΣ(θk)

−1, (7.8)

with a certain high probability. We assume that these conditions hold in itera-
tion k − 1, and we will show that they then also hold for iteration k with high
probability.

First, let us show that the conditions of Theorem 4.14 are satisfied. For k = 1,
(B.1) in Appendix B shows

‖θ1 − θ0‖θ0
=
‖c‖0
T1
≤ 2R

T1
=

2R

2βR
�
1− 1/(β

Æ
ϑ f ∗)

� =∆θ .

For all k > 1, our choice of θk and (3.1) yield

‖θk − θk−1‖θk−1
=
�

Tk−1

Tk
− 1

�
‖θk−1‖θk−1

≤
�

1

1− 1/(β
Æ
ϑ f ∗)

− 1

�q
ϑ f ∗ =∆θ .

Therefore, for any k ∈ {1, ..., m}, Theorem 4.14 and Lemma 4.5 show that with
probability at least 1−p, Xk is equal to a random variable drawn from a Boltzmann
distribution with parameter θk.

Next, we will apply Theorem 5.11 with ξ= 1 to show bΣ(θk) is a good approx-
imation of Σ(θk). For that, we need a lower bound on λmin(Σ(θk)), such as the
one given by Theorem B.3:

λmin(Σ(θk))≥ 1
16

�
1

max{1, 4R‖θk‖}
�4
p
ϑ f ∗
λmin(Σ(0)).

To upper bound ‖θk‖, note that

m≤ log (qε/(2nR))

log
�
1− 1/(β

Æ
ϑ f ∗)

� + 1,

such that for all k ≤ m,

‖θk‖ ≤ ‖θm‖=
‖c‖
Tm
=

1

R(1− 1/(β
Æ
ϑ f ∗))m

≤ 2n

(1− 1/(β
Æ
ϑ f ∗))qε

.
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Since ϑ f ∗ ≥ 1 for any self-concordant barrier f ∗ (see Nesterov and Nemirovskii
[85]), it holds for any β > 1+ 1/

Æ
ϑ f ∗ ≥ 2/

Æ
ϑ f ∗ that

1

1− 1/(β
Æ
ϑ f ∗)

<
1

1− 1
2

= 2.

Hence, ‖θk‖ ≤ 4n/(qε) and

λmin(Σ(θk))≥ 1
16

� qε
16nR

�4
p
ϑ f ∗
λmin(Σ(0)).

It follows that the chosen values for N and p satisfy

N ≥ 475n2

(25
51q/m)

and p ≤ (
25
51q/m)min{1,λmin(Σ(θk))2}

48450n2 max{1, R4} ,

such that Theorem 5.11 shows that (7.8) holds in iteration k with probability at
least 1− 25

51q/m.
By induction, Xm is equal to a random variable drawn from a Boltzmann dis-

tribution with parameter θm and (7.8) holds for k = m with probability at least

1−m
�

p+
25q
51m

�
≥ 1−m

�
q

102m
+

25q
51m

�
= 1− 1

2q,

by the union bound. In this event, Markov’s inequality and Lemma 7.1 show

P
n
〈c, Xm〉 −min

x∈S 〈c, x〉> ε
o
≤ E [〈c, Xm〉 −minx∈S〈c, x〉]

ε
≤ nTm

ε
≤ 1

2q, (7.9)

where the final inequality uses the chosen value of m as follows:

Tm = 2βR

�
1− 1

β
Æ
ϑ f ∗

�m

≤ 2βR
qε

4βnR
=

qε
2n

.

This result is still phrased in terms of an arbitrary inner product, and the
value of p depends on this inner product. If we were to restrict ourselves to
the Euclidean inner product, we could use the lower bound on λmin(Σ(0)) from
Lemma B.2 to make the value of p more explicit. The following result is essentially
[9, Theorem 14] with slightly different constants.
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Corollary 7.3. Consider the setting of Algorithm 7.1, and let 〈·, ·〉 be the Euclidean
inner product. Assume S contains a ball with radius r > 0. Let q ∈ (0, 1], ∆θ =Æ
ϑ f ∗/(β

Æ
ϑ f ∗ − 1),

m=

¢
log (qε/(4βnR))

log
�
1− 1/(β

Æ
ϑ f ∗)

�
¥

,

N =

�
969n2m

q

�
,

p =
q

98838mn2R4

�
1

256

�� qε
16nR

�8
p
ϑ f ∗

min
§

1, 1
16

� r
n+ 1

�4ª
,

and let ` be as in (4.10). (Note that ` depends on ε= 1, n, p, and ∆θ .) With these
inputs, Algorithm 7.1 returns a solution Xm with

P
n
〈c, Xm〉 −min

x∈S 〈c, x〉 ≤ ε
o
≥ 1− q.

7.3 Complexity Analysis and Discussion

We saw that for some combination of inputs, Algorithm 7.1 returns a solution
which is near-optimal with high probability. Let us now consider the number of
membership oracle calls required for this configuration. As we saw in Section 4.1,
the number of oracle calls for one hit-and-run walk is O∗(`). Hence, Algorithm 7.1
uses O∗(mN`) oracle calls.

First, let us look at the number of iterations from (7.5). Since

−1

log
�
1− 1/(β

Æ
ϑ f ∗)

� = O(β
q
ϑ f ∗),

we have m = O∗(
Æ
ϑ f ∗) for fixed β . Next, the number of samples from (7.6)

satisfies N = O∗(n2m/q) = O∗(n2
Æ
ϑ f ∗/q).

Finally, we bound the number of hit-and-run steps used in Theorem 7.2. For
the ∆θ from Theorem 7.2 and the value of p from (7.7), (6.12) shows

`= O∗
�

n3
�q
ϑ f ∗
�5

log5
�

1
min{1,λmin(Σ(0))4}

��
.
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In particular, Lemma B.2 shows that `= O∗(n3ϑ2.5
f ∗ ) for the Euclidean inner prod-

uct.
Summarizing, the total number of oracle calls by Algorithm 7.1 is

O∗(mN`) = O∗
�

n5ϑ3.5
f ∗

q
log5

�
1

min{1,λmin(Σ(0))4}
��

= O∗
�

n8.5

q
log5

�
1

min{1,λmin(Σ(0))4}
��

,

where we used Theorem 3.4. For the Euclidean inner product in particular, the
total number of oracle calls is O∗(n5ϑ3.5

f ∗ /q) = O∗(n8.5/q).
Kalai and Vempala [56, Theorem 2.1] claim that the number of oracle calls

made by their algorithm is O∗(n4.5). The complexity O∗(n5ϑ3.5
f ∗ /q) shown above

is worse because Kalai and Vempala use the following corollary to a theorem by
Rudelson [97].

Theorem 7.4 ([56, Theorem A.1]). Let ψ be a logconcave probability distribution
over Rn with mean 0 and identity covariance, and let ξ > 0, t > 1. Then, there exists
a number N with

N = O

�
nt2

ξ2
log2(n/ξ2)max{t, log n}

�
, (7.10)

such that for N independent samples X1, ..., XN from ψ we have

E






 1

N

N∑
j=1

X jX
>
j − I





t


≤ ξt .

This theorem cannot be directly applied in the setting of Algorithm 7.1 for
three reasons: the hit-and-run samples do not follow the target distribution ψ,
the samples are not independent, and ψ does not have mean 0 and identity co-
variance. As we have seen in Theorem 4.14, the samples are drawn from a distri-
bution that has total variation distance p > 0 to ψ. Moreover, the samples were
shown to be 6p-independent by Corollary 5.6. Finally, to apply Theorem 7.4 to a
Boltzmann distribution with parameter θ ∈ Rn over a convex body S ⊂ Rn, we
should apply the transformation y 7→ Σ(θ )−1/2(y − x(θ )) to S to make the mean
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0 and the covariance the identity. Consequently, the transformed body is not nec-
essarily contained in a ball with radius R anymore; in the worst case, the radius of
the new enclosing ball depends on the smallest eigenvalue of Σ(θ ). Since we do
not have a better bound on this eigenvalue than Theorem B.3 (or Corollary B.4 for
the Euclidean inner product), the diameter of Σ(θ )−1/2(S − x(θ )) may be expo-
nential in n. The suggestions by Kalai and Vempala to prove a statement similar
to Theorem 7.4 in the hit-and-run setting require a bound on this diameter. If
this bound grows exponentially in n, then p should decrease exponentially in n
to compensate (see for instance Kannan et al. [58, Lemma 2.7 and the proof of
Theorem 5.9]). Such a small p would contribute a polynomial factor of n to the
final algorithm complexity.

While Kalai and Vempala claim that Theorem 7.4 can be extended to the hit-
and-run setting without significantly changing (7.10), a formal proof is not given.
In particular, it is not shown how the relaxation of the independence assumption
can be aligned with Rudelson’s proof, and how to bound the diameter of the trans-
formed body Σ(θ )−1/2(S − x(θ )). Assuming these issues can be overcome, Kalai
and Vempala show the following.

Theorem 7.5 ([56, Theorem 4.2]). Let t ≥ 0. With N = O∗(t3n) samples per
iteration in each of m iterations, the approximations bΣ(θk−1) of Σ(θk−1) generated
by Algorithm 7.1 satisfy

P
� 1

160
bΣ(θk−1)� Σ(θk)� 160bΣ(θk−1) ∀k ∈ {1, ..., m}	≥ 1− m

2t
.

If 1
160
bΣ(θk−1) � Σ(θk) � 160bΣ(θk−1) for all k, hit-and-run sampling mixes

in all iterations. Kalai and Vempala are thus able to pick t = O(log(m/q)), and
can therefore claim N = O∗(n). We find in Theorem 5.11 that N = O(n2/(q/m))
samples are required, which is O∗(n

Æ
ϑ f ∗/q) = O∗(n1.5/q) worse than Kalai and

Vempala’s result.
Moreover, by considering the diameter of Σ(θ )−1/2(S − x(θ )), we let p de-

crease quadratically in λmin(Σ(θ )). Since the best lower bound on λmin(Σ(θ )) we
have is exponential in ϑ f ∗ , we introduce a factor of ϑ2.5

f ∗ in the algorithm complex-
ity. If a lower bound on λmin(Σ(θ )) were found that was not exponential in ϑ f ∗ ,
then the algorithm complexity would improve by a factor ϑ2.5

f ∗ .
Together, these factors explain the gap of size O∗(n4/q) between our analysis

and Kalai and Vempala’s.
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7.4 Heuristic Adaptation Based on Experimental Results

We see that Algorithm 7.1 and Algorithm 6.2 from Chapter 6 have the same asymp-
totic complexity. That being said, each iteration from Algorithm 7.1 poses less
work than an iteration from Algorithm 6.2. After all, most of the computational
effort in Algorithm 7.1 is spent on approximating a covariance operator, while
Algorithm 6.2 also approximates a gradient. If we want to find an algorithm that
performs well in practice, it thus makes sense to start with Algorithm 7.1.

Running Algorithm 7.1 as stated immediately raises a problem: the number of
hit-and-run steps ` in (4.10) contains a factor 1030. For practical problems, the ` in
(4.10) is thus too large to take this many hit-and-run steps. We therefore need to
investigate the number of steps ` and samples N that suffice to run Algorithm 7.1
successfully in practice.

To introduce our test problem, let Sd denote the space of real symmetric d×d
matrices. Fix 〈·, ·〉 to the Euclidean inner product on Rn, and to the trace inner
product on Sd . We define the completely positive cone CPd ⊂ Sd as

CPd := {BB> : B ≥ 0, B ∈ Rd×k for some k}.

Many properties of this cone are summarized in the book by Berman and Shaked-
Monderer [12].

Completely positive matrices play an important role in optimization. For in-
stance, by a theorem of Motzkin and Straus [80] (see also De Klerk and Pasechnik
[33]), the stability number of a graph can be formulated as an optimization prob-
lem with linear objective and linear constraints over the completely positive cone
(or its dual cone). A seminal result by Burer [24] shows that – under mild as-
sumptions – binary quadratic problems can also be reformulated as optimization
problems over the completely positive cone. Other applications build on the work
by Kemperman and Skibinsky [60], who found that CPd equals
�∫

x x> dϕ(x) : ϕ is a finite-valued nonnegative measure supported on Rd
+

�
.

This equality has spawned a large number of applications in distributionally robust
optimization, e.g. Natarajan et al. [83] and Kong et al. [65] (see Li et al. [69] for
a survey).
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Unfortunately, testing if a matrix is completely positive is NP-hard, as Dickin-
son and Gijben [38] showed. Several approaches to this testing problem exist in
the literature. Jarre and Schmallowsky [54] propose an augmented primal-dual
method that provides a certificate if X ∈ CPd by solving a sequence of second-
order cone problems. However, their algorithm converges slowly if X is on the
boundary of CPd , and the regularization they propose to solve this is computa-
tionally expensive.

An obvious way to verify that X is completely positive is to find a factoriza-
tion X = BB> where B ≥ 0. Several authors have done this for specific matrix
structures, see Dickinson and Dür [37], Bomze [16], and the references therein.
For general matrices, factorization methods have been proposed by Nie [89], and
Sponsel and Dür [103], but these methods do not perform well on bigger matri-
ces. Groetzner and Dür [46] develop an alternating projection scheme that does
scale well, but is not guaranteed to find a factorization for a given completely pos-
itive matrix. The method struggles in particular for matrices near the boundary
of the completely positive cone. Another heuristic method based on projection is
given by Elser [40]. Sikirić et al. [100] can find a rational factorization whenever
it exists, although the running time is hard to predict.

To actually optimize over the completely positive cone is even harder. Bomze
et al. [18] suggest a factorization heuristic with promising numerical performance.
A more naive approach to solving completely positive optimization problems is to
replace the cone CPd with a tractable outer approximation, such as the cone of
doubly nonnegative matrices (i.e. the symmetric positive semidefinite matrices
with nonnegative elements). After optimizing over this outer approximation, one
could then strengthen the approximation by the technique in Chapter 8 – an idea
also mentioned in e.g. Sponsel and Dür [103] and Berman et al. [13].

We will, for some C ∈ Sd , focus on the following relaxation to a completely
positive optimization problem:

inf
X
{〈C , X 〉 : ‖vec(X )‖ ≤ 1, X ≥ 0, X � 0} , (7.11)

where vec(X ) vectorizes X = [X i j] ∈ Sd as

vec(X ) :=
�
X11 X12 X22 X13 X23 · · · Xdd

�>
,
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that is, vec(X ) contains the upper triangular part of the matrix X . This simple
problem can be seen as the relaxation of infX {〈C , X 〉 : ‖vec(X )‖ ≤ 1, X ∈ CPd},
which tests if C is in the dual cone of CPd or not. Since we place a nonnegativity
constraint on every element of the matrix X , the Newton system in every interior
point iteration is of size O(d2×d2), which quickly leads to impractical computation
times (see e.g. Burer [25]). Checking membership of the feasible set of (7.11)
can however still be done in O(d3) operations.

Since Sd is isomorphic to Rd(d+1)/2, we can also consider our optimization
over Sd as an optimization over Rd(d+1)/2. To do that, define mat : Rd(d+1)/2→ Sd
to be the inverse of vec, and let mat> : Sd → Rd(d+1)/2 be the adjoint of mat.
Problem (7.11) is then equivalent to

val := inf
x

�〈mat>(C), x〉 : ‖x‖ ≤ 1, x ≥ 0,mat(x)� 0
	

. (7.12)

We will run Algorithm 7.1 on the problem (7.12) for d ∈ {5,10, 15,20}. Let
n= 1

2 d(d+1). To generate an instance for the problem (7.12), we draw a random
vector c ∈ Rn from the multivariate normal distribution N (0, I), and let C =
t mat(c) where t is chosen such that ‖mat>(C)‖ = 1. Because we do not know
ϑ f ∗ exactly, and Theorem 3.4 only yields an upper bound for n ≥ 80, Line 5
in Algorithm 7.1 will be replaced by Kalai and Vempala’s [56] original update
Tk← (1− 1/

p
n). We set ε = 10−3, q = 10−1, R= 1, β = 2, and

m=

¢
log (qε/(8nR))

log
�
1− 1/

p
n
�
¥

.

We let X = dI+ee> ∈ Sd and take x = t vec(X ), where e is the all-ones vector, and
t is chosen such that ‖x‖= 1

2 . From this point, we first apply hit-and-run sampling
with respect to the uniform distribution to generate an approximation bΣ(0) of
Σ(0). The mean of the samples this required will serve as x0 in Algorithm 7.1.

The optimal value val of the problem in (7.12) can be computed with MOSEK
9 [78]. If Xm is the solution returned by Algorithm 7.1, we display the optimality
gap 〈mat>(C), Xm〉−val for different choices of N and ` in Figure 7.2. The values
of N and ` are chosen such that the runtime of Algorithm 7.1 is still reasonable.
Moreover, if we are going to draw hit-and-run directions from N (0, bΣ(θk−1)), we
need a Cholesky factorization of bΣ(θk−1). This requires the empirical covariance
to be positive definite, which can only happen if N ≥ n.
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Figure 7.2: Effect of sample size N and walk length ` on the final gap of Algo-
rithm 7.1

Figure 7.2 shows that

`= 4n and N = 6n (7.13)

would be a decent heuristic choice in the context of Algorithm 7.1. With these val-
ues of ` and N , Algorithm 7.1 returns a near-optimal solution in our experiments.
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To see if we can improve upon this performance by Algorithm 7.1, we propose the
following modifications to Algorithm 7.1:

1. As a starting point for the first random walk in some iteration k, use the
sample mean from iteration k− 1. While this significantly changes the dis-
tribution of the starting point, it concentrates more probability mass around
the mean of the Boltzmann distribution with parameter θk−1, such that the
starting point of the random walk is likely already close to the mean of the
Boltzmann distribution with parameter θk. In a similar vein, we return the
mean of the samples in the final iteration, not just one sample. This will
not change the expected objective value of the final result, and will there-
fore also not affect the probabilistic guarantee that we derived in (7.9) by
Markov’s inequality. However, using the mean does reduce the variance in
the final solution.

2. Divide the number of samples that have to be drawn in some iteration k over
P threads. Within each thread, start each random walk from the end point
of the previous random walk. The idea here is that the random samples
as a whole will then exhibit less dependence, thus improving the approxi-
mation quality of the empirical distribution. Note that each thread can be
run in parallel, which we need in a method that would be faster than Al-
gorithm 7.1: the sampling in Algorithm 7.1 can also be done in parallel,
because each walk in a certain iteration has the same starting point.

These changes should improve the performance of the algorithm. For the sake
of clarity, this modified version of Kalai and Vempala’s algorithm is outlined in
Algorithm 7.2.

With this modified algorithm, we repeat the experiment involving (7.12) using
P = 8 threads, and

m=

¢
log (qε/(4nR))

log
�
1− 1/

p
n
�
¥

(7.14)

iterations. The results can be seen in Figure 7.3.
Figure 7.3 shows Algorithm 7.2 performs somewhat better than Algorithm 7.1.

First, we see in Figure 7.3 that larger sample sizes will in the end lead to near-
optimal solutions. This is more desirable than the behavior observed in Figure 7.2,
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Algorithm 7.2 An adaptation of Algorithm 7.1 that changes the walks’ starting
points
Input: convex body S ⊂ Rn contained in a ball with radius R≥ 1;

normalized (with respect to ‖ · ‖) objective c ∈ Rn;
number of samples N ; number of hit-and-run steps `;
number of iterations m; number of threads P that divides N (for
simplicity);
starting point x0 ∈ S.

Output: Xm ∈ S such that 〈c, Xm〉 −minx∈S〈c, x〉 is small with high probability.
1: for i ∈ {1, ...,P} do
2: for j ∈ {1, ..., N/P} do
3: Generate Y(i−1)N/P+ j,0 by applying hit-and-run sampling to the uni-

form distribution over S, starting the walk from x0 if j = 1 and oth-
erwise from Y(i−1)N/P+ j−1,0, taking ` steps, drawing directions from a
N (0, I)-distribution

4: X0← 1
N

∑N
j=1 Yj0

5: T0← 4R
6: for k ∈ {1, ..., m} do
7: Tk←

�
1− 1/

p
n
�

Tk−1

8: θk←−c/Tk

9: for i ∈ {1, ...,P} do
10: for j ∈ {1, ..., N/P} do
11: Generate Y(i−1)N/P+ j,k by applying hit-and-run sampling to the

Boltzmann distribution with parameter θk, starting the walk from
Xk−1 if j = 1 and otherwise from Y(i−1)N/P+ j−1,k, taking ` steps,
drawing directions from a N (0, bΣ(θk−1))-distribution

12: Xk← 1
N

∑N
j=1 Yjk

13: bΣ(θk)v← 1
N

∑N
j=1〈Yjk, v〉Yjk − 〈Xk, v〉Xk ∀v ∈ Rn

14: return Xm

where increases in the sample size do not ensure convergence if the walk length
` is too small. We attribute this improvement to the walks no longer having a
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Figure 7.3: Effect of sample size N and walk length ` on the final gap of Algo-
rithm 7.2

common starting point. For low walk lengths in particular, this change should
lead to less dependence among the samples, and hence to a better approximation
of the covariance.

What’s more, the optimality gaps at termination of Algorithm 7.2 seem to be
more tightly grouped around 10−4 = qε than in Figure 7.2. (Note that qε is
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exactly the size we would like the expected gap to have to guarantee that the gap
is smaller than ε with probability 1− q by Markov’s inequality.) This bahavior is
likely caused by our returning the mean of our final collection of samples rather
than one particular sample.

Despite these improvements, the number of hit-and-run steps and samples
required to find a near-optimal solution did not change drastically compared to
Figure 7.2. It seems (7.13) is still a good heuristic for the number of steps and
samples.

There is one more modification that we will investigate. So far we have used
hit-and-run sampling to approximate a distribution’s covariance, only to then
draw directions from a distribution with that same covariance. We could also
draw directions directly from the centered samples from the previous iteration,
eliminating the need to approximate some distribution’s covariance. This idea is
formalized in Algorithm 7.3.

Repeating the experiment that gave us Figure 7.3 now yields Figure 7.4. Note
that we no longer require N ≥ n, because we do not approximate a covariance
matrix which should have full rank.

The results in Figure 7.4 are similar to Figure 7.3, except that Algorithm 7.3
can be run for more values of N . This additional flexibility does not lead to su-
perior performance, though: for N < n, Algorithm 7.3 does not converge to a
near-optimal solution. Since the performance of Algorithm 7.3 for N ≥ n appears
similar to that of Algorithm 7.2, we propose to use Algorithm 7.2 with the values
of N and ` from (7.13) in further experiments. In Chapter 9, this algorithm will
be compared with alternative approaches to assess its competitiveness.
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Algorithm 7.3 An adaptation of Algorithm 7.2 that changes the walks’ directions
Input: convex body S ⊂ Rn contained in a ball with radius R≥ 1;

normalized (with respect to ‖ · ‖) objective c ∈ Rn;
number of samples N ; number of hit-and-run steps `;
number of iterations m; number of threads P that divides N (for
simplicity);
starting point x0 ∈ S.

Output: Xm ∈ S such that 〈c, Xm〉 −minx∈S〈c, x〉 is small with high probability.
1: for i ∈ {1, ...,P} do
2: for j ∈ {1, ..., N/P} do
3: Generate Y(i−1)N/P+ j,0 by applying hit-and-run sampling to the uni-

form distribution over S, starting the walk from x0 if j = 1 and oth-
erwise from Y(i−1)N/P+ j−1,0, taking ` steps, drawing directions from a
N (0, I)-distribution

4: X0← 1
N

∑N
j=1 Yj0

5: T0← 4R
6: for k ∈ {1, ..., m} do
7: Tk←

�
1− 1/

p
n
�

Tk−1

8: θk←−c/Tk

9: for i ∈ {1, ...,P} do
10: for j ∈ {1, ..., N/P} do
11: Generate Y(i−1)N/P+ j,k by applying hit-and-run sampling to the

Boltzmann distribution with parameter θk, starting the walk from
Xk−1 if j = 1 and otherwise from Y(i−1)N/P+ j−1,k, taking ` steps,
drawing directions uniformly from {Y1,k−1 − Xk−1, ..., YN ,k−1 −
Xk−1}

12: Xk← 1
N

∑N
j=1 Yjk

13: return Xm
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Figure 7.4: Effect of sample size N and walk length ` on the final gap of Algo-
rithm 7.3
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8
An Analytic Center Cutting Plane Method

In the previous two chapters, we have seen two sampling-based optimization al-
gorithms. For the algorithm by Kalai and Vempala [56], we also proposed some
changes to improve its numerical performance. In this chapter we introduce an-
other algorithm that is aimed specifically at practical performance. The method
we propose will be compared with an adaptation of Kalai and Vempala’s algorithm
and the ellipsoid method in Chapter 9.

This chapter is based on Sections 1 and 2 from Badenbroek and De Klerk [10],
with only minor differences. Some information on symmetric cones is taken from
the introduction of Badenbroek and Dahl [7].

8.1 Problem Statement and Solution Approach

Because we focus on practical computations, we only use the Euclidean inner
product on Rn and the trace inner product on Sd in this chapter. The goal we have
in mind is optimization over the copositive cone COd , the dual of the completely

121
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positive cone CPd . This cone is defined as

COd :=
�

X ∈ Sd : y>X y ≥ 0 for all y ∈ Rd
+

	
.

The application that we will focus on is separation from the completely positive
cone. Separating a given doubly nonnegative matrix from the completely positive
cone means that we can strengthen the relaxation (7.11) and reoptimize (this
scheme is mentioned in e.g. Sponsel and Dür [103] and Berman et al. [13]). Bu-
rer and Dong [26] proposed a method to generate such a cut for 5× 5 matrices.
Sponsel and Dür [103] suggested an algorithm based on simplicial partition. Nev-
ertheless, finding a cutting plane for the completely positive matrices is still listed
as an open problem by Berman et al. [13].

Several approaches to copositive optimization exist in the literature. Bund-
fuss and Dür [22, 23] use polyhedral inner and outer approximations based on
simplicial partitions that are refined in regions interesting to the optimization.
Hierarchies of inner approximations of the copositive cone are proposed by Par-
rilo [92], De Klerk and Pasechnik [33] (see also Bomze and De Klerk [17]) and
Peña et al. [93]. Yıldırım [113] proposes polyhedral outer approximations of the
copositive cone, and analyzes the gap to the inner approximations by De Klerk
and Pasechnik [33]. Lasserre [67] proposes a spectrahedral hierarchy of outer
approximations of COd . Perhaps most closely related to our work is the cutting-
plane approach by Anstreicher et al. [4], although they do not implement their
algorithms, and use a different separation oracle for the copositive cone.

Our approach is to use an analytic center cutting plane method. Analytic center
cutting plane methods were first introduced by Goffin and Vial [43] (see [44] for
a survey by the same authors, or Boyd et al. [20]). The advantage of analytic
center cutting plane methods is that the number of iterations scales reasonably
with the problem dimension. For instance, Goffin et al. [45] find that the num-
ber of iterations is O∗(n2/ε2), where n is the number of variables and ε is the
desired accuracy. In every iteration of our algorithm, the main computational ef-
fort is solving a mixed integer linear program (MILP) whose size does not change
throughout the algorithm’s run.

Analytic center cutting plane methods can be used to solve optimization prob-
lems of the form

min
x∈S c>x , (8.1)
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where c ∈ Rn and S is a convex body for which we know a separation oracle. In
other words, given some point x ∈ Rn, one should be able to determine if x ∈ S
or not, and moreover, if x /∈ S, we must be able to generate a halfspace H such
that S ⊆H but x /∈H.

The idea behind analytic center cutting plane methods is to have a tractable
outer approximation of the optimal set of (8.1). We will use one of the form

Q=
�

x ∈ Rn : ‖x‖2 ≤ R2, a>i x ≤ bi ∀i = 1, ..., M
	

, (8.2)

where a>1 , ..., a>M are the rows of a matrix A, b is a vector with elements b1, ..., bM ,
and R> 0. Assuming Q is non-empty, the self-concordant barrier

Φ(x) := − log(R2 − ‖x‖2)−
M∑

i=1

log(bi − a>i x) (8.3)

has a unique minimizer called the analytic center, because its domain Q is bounded
(see Corollary 2.3.6 in Renegar [95]). Of course, a more traditional outer approx-
imation would be a polyhedron {x ∈ Rn : Ax ≤ b} that is known to be bounded.
We decided against this approach for reasons of numerical stability (more details
in Section 8.5).

In every iteration k, one approximates the minimizer xk of Φ. One of two
things will happen. If xk does not lie in S, we use a separating hyperplane to
remove xk from Q. If xk lies in S, xk is feasible for (8.1). Hence any optimal
solution must have an objective value that is at least as good as c>xk. Any optimal
solution will therefore lie in the halfspace {x ∈ Rn : c>x ≤ c>xk}, and one may
thus restrict the outer approximation to this halfspace.

The problem we will look at for some fixed C ∈ Sd is

min
x
{〈C ,mat(x)〉 : ‖x‖2 ≤ 1, mat(x) ∈ COd}. (8.4)

If x ∈ Rd(d+1)/2 is an optimal solution to (8.4), then C ∈ CPd if and only if
〈C , mat(x)〉 ≥ 0. Note that the ball constraint in (8.4) is also present in the outer
approximation (8.2), so it will suffice to generate linear inequalities to approxi-
mate the constraint mat(x) ∈ COd .

There are three remaining questions we have to answer before we can solve
(8.4):
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1. How will we generate separating hyperplanes for the constraint mat(x) ∈
COd?

2. How do we compute the analytic center of the outer approximation?

3. How can one prune constraints that do not have a large influence on the
location of the analytic center?

These three questions will be answered in Sections 8.2, 8.3, and 8.4, respectively.
Then, we state our algorithm in Section 8.5 and wrap up with some remarks
concerning its complexity.

8.2 Membership of the Copositive Cone

It should be noted that determining if a matrix X lies in COd is co-NP-complete,
see Murty and Kabadi [81]. The classical copositivity test is due to Gaddum [42],
but his procedure requires performing a test for all principal minors of a matrix,
which does not scale well to larger d. Nie et al. [90] have proposed an algorithm
based on semidefinite programming that terminates in finite time, although the
actual computation time is hard to predict. Anstreicher [5] shows that copositivity
can be tested by solving an MILP, building on work by Dickinson [36]. See Hiriart-
Urruty and Seeger [51] for a review of the properties of copositive matrices.

Our chosen method of testing if a matrix X is copositive is similar to Anstre-
icher’s. Our method also solves an MILP, and also admits a y ≥ 0 such that
y>X y < 0 if X is not copositive. The main difference is that our method derives
from Xia et al. [110] instead of Dickinson [36].

Note that X ∈ Sd is copositive if and only if

min
y
{y>X y : e> y = 1, y ≥ 0}, (8.5)

where e is the all-ones vector, is nonnegative. It was shown by Xia et al. [110]
that the value of (8.5) is equal to the optimal value of the following mixed integer
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linear program:

min
y,w,σ,ν

−σ
subject to X y +σe− ν= 0

e> y = 1

0≤ yi ≤ wi ∀i ∈ {1, ..., d}
0≤ νi ≤ 2d(1−wi)max

k,l
|Xkl | ∀i ∈ {1, ..., d}

wi ∈ {0,1} ∀i ∈ {1, ..., d},





(8.6)

and that any optimal y from (8.6) is also an optimal solution for (8.5). If the
optimal value of (8.6) is nonnegative, then X is copositive. If the optimal value of
(8.6) is negative, then an optimal solution y ≥ 0 from (8.6) admits the halfspace
H = {X ′ ∈ Sd : y>X ′ y ≥ 0} such that COd ⊂H but X /∈H.

This test for matrix copositivity is attractive to use in practice. Gaddum’s
method [42] is already outperformed by the above method for very small matrices,
and our method scales considerably better. The method by Nie et al. [90] can also
become too slow for our purposes at moderate matrix dimensions. Anstreicher’s
recent method [5] also solves an MILP, which we expect to perform similarly to
(8.6).

In theory, we can therefore determine if a matrix is copositive by solving one
MILP. In practice however, a solver may return a solution (by , bw, bσ,bν) to (8.6)
where by>bν > 0, violating the complementarity condition. This is caused by nu-
merical tolerances allowing a solution with bw /∈ {0, 1}d , which mostly seems to
occur if X has low rank (or is close to a low rank matrix). To find the optimal
solution if this occurs, we fix w to the element-wise rounded value ROUND(bw)
of bw. If the resulting problem is still feasible, we can compare its complemen-
tary solution with the solution to the model for w ∈ {0, 1}d \ {ROUND(bw)}. If the
constraint w = ROUND(bw) does make the problem infeasible, we know that any
optimal solution will have w ∈ {0,1}d \ {ROUND(bw)}. The details of this proce-
dure are given in Algorithm 8.1, where val(M) denotes the objective value of the
optimal solution returned by the solver when solving the model M.
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Algorithm 8.1 Method for testing copositivity or finding deep cuts

Input: matrix X ∈ Sd which we want to test for copositivity.
Output: TRUE if X is copositive, otherwise a halfspace H ⊃ COd with X /∈H.

1: function TESTCOPOSITIVE(X )
2: Let M refer to the model (8.6) with input X
3: (by , bw, bσ,bν)← SOLVEMODEL(M) . See Line 8
4: if by>X by ≥ 0 then
5: return TRUE

6: else
7: return {X ′ ∈ Sd : by>X ′by ≥ 0}
8: function SOLVEMODEL(M, u= +∞)
9: Let (by , bw, bσ,bν) be the solution to the model M returned by the solver

10: if by>bν > 0 and val(M)< u then
11: Let M be the model M with the added constraint w= ROUND(bw)
12: Let M′ be the model M with the added constraint

∑
i:ROUND(bwi)=0 wi+∑

i:ROUND(bwi)=1(1−wi)≥ 1

13: if M is feasible then
14: Compute the optimal solution to M
15: Also compute SOLVEMODEL(M′, val(M)) if M′ is feasible
16: return the solution with the best objective value out of these two
17: else
18: return SOLVEMODEL(M′)
19: else
20: return the solution (by , bw, bσ,bν)

8.3 Approximating the Analytic Center

Now that we saw how to generate cuts for the copositive cone, we turn our atten-
tion to the second question: how to approximate the analytic center of our outer
approximation. This was defined as the minimizer of the function Φ in (8.3).
Since Φ can only be evaluated at x where ‖x‖2 < R2 and Ax < b, we will use
an infeasible-start Newton method to approximate its minimizer. Similar to Boyd
et al. [20, Section 2], one can reformulate the problem of computing the analytic
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center of Q as

inf
x ,π,s

¨
− log(π)−

m∑
i=1

log(si) : π≤ R2 − ‖x‖2, s ≤ b− Ax

«
, (8.7)

which has Lagrangian

L(x ,π, s,λ,Λ) := − log(π)−
m∑

i=1

log(si) +λ(π− R2 + ‖x‖2) +Λ>(s− b+ Ax).

For some vector v ∈ Rn with all elements unequal to zero, and some integer k ∈ Z,
let vk :=

�
vk

1 · · · vk
n

�>
. The gradient of the Lagrangian can then be written as

DL(x ,π, s,λ,Λ) =




2λx + A>Λ
−π−1 +λ
−s−1 +Λ

π− R2 + ‖x‖2
s− b+ Ax




. (8.8)

For the sake of completeness, let us show that it suffices to compute a stationary
point of the Lagrangian.

Proposition 8.1 ([10, Proposition 1]). Let A∈ RM×n have rows a>1 , ..., a>M , and let
b ∈ RM , and R > 0. Let Q be as defined in (8.2), and assume that it has nonempty
interior. Then, z is the analytic center of Q if and only if there exist π, s,λ,Λ > 0
such that DL(z,π, s,λ,Λ) = 0.

Proof. Because Q is bounded and has a nonempty interior, it has an analytic cen-
ter (see e.g. Corollary 2.3.6 in Renegar [95]), and problem (8.7) has an optimal
solution. The nonempty interior of Q also guarantees the existence of a Slater
point of (8.7). Since (8.7) is convex, Slater’s condition shows that a feasible solu-
tion (z,π, s) is optimal if and only if it satisfies the KKT conditions: there should
exist λ,Λ such that




2λz + A>Λ
−π−1 +λ
−s−1 +Λ


= 0,

λ(π− R2 + ‖z‖2) = 0,
Λ>(s− b+ Az) = 0,

π≤ R2 − ‖z‖2,
s ≤ b− Az,
λ,Λ≥ 0.

Since λ= π−1 > 0 and Λ= s−1 > 0, the claim follows.
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Let us compute the Newton step (∆x ,∆π,∆s,∆λ,∆Λ) to approximate a sta-
tionary point of L. We find that

D2 L(x ,π, s,λ,Λ) =




2λI 0 0 2x A>

0 π−2 0 1 0
0 0 Diag(s−2) 0 I

2x> 1 0 0 0
A 0 I 0 0




. (8.9)

Thus, using the expressions (8.8) and (8.9), we see that the Newton step is
the solution to

0=




2λx + A>Λ
−π−1 +λ
−s−1 +Λ

π− R2 + ‖x‖2
s− b+ Ax



+




2λI 0 0 2x A>

0 π−2 0 1 0
0 0 Diag(s−2) 0 I

2x> 1 0 0 0
A 0 I 0 0







∆x
∆π

∆s
∆λ

∆Λ




. (8.10)

We could solve this system directly, but it is more efficient to note that the last
conditions imply 




∆λ = −λ+π−1 −π−2∆π

∆Λ = −Λ+ s−1 −Diag(s−2)∆s

∆π = −π+ R2 − ‖x‖2 − 2x>∆x

∆s = −s+ b− Ax − A∆x

(8.11)

which means the entire Newton step can be expressed in terms of ∆x . The first n
equations of the Newton system (8.10) are thus

−2λx − A>Λ= 2λ∆x + 2x∆λ+ A>∆Λ

= 2λ∆x + 2x[π−1 −λ−π−2∆π] + A>[s−1 −Λ−Diag(s−2)∆s]

= 2λ∆x + 2x[π−1 −λ−π−2(−π+ R2 − ‖x‖2 − 2x>∆x)]

+ A>[s−1 −Λ−Diag(s−2)(−s+ b− Ax − A∆x)],

or equivalently,
�
2λI +

4
π2

x x> + A>Diag(s−2)A
�
∆x

=
R2 − ‖x‖2 − 2π

π2
2x + A>Diag(s−2)(b− Ax − 2s).

(8.12)
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After solving this system for ∆x , we can compute the other components of the
Newton step through equations (8.11). Now that it is clear how one can compute
the Newton step for problem (8.7), we propose Algorithm 8.2 to solve (8.7).

Algorithm 8.2 Infeasible start Newton method for (8.7)

Input: convex body Q = {x ∈ Rn : ‖x‖2 ≤ R2, Ax ≤ b}, where A ∈ RM×n and
b ∈ RM ;
starting point x0 ∈ Rn;
maximum number of iterations m= 50;
gradient norm tolerance ρ = 10−8.

Output: Approximation xk of the analytic center of Q.
1: k← 1

2: π0←
(

R2 − ‖x0‖2 if R2 − ‖x0‖2 > 0

1 otherwise

3: (s0)i ←
(

bi − a>i x0 if bi − a>i x0 > 0

1 otherwise
for all i ∈ {1, ..., M}

4: λ0← 1
5: Λ0← 0
6: while k ≤ m do
7: Compute ∆xk from (8.12)
8: Compute (∆πk,∆sk,∆λk,∆Λk) from (8.11)
9: tk←min{1,0.9 sup{t ≥ 0 : πk+ t∆πk ≥ 0, sk+ t∆sk ≥ 0,λk+ t∆λk ≥ 0}}

10: φk(t) := ‖DL(xk + t∆xk,πk + t∆πk, sk + t∆sk,λk + t∆λk,Λk + t∆Λk)‖
11: if φk(0)≤ ρ and Λk ≥ 0 and (φk(tk)≥ φk(0) or k = m) then
12: return xk with success status

13: k← k+ 1
14: return xk with failure status

Let us make a few observations about this algorithm. First, note that if λ > 0,
the matrix 2λI + 4π−2 x x> +A>Diag(s−2)A is positive definite, and hence invert-
ible. Thus, as long as λ > 0, the system (8.12) will have a (unique) solution
∆x .

Second, the value for t in Line 9 of Algorithm 8.2 is chosen such that after the
update, π, s, and λ will all remain positive. In principle, the value 0.9 could be
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replaced by any real number from (0, 1). Note that we are not requiring that Λ
remains positive in all iterations: numerical evidence suggests that the method is
more likely to succeed if some elements of Λ are allowed to be negative in some
iterations. Nevertheless, Algorithm 8.2 only returns a success status if the final Λ
is nonnegative.

Third, the algorithm returns the current solution x with success status in two
cases. In either case, the current solution should approximately be a stationary
point of the Lagrangian, i.e. the norm of DL(x ,π, s,λ,Λ) has to be small, and
we should have Λ ≥ 0. Moreover, one of two conditions should hold. If the
algorithm is in iteration m, we can return the current, approximately stationary
point. Alternatively, if adding t times the Newton step leads to a larger norm of
the Lagrangian gradient, we also return the current point. In other words, we
keep taking Newton steps if it leads to a smaller gradient norm, and we are not
yet in the final iteration. The reason to do so is that Newton’s method converges
very rapidly when the current point is near the optimum. By running just a few
more iterations, we get a solution with much higher accuracy.

Finally, compared to the algorithm in Boyd et al. [20, Section 2], Algorithm 8.2
does not use backtracking line search. The reason is that for problem (8.7), the
norm of the Lagrangian gradient does not seem to decrease monotonically during
the algorithm’s run. In fact, the norm of this gradient usually first decreases to
the order 100, then increases slightly to the order 101, before decreasing rapidly
to the order 10−8. If one does backtracking line search on t to ensure that in
every iteration the norm of the gradient decreases, the values of t can become
very small (say, of the order 10−9). Then, the number of iterations required to
achieve convergence would be impractically large.

8.4 Pruning Constraints

The next question we should answer is how we can prune constraints from our
outer approximation (8.2). Pruning is often used to reduce the number of con-
straints defining the outer approximation, which keeps the computational effort
per iteration stable. Moreover, the linear system (8.12) will quickly become ill-
conditioned if no constraints are dropped.
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The idea we use is the same as in Boyd et al. [20, Section 3]. Since Φ is self-
concordant, the Dikin ellipsoid around the analytic center z of Q is contained in
Q, that is,

{x ∈ Rn : (x − z)>D2Φ(z)(x − z)≤ 1} ⊆Q, (8.13)

where

D2Φ(z) =
2

R2 − ‖z‖2 I +
4

(R2 − ‖z‖2)2 zz> +
M∑

i=1

1

(bi − a>i z)2
aia
>
i . (8.14)

Moreover, it will be shown at the end of this section that for our outer approxi-
mation Q it holds that

Q ⊆ {x ∈ Rn : (x − z)>D2Φ(z)(x − z)≤ (M + 2)2}. (8.15)

Hence, following Boyd et al. [20], we define the relevance measure

χi :=
bi − a>i zq

a>i D2Φ(z)−1ai

, (8.16)

for all linear constraints i ∈ {1, ..., M}. By (8.13), all χi are at least one. Moreover,
it follows from (8.15) that if χi ≥ M +2, the corresponding constraint is certainly
redundant.

With this in mind, we propose Algorithm 8.3 to prune linear constraints from
Q. Note that the ball constraint ‖x‖2 ≤ R2 is never pruned.

As an alternative to Algorithm 8.3, one might consider dropping M − Mmax

constraints, possibly keeping some redundant constraints. The reason we do not
adopt this strategy is that we noticed Algorithm 8.3 leads to slightly better numer-
ical performance on our test sets.

We finish this section with a proof of the relation (8.15). It will use a re-
sult on symmetric cones, which are closed convex self-dual cones with a transitive
automorphism group. Güler [47] proved that symmetric cones are the same as
self-scaled cones, a class of cones better known to the optimization community
at the time. In 1934, Jordan et al. [55] showed there are five irreducible sym-
metric cones (up to isomorphism), only two of which are used for optimization in
practice: the second-order cone, and the cone of symmetric positive semidefinite
matrices. Since linear programming is a special case of semidefinite programming,
it can also be written as an optimization problem over a symmetric cone.
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Algorithm 8.3 A pruning method for the intersection of a ball and a polyhedron

Input: convex body Q = {x ∈ Rn : ‖x‖2 ≤ R2, Ax ≤ b}, where A ∈ RM×n and
b ∈ RM ;
analytic center z of Q;
maximum number of linear inequalities Mmax = 4n.

Output: A convex body Q defined by at most Mmax linear inequalities.
1: if M > n then
2: Compute χi as in (8.16) for i ∈ {1, ..., M}
3: Remove all constraints a>i x ≤ bi with χi ≥ M + 2 from Q
4: if Q still contains more than Mmax linear inequalities then
5: Remove the constraints a>i x ≤ bi with the largest values of χi from Q

such that Mmax remain

6: return Q

Proposition 8.2 ([10, Proposition 2]). Let A∈ RM×n have rows a>1 , ..., a>M , and let
b ∈ RM , and R > 0. Let Q be as defined in (8.2), and assume that it has nonempty
interior. Define Φ as in (8.3), and let z be its minimizer. Then, for any x ∈ domΦ,
we have

(x − z)>D2Φ(z)(x − z)≤ (M + 2)2.

Proof. Define the barrier function

f (t, x , s) := − log(t2 − ‖x‖2)−
M∑

i=1

log(si),

whose domain is a symmetric cone. The barrier parameter ϑ f of f satisfies ϑ f ≤
M + 2 (see for instance Renegar [95, Theorem 2.3.1]). Note that any x ∈ domΦ
if and only if (R, x , b − Ax) ∈ dom f . We will first show that the gradient of f at
(R, z, b − Az) is orthogonal to (R, x , b − Ax)− (R, z, b − Az) = (0, x − z, A(z − x)).
The claim will then follow from a property of symmetric cones.

The gradient of f is

g(t, x , s) :=



−2t/(t2 − ‖x‖2)
2x/(t2 − ‖x‖2)

−s−1


 ,
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so it follows that

g(R, z, b− Az)>




0
x − z

A(z − x)


= 2z>(x − z)

R2 − ‖z‖2 −
M∑

i=1

a>i (z − x)

bi − a>i z
. (8.17)

Because z is the minimizer of the convex function Φ, we have

0= DΦ(z) =
2

R2 − ‖z‖2 z +
M∑

i=1

1

bi − a>i z
ai ,

which implies that (8.17) is zero. Therefore, Theorem 3.5.9 in Renegar [95]
shows that 


0

x − z
A(z − x)



>

H(R, z, b− Az)




0
x − z

A(z − x)


≤ ϑ2

f , (8.18)

where H is the Hessian of f . It is not hard to see that H(t, x , s) equals

1
(t2 − ‖x‖2)2




2t2 + ‖x‖2 −4t x> 0
−4t x> 2(t2 − ‖x‖2)I + 4x x> 0

0 0 (t2 − ‖x‖2)2 Diag(s−2)


 .

In other words, (8.18) is equivalent to

(x − z)>
�

2
R2 − ‖z‖2 I +

4
(R2 − ‖z‖2)2 zz>

�
(x − z) +

M∑
i=1

(a>i (z − x))2

(bi − a>i z)2
≤ ϑ2

f ,

which proves the claim, since the left hand side is (x−z)>D2Φ(z)(x−z) by (8.14),
and ϑ f ≤ M + 2.

8.5 Algorithm Statement

Recall that we are developing an analytic center cutting plane method to check
complete positivity of a matrix, by solving an optimization problem over the copos-
itive cone. Now that we have answered the major questions surrounding such a
method, we move on to our final method. We start with a quite general ana-
lytic center cutting plane method, and then add a wrapper function that performs
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the complete positivity check. The reason for making this split is that it makes
our code easy to extend when solving other copositive optimization problems for
which a bound on the norm of an optimal solution is known. We state our pro-
posed analytic center cutting plane method to solve (8.1) in Algorithm 8.4.

We continue the algorithm even if we cannot find the analytic center to high
accuracy. Late in the algorithm’s run, the system (8.12) often becomes ill-con-
ditioned. This is to be expected, since as Algorithm 8.4 progresses, the outer
approximation Qk becomes smaller and smaller. The distance from the analytic
center to the linear constraints also goes to zero, but not at the same pace for
every constraint. We may arrive in a situation where bi − a>i xk is of the order
10−4 for some constraints i, and of the order 10−8 for other constraints. This
causes a considerable spread in the eigenvalues of the matrix in (8.12).

If the analytic center is not known to a decent accuracy, the pruning procedure
in Algorithm 8.3 may remove constraints that are actually very important to the
definition of Qk. One could of course still run the pruning function using the
inaccurate analytic center approximation. However, because the problems in the
analytic center computation only occur late in the algorithm’s run, pruning or not
pruning with the inaccurate approximation does not seem to have a major impact
on total runtime.

Algorithm 8.4 is a (relatively) general analytic center cutting plane method.
The problem (8.4) can be solved by calling Algorithm 8.4 with the right argu-
ments, as is done by Algorithm 8.5.

Our aim in this chapter has been to propose an algorithm with good practi-
cal performance. This is why we placed emphasis on a robust copositivity check,
constraint pruning, and efficient computation of the analytic center. However,
such an algorithm does not lend itself well to a formal complexity analysis. For
instance, to the best of our knowledge, the only analysis in the literature of an
analytic center cutting plane method with constraint pruning is due to Atkinson
and Vaidya [6]. Although the number of constraints in their algorithm is techni-
cally bounded by a polynomial of n, this bound is so large as to be uninteresting
in practice.

The analysis that perhaps comes closest to covering our algorithm is the survey
by Goffin and Vial [44], who find a polynomial number of iterations for an ana-
lytic center cutting plane method with deep cuts. Their method only uses linear
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Algorithm 8.4 Analytic Center Cutting Plane method to solve (8.1)
Input: objective c ∈ Rn;

oracle function ORACLE : Rn → {TRUE} ∪ {{x ∈ Rn : a>x ≤ b} : a ∈
Rn, b ∈ R};
radius R> 0;
optimality tolerance ε = 10−6.

Output: A feasible solution x∗ for which RELGAP(c, x∗,Qk)≤ ε. . See Line 18
1: function ACCP(c, ORACLE, R)
2: Q1← {x ∈ Rn : ‖x‖2 ≤ R2}
3: x0← 0
4: k← 1
5: while the best feasible solution so far x∗ has RELGAP(c, x∗,Qk)> ε do
6: Generate approximation xk of the analytic center of Qk through Algo-

rithm 8.2, starting from xk−1
7: if Algorithm 8.2 terminated with a failure status then
8: Check if xk ∈ intQk. If not, throw an error.
9: else

10: Prune constraints from Qk through Algorithm 8.3, assuming xk is
the analytic center of Qk

11: if ORACLE(xk) returns TRUE then
12: Qk+1←Qk ∩ {x ∈ Rn : c>x/‖c‖ ≤ c>xk/‖c‖}
13: else . ORACLE(xk) returns a halfspace
14: Hk = {x ∈ Rn : a>k x ≤ bk} is the halfspace returned by ORACLE(xk)
15: Qk+1←Qk ∩ {x ∈ Rn : a>k x/‖ak‖ ≤ bk/‖ak‖}
16: k← k+ 1
17: return the best feasible solution found x∗
18: function RELGAP(c, x∗,Q)
19: l ←minx{c>x : x ∈Q}
20: return (c>x∗ − l)/(1+min{|c>x∗|, |l|})

constraints, and does not prune cuts. Moreover, the method of recovering a feasi-
ble solution after adding a deep cut is different from the infeasible start Newton
method we use.
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Algorithm 8.5 A wrapper function to determine if a matrix is completely positive
by solving (8.4)

Input: C ∈ Sd for which we want to determine if C ∈ CPd or not.
Output: X ∈ COd such that 〈C , X 〉 is approximately equal to (8.4).

1: c←mat>(C)
2: R← 1
3: ORACLE(x)← TESTCOPOSITIVE(mat(x))
4: return mat(ACCP(c,ORACLE, R))

Nevertheless, we compared our method numerically to Goffin and Vial’s, and
found that our method exhibits somewhat better numerical performance on our
test set. In particular, Goffin and Vial’s method struggles earlier to approximate
the analytic center. Whereas we could solve the problems in our test set up to a
relative gap of 10−6, Goffin and Vial’s method sometimes failed to recover a point
in the feasible set when the relative gap was still of the order 10−5. The condition
number of their linear systems had become very large at this point, explaining the
inaccuracy. At this level of the relative gap, the condition number of the system
(8.12) in our algorithm was somewhat lower.

In short, while our method is not covered by a formal complexity analysis, we
do prefer it over other algorithms in the literature for numerical reasons. The Ju-
lia implementation is available at https://github.com/rileybadenbroek/
CopositiveAnalyticCenter.jl.

https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl
https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl


9
Numerical Experiments

So far, we have described three methods for optimization in the separation oracle
setting: Algorithms 6.2, 7.2, and 8.4. In this chapter, we will compare these
methods through numerical experiments. As a benchmark, we also include the
ellipsoid method by Yudin and Nemirovski [114] in our experiments. Because of
the applied nature of this chapter, below 〈·, ·〉 refers to the Euclidean inner product
on Rn, and to the trace inner product on Sd .

In Section 9.1, we establish that the high-quality covariance and mean approx-
imations that Algorithm 6.2 needs take an impractical amount of time to generate.
We proceed by comparing the remaining methods – Algorithms 7.2 and 8.4 – with
the ellipsoid method in Section 9.2. It will be shown that Algorithm 7.2 requires
significantly more oracle calls than Algorithm 8.4 or even the ellipsoid method.
On the other hand, Algorithm 8.4 compares favorably to the ellipsoid method.
Section 9.3 shows that Algorithm 8.4 also scales very reasonably.

This chapter is based on Sections 5.1 and 5.2 in Badenbroek and De Klerk
[9] and Section 3 from Badenbroek and De Klerk [10]. The numerical results are
slightly different from [9] because we use another test problem for the sake of
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harmonization of this thesis (in [9], we used a different mapping from Sd to Rn

than the operator vec). This does not affect our conclusions though.

9.1 Covariance and Mean Approximation with Hit-and-
Run Sampling

The short-step interior point method Algorithm 6.2 required the approximation of
certain covariance matrices and means by hit-and-run sampling. Let us investigate
how well this works in practice. We will test this on the feasible set of (7.12), that
is, �

x ∈ Rd(d+1)/2 : ‖x‖ ≤ 1, x ≥ 0,mat(x)� 0
	

, (9.1)

where d ∈ {5, 10,15, 20}. The membership test for this set is generally faster than
that from Section 8.2 for the copositive cone, making it the more attractive option
for this experiment.

First, we generate an approximation bΣ0 of the covariance matrix of the uni-
form distribution over (9.1) with hit-and-run sampling. This will use 20,000 hit-
and-run samples with walk length 50,000, where the directions are drawn from
N (0, I). We let X = 1

4(dI + ee>)/d2 ∈ Sd and take x = vec(X ) as the starting
point for all random walks.

Then, the experiment is repeated for N ≤ 20,000 samples with walk length
` ≤ 50,000. We refer to these estimates as bΣN ,`. We would like to see for which
ε≥ 0 we have

1
1+ ε

bΣN ,` � bΣ0 � (1+ ε)bΣN ,`.

Note that (2.3) shows that this condition is equivalent to

bΣ−1/2
0

bΣN ,`bΣ−1/2
0 − I � εI and bΣ−1/2

N ,`
bΣ0bΣ−1/2

N ,` − I � εI .

Because similar matrices have the same eigenvalues, the smallest ε ≥ 0 that sat-
isfies this condition is

bε(N ,`) :=max
¦
λmax(bΣ−1

0
bΣN ,` − I),λmax(bΣ−1

N ,`
bΣ0 − I)

©
.

The result is shown in Figure 9.1, where the covariance matrices are of size n×n,
that is, 1

2 d(d + 1)× 1
2 d(d + 1).
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Figure 9.1: Effect of sample size N and walk length ` on covariance approximation
quality over (9.1)

One major conclusion from Figure 9.1 is that the trajectory towards zero is rel-
atively slow. To show that simply adding more samples with higher walk lengths
will in practice not be feasible, we present the running times required to estimate
a covariance matrix at the desired accuracy in Figure 9.2. Specifically, this figure
shows the running times of the “efficient” combinations of N and `: these are the
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combinations of N and ` plotted in Figure 9.1 for which there are no N ′ and `′

such that bε(N ′,`′) ≤ bε(N ,`) and the running time for N ′ and `′ is lower than for
N and `. (The computer used has an Intel i7-6700 CPU with 16 GB RAM, and the
code used eight threads.) Figure 9.2 shows that, even at low dimensions, approx-
imating the covariance matrix to high accuracy will take an unpractical amount
of time.
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Figure 9.2: Running times required to find an approximation bΣN ,` of the desired
quality

To show that the slow trajectory towards zero in Figure 9.1 is a result of co-
variance estimation’s fundamental difficulty, we consider a simpler problem. We
will approximate the covariance matrix of the uniform distribution over the hy-
percube [0,1]n in Rn. Note that the true covariance matrix of this distribution is
known to be 1

12 I .

We will use hit-and-run with varying walk lengths and sample sizes to gener-
ate samples from the uniform distribution over [0,1]n. The resulting covariance
matrices bΣN ,` will be compared with the true covariance 1

12 I (comparing with a
covariance estimate based on hit-and-run samples as in Figure 9.1 yields roughly
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the same image). The analogue of bε(N ,`) would be

bξ(N ,`) :=max
¦
λmax(12bΣN ,` − I),λmax(

1
12
bΣ−1

N ,` − I)
©

.

The result is shown in Figure 9.3.
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Figure 9.3: Effect of sample size N and walk length ` on covariance approximation
quality over [0,1]n

Figure 9.3 shows a pattern similar to that of Figure 9.1: as the problem size
increases, the walk length should increase with the sample size to ensure the
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estimate is as good as the sample size can guarantee. More importantly though,
hit-and-run sampling does not perform significantly worse than true sampling.
The problem is that approximating a covariance matrix to high accuracy – which
we need for our interior point method – appears to be fundamentally hard.

Besides approximating covariance matrices, the interior point method from
Chapter 6 also approximates means of certain distributions. One would expect
this to be an easier problem: for instance, the number of samples required in
Theorem 5.9 is linear in n, whereas that in Theorem 5.11 is quadratic in n. With
the same samples that were used to create Figure 9.1, we create a mean estimate
bx0 based on 20,000 hit-and-run samples with walk length 50,000. Then, for N ≤
20,000 samples with walk length ` ≤ 50,000, we create the mean estimate bxN ,`.
Using the approximation bΣ0 of the uniform covariance matrix from the previous
section, we compute ‖bx0 − bxN ,`‖bΣ−1

0
and plot the results in Figure 9.4.

The results are comparable to those in Figures 9.1 and 9.2. It will take an
impractical amount of time before the mean estimate approximates the true mean
to high accuracy.

The conclusions above raise some questions about the practical viability of
a sampling-based interior point method. The sampling would have to be paral-
lelized massively to a get accurate approximations of the entropic barrier’s deriva-
tives in reasonable time. This is unlikely to be an attractive strategy. We therefore
shift our focus to the other algorithms we discussed: the heuristic adaptation of
Kalai and Vempala’s algorithm (Algorithm 7.2), and the analytic center cutting
plane method (Algorithm 8.4).

9.2 Separating from the 6× 6 Completely Positive Cone

We will test our most promising algorithms, Algorithms 7.2 and 8.4, on instances
of problem (8.4). After all, Algorithm 8.4 was developed with this problem in
mind. To provide a benchmark, we will also solve the instances of problem (8.4)
with the ellipsoid method from Yudin and Nemirovski [114].

We will use 6×6 doubly nonnegative matrices as test instances for (8.4). The
reason for this choice of size is as follows. It has been known for decades that
the doubly nonnegative cone coincides with CPd for d ≤ 4, as shown by Maxfield
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Figure 9.4: Effect of sample size N and walk length ` on mean approximation
quality over (9.1)

and Minc [77]. Burer and Dong [26] proposed a method to separate matrices
from CP5 which solves five optimization problems over the tractable CO4. This
makes d = 6 the smallest size for which no algorithm is currently known that can
separate from the completely positive cone in reasonable time.

We are interested in matrices on the boundary of the 6 × 6 doubly nonneg-
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ative cone. (Randomly generating matrices in the interior of the 6 × 6 doubly
nonnegative cone very often yields completely positive matrices, making sepa-
ration irrelevant.) The extreme rays of this cone are described by Ycart [111,
Proposition 6.1]. We generate random instances from the class of matrices de-
scribed under case 3, graph 4 in Proposition 6.1 in [111]. These matrices are (up
to permutation of the indices) doubly nonnegative matrices C = [Ci j] with rank
3 satisfying Ci,i+1 = 0 for i ∈ {1, ..., 5}. To generate such a matrix, we draw the
elements of two vectors v1, v2 ∈ R6 and the first element (v3)1 ∈ R of a vector
v3 ∈ R6 from a Poisson distribution with rate 1, and multiply each of these ele-
ments by −1 with probability 1

2 . The remaining elements of v3 are then chosen
such that C =

∑3
k=1 vkv>k satisfies Ci,i+1 = 0 for i ∈ {1, ..., 5}. This procedure is

repeated if the matrix C is not doubly nonnegative, or if BARON 15 [105] could
find a nonnegative matrix B ∈ R6×9 such that C = BB> in less than 30 seconds
(for the cases where such a decomposition could be found, BARON terminated in
less than a second). Thus, we are left with doubly nonnegative matrices for which
it cannot quickly be shown that they are completely positive.

Ten of such random matrices are given in Appendix B in Badenbroek and
De Klerk [9]. After scaling these matrices C such that ‖mat>(C)‖ = 1, we run
Algorithm 7.2 on these instances of problem (8.4). We let X = 1

2 I/d ∈ Sd and
take x0 = vec(X ) as the starting point for this algorithm. The number of samples
N and hit-and-run steps ` is given by (7.13), and the number of iterations is

m=

¢
log

�
10−4/n

�

log
�
1− 1/

p
n
�
¥

,

similar to (7.14). Note that for this m, the expected absolute gap in the final
iteration is at most 10−4. Not only does this gap coincide with that in Section 7.4, it
is also large enough to guarantee that Algorithm 7.2 terminates within reasonable
time.

We also ran Algorithm 8.5 (which calls Algorithm 8.4) on these matrices. How-
ever, the termination criterion in Algorithm 8.4 is phrased in terms of the relative
gap, not the absolute gap. To allow for a fair comparison, we replace Line 5 in
Algorithm 8.4 by the condition that the best feasible solution so far x∗ satisfies

c>x∗ − min
x∈Qk

c>x > 10−4.
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Finally, we also applied the ellipsoid method of Yudin and Nemirovski [114]
to (8.4). The termination criterion for the ellipsoid method is similar to that for
Algorithm 8.4, i.e. the absolute gap can be at most 10−4. The only difference is
that in the case of the ellipsoid method, the lower bound is computed through
minimization over the current ellipsoid, not over some outer approximation Q.
We record the objective values of the solutions returned by these three algorithms
in Table 9.1.

Instance Algorithm 7.2 Ellipsoid method Algorithm 8.5

extremal_rand_1 −0.00810 −0.00813 −0.00809
extremal_rand_2 −0.02112 −0.02116 −0.02111
extremal_rand_3 −0.03954 −0.03957 −0.03953
extremal_rand_4 −0.01027 −0.01031 −0.01027
extremal_rand_5 −0.00656 −0.00659 −0.00656
extremal_rand_6 −0.04473 −0.04476 −0.04472
extremal_rand_7 −0.02512 −0.02516 −0.02512
extremal_rand_8 −0.07365 −0.07368 −0.07364
extremal_rand_9 −0.04800 −0.04803 −0.04800
extremal_rand_10 −0.03030 −0.03033 −0.03029

Table 9.1: Objective value of solutions returned by Algorithm 7.2, the ellipsoid
method, and Algorithm 8.5, applied to the normalized matrices from [9, Appendix
B]. The termination criterion is an (expected) absolute gap of 10−4.

It can be seen that all methods return a solution with approximately the same
objective value. In particular, the randomized Algorithm 7.2 consistently returns
a near-optimal solution. However, the number of calls to TESTCOPOSITIVE differs
significantly between the algorithms, as can be seen in Table 9.2.

The reason to report this number of calls is that the oracle performs the the-
oretically intractable part of these methods: testing if a matrix is copositive. All
other parts of the three methods complete in polynomial time for each oracle call.
Hence, to get the best performance for larger matrices, one would like to mini-
mize the number of oracle calls. It is clear from Table 9.2 that Algorithm 7.2 is
significantly slower than the ellipsoid method, which in turn is outperformed by
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Instance Algorithm 7.2 Ellipsoid method Algorithm 8.5

extremal_rand_1 6,684,932 2544 77
extremal_rand_2 6,739,177 2857 83
extremal_rand_3 6,811,093 3263 85
extremal_rand_4 6,627,005 2503 74
extremal_rand_5 6,599,481 2430 73
extremal_rand_6 6,809,453 3306 86
extremal_rand_7 6,726,332 2995 85
extremal_rand_8 6,897,368 3642 93
extremal_rand_9 6,847,610 3434 91
extremal_rand_10 6,714,194 2959 79

Table 9.2: Calls to the oracle TESTCOPOSITIVE by Algorithm 7.2, the ellipsoid
method, and Algorithm 8.5, applied to the normalized matrices from [9, Appendix
B]. The termination criterion is an (expected) absolute gap of 10−4.

Algorithm 8.5. We conclude that Algorithm 7.2 is not going to be a competitive
approach to solving convex programming problems.

Let us finish this section by arguing that Algorithm 8.5 can also solve problem
(8.4) to somewhat higher accuracy. We now run Algorithm 8.5 on the matrices
from Appendix B in Badenbroek and De Klerk [9] (without scaling them) until
the original termination criterion in Algorithm 8.4 is met: the relative gap should
be at most 10−6. For the sake of comparison, we also run the ellipsoid method
until the relative gap is at most 10−6, where the lower bound is again computed
through minimization over the current ellipsoid. The number of oracle calls these
methods required is given in Table 9.3. Note that Algorithm 8.5 still requires
significantly fewer oracle calls than the ellipsoid method.

9.3 Separating from the d × d Completely Positive Cone

To investigate how Algorithm 8.5 scales, we also generated test instances in higher
dimensions. To the best of our knowledge, a complete characterization of the
extremal rays of the d × d doubly nonnegative cone is unknown for d > 6. (See
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Instance Ellipsoid method Algorithm 8.5

extremal_rand_1 8560 171
extremal_rand_2 8030 167
extremal_rand_3 8598 166
extremal_rand_4 7910 164
extremal_rand_5 8546 193
extremal_rand_6 8184 167
extremal_rand_7 9119 191
extremal_rand_8 8126 169
extremal_rand_9 8318 176
extremal_rand_10 7950 161

Table 9.3: Calls to the oracle TESTCOPOSITIVE by the Ellipsoid method and Algo-
rithm 8.5, applied to the matrices from [9, Appendix B]. The termination criterion
is a relative gap of 10−6.

the corollary to Theorem 3.1, and Propositions 5.1 and 6.1 in Ycart [111] for
the extremal matrices for d ≤ 6.) Hence, we use a semidefinite programming
heuristic to find doubly nonnegative matrices in these dimensions which are not
completely positive.

The matrices used in Section 9.2 are 6 × 6 doubly nonnegative matrices C
with rank 3 and the entries Ci,i+1 = 0 for all i ∈ {1, ..., 5}. This pattern of zeros
can of course be extended to higher dimensions, but the low rank criterion is
not tractable in semidefinite programming. The standard trick to find a low-rank
solution – which we also adopt – is to minimize the trace of the matrix variable,
see for instance Fazel et al. [41] and the references therein. To create a d × d test
instance, we thus run the procedure in Algorithm 9.1.

The objective in Line 3 of Algorithm 9.1 includes two terms: the term tr C to
get a low-rank solution, and the term 1

2 d‖C−R‖ to get a solution close to our ran-
dom matrix R. Without this last term, the optimal solution of the problem would
be the zero matrix. The weight 1

2 d was chosen because numerical experiments
suggested this weight leads to solutions with low rank, but not rank zero, for the
dimensions in our test set. The solution C∗ computed in Line 3 by interior point
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Algorithm 9.1 A heuristic procedure to generate random matrices on the bound-
ary of the doubly nonnegative cone

Input: Dimension d of a random matrix C ∈ Sd to generate.
1: R0 ∈ Rd×d is a matrix whose elements are samples from a standard normal

distribution
2: R← |R0|+ |R0|>, where |R0|= [|(R0)i j|] is the element-wise absolute value
3: Let C∗ be an (approximately) optimal solution to

inf
C

tr C + 1
2 d‖C − R‖

subject to Ci,i+1 = 0 ∀i ∈ {1, ..., d − 1}
C � 0, C ≥ 0.

4: for j ∈ {1, ..., 10} do
5: Set all eigenvalues of C∗ smaller than 10−6 to zero
6: Set all elements of C∗ smaller than 10−4 to zero

7: return C∗/‖C∗‖

methods still lies in the interior of the doubly nonnegative cone. To project this
solution to the boundary of the doubly nonnegative cone, we run Lines 4 to 6.
One could think of these lines as an alternating projection method to find a point
close to the intersection of the boundaries of the positive semidefinite cone and
the cone of nonnegative matrices.

For each d ∈ {6,7, 8,9, 10,15, 20,25}, we generated ten test instances with
Algorithm 9.1. Such an instance C is only included in the final test set if Al-
gorithm 8.5 returns an X such that 〈C , X 〉 < −0.01, which was almost always
the case. In those few cases where 〈C , X 〉 ≥ −0.01, a new instance was gen-
erated. Hence, we end up with ten d × d doubly nonnegative matrices that
are not completely positive, for each d ∈ {6, 7,8,9, 10,15, 20,25}. These in-
stances are also available online at https://github.com/rileybadenbroek/
CopositiveAnalyticCenter.jl/tree/master/test.

Algorithm 8.5 is applied to each of these instances, and the total number of
calls to TESTCOPOSITIVE is reported in Figure 9.5 alongside the total running time
(as before, we used a computer an Intel i7-6700 CPU and 16 GB RAM). We do

https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl/tree/master/test
https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl/tree/master/test
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not report these results as in Table 9.3 since there are 80 instances, and running
the ellipsoid method for all of them would take too much time. We moreover
sketch two functions, d 7→ 7d5/3 and d 7→ 0.0002d5, that roughly approximate the
number of oracle calls and execution time, respectively. (The values 7, 5

3 , 0.0002,
and 5 of the coefficients and exponents are found by rounding the results of a
regression, and have no particular meaning.) The execution time grows rapidly
with d, but this is not unexpected: every oracle call solves at least one mixed
integer linear program whose size depends on d, which is theoretically intractable.
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Figure 9.5: Number of oracle calls and execution times of Algorithm 8.5 for the
d × d test instances generated with Algorithm 9.1

In conclusion, we have seen in Chapters 6 and 7 that a sampling based in-
terior point method and a simulated annealing algorithm work in theory. In
practice though, they do not even seem like viable alternatives to the ellipsoid
method. The analytic center cutting plane method from Chapter 8 outperforms
all of these approaches, and also scales very reasonably. In particular, the number
of oracle calls to test matrix copositivity grows roughly like O(d2) for d × d ma-
trices. We have therefore made some computational progress on an open prob-
lem formulated by Berman et al. [13]. It is worthwhile to recall that this algo-
rithm can be applied to any copositive optimization problem, as long as an upper
bound on the norm of the optimal solution is known. The implementation of
the analytic center cutting plane method from Chapter 8 is available at https:

https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl
https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl


150 IPM and SA for Nonsymmetric Conic Optimization

//github.com/rileybadenbroek/CopositiveAnalyticCenter.jl.

https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl
https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl


10
An Algorithm for Nonsymmetric Conic

Optimization

The copositive cone is an example of a nonsymmetric cone. The main reason it was
hard to optimize over the copositive cone is not the lack of symmetry – instead,
the problem is that no self-concordant barrier with easily computable derivatives
is known for this cone. Fortunately, certain other nonsymmetric cones do admit
such a barrier.

A broader class of cones than the symmetric cones can be found by dropping
the self-duality requirement: the resulting convex cones with a transitive auto-
morphism group are called homogeneous (see Vinberg [108] for an example of a
homogeneous cone that is not self-dual). Although Chua [27] showed that each
optimization problem over a homogeneous cone can be rewritten as a semidef-
inite optimization problem, Chua [28] also proposed algorithms to exploit this
structure directly. A larger class of cones is formed by the hyperbolicity cones,
which Güler [48] showed contains the homogeneous cones. Moreover, Güler also
proposed methods to solve optimization problems over these cones.

151
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In this chapter, we consider an even broader class: proper cones that admit
a logarithmically homogeneous self-concordant barrier (LHSCB). Interesting ex-
amples of such cones include the exponential cone

�
x ∈ R3 : x1 ≥ x2ex3/x2 , x2 > 0

	∪ �x ∈ R3 : x1 ≥ 0, x2 = 0, x3 ≤ 0
	

and, for any t ∈ (0,1), the three-dimensional power cone

�
x ∈ R3 : x t

1 x1−t
2 ≥ |x3|

	
.

Many convex optimization problems occurring in practice can be modeled using
these two cones and the (symmetric) second-order and semidefinite cones. For
example, Lubin et al. [75] show that all convex problems from the MINLPLIB2
library can be expressed in this manner.

Dahl and Andersen [30] describe a method which is implemented in MOSEK
9 [78] that works very well on practical problems of this form. In this chapter,
we aim to provide some theoretical foundation for their algorithm. Practical im-
plementations will always differ from theoretical algorithms, so we focus on par-
ticular elements of Dahl and Andersen’s algorithm: their scaling matrix, search
direction, and neighborhood. With these ingredients, we will define an algorithm
for nonsymmetric conic optimization that approximately solves the so-called ho-
mogeneous model in polynomial time.

This chapter is based on Badenbroek and Dahl [7], but here we define the
dual problem in terms of the polar cone instead of the dual cone. (The conjugate
of a cone’s logarithmically homogeneous barrier, as defined in Chapter 2, has the
polar cone as its domain.) This change only leads to a number of sign changes,
and does not fundamentally change the results. We also derive Lemma 10.7 in
a slightly more elegant manner than [7, Lemma 8], though this does not change
the algorithm’s complexity.

10.1 The Homogeneous Model and its Central Path

We will consider the problem

inf
x
{〈c, x〉 : Ax = b, x ∈ K} , (10.1)
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and its dual
sup
y,s

�〈b, y〉 : s = A> y − c, s ∈ K◦
	

, (10.2)

where c ∈ Rn, A∈ RM×n, b ∈ RM , K ⊂ Rn is a proper cone, and

K◦ := {s ∈ Rn : 〈x , s〉 ≤ 0∀x ∈ K}

is its polar cone. We assume that we have a LHSCB f for K with complexity
parameter ϑ f . As shown by Theorem 2.15, f ∗ is then a LHSCB for K◦ with com-
plexity parameter ϑ f ∗ = ϑ f . We remind the reader that we use g and H to denote
the gradient and Hessian of f , and g∗ and H∗ to denote the gradient and Hessian
of f ∗, respectively.

The approaches we have seen until now are primal-only methods. However,
researchers found that for linear optimization, primal-dual interior point meth-
ods generally outperformed their primal-only or dual-only counterparts. Natu-
rally, they tried to extend these primal-dual methods to convex conic optimiza-
tion. A major breakthrough in this area is due to Nesterov and Todd [87, 88],
who introduced search directions for symmetric cones that perform well in prac-
tice. However, the Nesterov-Todd directions are defined at a primal-dual feasible
point. Hence, given an optimization problem, one still needs to find such a feasi-
ble point, if it even exists. To circumvent this issue, Ye et al. [112] introduced a
homogeneous model (also known as a self-dual embedding) for linear program-
ming. Two major advantages of this homogeneous model are that no strictly fea-
sible starting point is required, and that the algorithm can generate certificates
for primal or dual infeasibility. Generalizations of this homogeneous model were
proposed by e.g. Luo et al. [76], De Klerk et al. [34], Potra and Sheng [94], and
Andersen and Ye [3].

To solve (10.1) and (10.2) with a homogeneous model, we define the linear
operator

G(y, x ,τ, s,κ) :=




0 A −b
−A> 0 c
b> −c> 0






y
x
τ


+




0
s
κ


 .

Then, the solutions to the homogeneous self-dual model are

�
(y, x ,τ, s,κ) ∈ RM ×K×R+ ×K◦ ×R− : G(y, x ,τ, s,κ) = 0

	
, (10.3)
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and they have the following properties (see e.g. Skajaa and Ye [101, Lemma 1]):

1. 〈x , s〉+τκ= 0;

2. If τ > 0, then x/τ is an optimal solution to (10.1) and (y, s)/τ is an optimal
solution to (10.2);

3. If κ < 0, then either 〈b, y〉> 0 or 〈c, x〉< 0, or both. If 〈b, y〉> 0, (10.1) is
infeasible. If 〈c, x〉< 0, (10.2) is infeasible.

In other words, finding an element of the set (10.3) where τ > 0 or κ < 0 suf-
fices to solve the primal-dual pair (10.1) and (10.2). We will therefore interpret
G(y, x ,τ, s,κ) as the residual associated with the solution (y, x ,τ, s,κ), which we
would like to be the zero vector.

Assume we have initial points x0 ∈ intK and s0 ∈ intK◦, such that x0 = g∗(s0),
and hence s0 = g(x0) by Theorem 2.12. Dahl and Andersen [30] choose x0 and
s0, along with y0, τ0, and κ0 satisfying

x0 = s0 = g(x0) = g∗(s0), y0 = 0, τ0 = 1, κ0 = −1, (10.4)

which admits a solution for the five cones that MOSEK 9 supports. Note that
(2.22) implies that for logarithmically homogeneous f and x ∈ dom f ,

H(x)x = −g(x) and 〈x , g(x)〉= −ϑ f . (10.5)

One of the perks of the choice (10.4) is therefore that −〈x0, s0〉= 〈−x0, g(x0)〉=
ϑ f , meaning that the initial complementarity is known. We define the central
path for the homogeneous model as the (y, x ,τ, s,κ) ∈ RM ×K ×R+ ×K◦ ×R−
for which there exists a t ∈ (0, 1] such that





G(y, x ,τ, s,κ) = tG(y0, x0,τ0, s0,κ0)

x = t g∗(s)

s = t g(x)

κτ= −t.

(10.6)

Informally, the condition G(y, x ,τ, s,κ) = tG(y0, x0,τ0, s0,κ0) encodes that the
residual norm should decrease as t decreases, and the other conditions assure the
“centrality” of the solution.
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Before we discuss how to measure proximity to this central path, we introduce
some notation. To emphasize that g(x) ∈ K◦ for all x ∈ intK and g∗(s) ∈ K for
all s ∈ intK◦, we define the shadow iterates

s̃ := g(x) and x̃ := g∗(s),

when x ∈ intK and s ∈ intK◦. We can then define the (shadow) complementarity
gap as

µ := −〈x , s〉
ϑ f

≥ 0 and µ̃ := −〈 x̃ , s̃〉
ϑ f

≥ 0. (10.7)

As noted by Tunçel [106, Lemma 4.1], Nesterov and Todd [88, Remark 1] showed
that for any x ∈ intK and s ∈ intK◦, we have

µµ̃≥ 1, (10.8)

with equality if and only if x = µ x̃ (and hence s = µs̃).
Since any element of (10.3) satisfies (x ,τ) ∈ K × R+ and (s,κ) ∈ K◦ × R−,

it will prove useful to extend our barriers f and f ∗ to the domains K × R+ and
K◦ ×R−, respectively. A straightforward way to do this is to define

f ′(x ,τ) := f (x)− log(τ),

a (ϑ f +1)-LHSCB for K×R+. With the inner product 〈(x ,τ), (s,κ)〉= 〈x , s〉+τκ,
the conjugate of f ′ is

( f ′)∗(s,κ) = f ∗(s)− log(−κ)− 1,

which is a (ϑ f +1)-LHSCB for K◦×R−. For these cones and barriers, the quantities
analogous to (10.7) are

µ′ := −〈x , s〉+τκ
ϑ f + 1

≥ 0 and µ̃′ := −〈 x̃ , s̃〉+ 1/(τκ)
ϑ f + 1

≥ 0.

Because K ×R+ and K◦ ×R− are each other’s polar cones, the inequality (10.8)
carries over to this setting. To be explicit, we must have µ′µ̃′ ≥ 1, with equality if
and only if (x ,τ) equals

µ′D( f ′)∗(s,κ) =
�
µ′g∗(s)
−µ′/κ

�
=

�
µ′ x̃
−µ′/κ

�
,
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in which case we also have s = µ′s̃. Thus, if µ′µ̃′ = 1, the centrality conditions
in (10.6) are satisfied for t = µ′. Since in general µ′µ̃′ ≥ 1, we could define
a neighborhood of the central path as the points satisfying αµ′µ̃′ ≤ 1 for some
α ∈ (0,1]. For the sake of simplicity, Dahl and Andersen [30, Section 3] instead
assume

α

τκ

〈x , s〉+τκ
ϑ f + 1

≤ 1 and α〈 x̃ , s̃〉〈x , s〉+τκ
ϑ f + 1

≤ ϑ f , (10.9)

which implies αµ′µ̃′ ≤ 1 for any α ∈ (0, 1]. Some other useful properties of the
assumptions (10.9) are given in the next lemma.

Lemma 10.1. Let K ⊂ Rn be a proper cone admitting a LHSCB f . Let x ∈ intK,
s ∈ intK◦, τ > 0, and κ < 0. Assume τκ≤ −αµ′ and αµ′µ̃≤ 1 for some α ∈ (0,1].
Then,

µ

2−α ≤ µ
′ ≤ µ
α

.

Proof. Since −τκ≥ αµ′, it holds that

µ′ =
µϑ f

ϑ f + 1
− τκ

ϑ f + 1
≥ µϑ f

ϑ f + 1
+
αµ′

ϑ f + 1
,

which shows

µ′ ≥
�

1− α

ϑ f + 1

�−1 µϑ f

ϑ f + 1
=

µϑ f

ϑ f + 1−α ≥
µ

2−α ,

where the last inequality uses ϑ f ≥ 1. To prove the second part of the claim, we
use the assumption that αµ̃µ′ ≤ 1. By (10.8), we have µ̃≥ 1/µ, and thus

1≥ αµ̃µ′ ≥ αµ
′

µ
.

Thus, for high values of α, we have µ≈ µ′ under the assumptions (10.9), and
therefore x ≈ µ x̃ and s ≈ µs̃. We will often refer to the distance between x and
µ x̃ , and between s and µs̃, so we introduce the following shorthand notation:

ζP := x −µ x̃ and ζD := s−µs̃.
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10.2 Algorithm Statement

Nesterov et al. [86] provide a complexity analysis of a class of algorithms to solve
the homogeneous model for convex conic optimization, where the cones do not
have to be symmetric. However, in the nonsymmetric case the size of the lin-
ear systems to be solved doubles compared to the symmetric case, increasing the
computation time by a factor of eight.

A more recent approach by Nesterov [84] splits each iteration in two phases.
In the correction phase, a strictly feasible primal-dual pair and an associated scal-
ing point are computed. These are used in the prediction phase to find a primal-
dual direction that is approximately tangential to the central path. This algorithm
has the drawback that it assumes the existence of a strictly feasible primal-dual
point, and requires a strictly feasible primal starting point.

Skajaa and Ye [101] built on these two methods by proposing an algorithm
that solves the homogeneous model and only uses the primal barrier, which means
the size of the linear systems is the same as in the symmetric case. While theo-
retically attractive, this algorithm still requires centering steps. Serrano [99] pro-
posed a variant of Skajaa and Ye’s algorithm that no longer uses centering steps,
and implements this for the exponential cone in the ECOS solver.

For two points x and s in a symmetric cone, we can always find a scaling point
w such that the Hessian of the cone’s barrier at w maps x to −s and the gradient
at −s to the gradient at x . Moreover, the Hessian at w is bounded by the Hessians
at x and −s when x and −s lie close to the central path. For a general convex
cone, we can define a similar scaling which maps x to −s, but generally not the
gradient at −s to the gradient at x . Thus, the main hurdle in generalizing the
Nesterov-Todd directions to nonsymmetric cones is to find a mapping from x to
−s and the gradient at −s to the gradient at x , and to ensure that this mapping
is in some sense close to the primal and dual Hessians to guarantee polynomial-
time convergence. Tunçel [106] proposed to form a such scaling matrix by low-
rank updates to an arbitrary positive definite matrix. Myklebust and Tunçel [82]
provide explicit bounds on the scaling matrix if the current iterates x and s lie
close to the central path.

Dahl and Andersen [30] expand on the ideas from Skajaa and Ye [101], but de-
fine their search direction using the scaling matrices analyzed by Tunçel [106] and
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Myklebust and Tunçel [82]. The resulting algorithm is implemented in MOSEK 9
for the exponential and three-dimensional power cones.

We now proceed to the statement of the algorithm that will be analyzed in the
remainder of this chapter. At the start of every iteration, we assume the following
holds for some fixed α ∈ (0,1] and δ ∈ [0, 1).

(A1) x ∈ intK and s ∈ intK◦

(A2) τκ≤ −αµ′

(A3) τ > 0 and κ < 0

(A4) αµ′µ̃≤ 1

(A5) ‖ζP‖x ≤ δ.

Note that (A1) to (A4) are also imposed by MOSEK [30, Section 3]. Assumption
(A5) is important to “sandwich” the primal-dual scaling matrix used by MOSEK.

Every iteration consists of two phases. In the first phase, we apply a simplified
version of the search direction used in Dahl and Andersen [30]. The second phase
consists of taking one corrector step to return to the assumptions (A1) to (A5).
For the sake of brevity, let us collect all variables in a vector z := (y, x ,τ, s,κ).

The first phase is started by computing a scaling matrix

W := µH(x)+
ss>

ϑ f µ
− µs̃s̃>

ϑ f
− ζ

D(ζD)>

〈ζP,ζD〉 −
µ[H(x) x̃ + µ̃s̃][H(x) x̃ + µ̃s̃]>

‖ x̃‖2x − ϑ f µ̃2
. (10.10)

We refer to W as a scaling matrix because it is serves a similar purpose as the
scaling point does for symmetric cones. Most importantly, we have

W x = −s and W x̃ = −s̃.

Dahl and Andersen [30, Section 5] derive a Cholesky factorization of W , thereby
showing W is positive definite.

The scaling matrix W is used in the definition of the search direction in this
first phase. The search direction consists of two parts: an affine direction ∆zaff
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and a centering direction ∆zcen. The affine direction is the solution ∆zaff to

G(∆zaff) = −G(z) (10.11a)

τ∆κaff + κ∆τaff = −τκ (10.11b)

W∆xaff −∆saff = s. (10.11c)

It follows from (10.11a) that moving in the direction ∆zaff decreases the norm
of the residual, which amounts to progress in solving the self-dual homogeneous
model. The centering direction ∆zcen is the solution to

G(∆zcen) = G(z) (10.12a)

τ∆κcen +κ∆τcen = −µ′ (10.12b)

W∆xcen −∆scen = −µ′s̃. (10.12c)

We see from (10.12a) that moving in direction ∆zcen increases the norm of the
residual, but it serves to keep us close to the central path. We will combine these
two directions to get the search direction in the first phase: for some % ∈ [0, 1] to
be fixed later, let

∆zpred :=∆zaff +%∆zcen. (10.13)

Then, for some γ ∈ (0,1] also to be fixed later, we update z to the new iterate

z+ := z + γ∆zpred = z + γ(∆zaff +%∆zcen). (10.14)

After this predictor phase, we will need a corrector to ensure (A4) and (A5)
hold. To define it, we will compute a scaling matrix similar to (10.10) defined as

W+ := µ+H(x+) +
s+s>+
ϑ f µ+

− µ+s̃+s̃>+
ϑ f

− ζ
D
+(ζ

D
+)
>

〈ζP
+,ζD

+〉

− µ+[H(x+) x̃+ + µ̃+s̃+][H(x+) x̃+ + µ̃+s̃+]>

‖ x̃+‖2x+ − ϑ f µ̃
2
+

,

(10.15)

where all quantities with a subscript “+” follow their original definition, but com-
puted for the iterate z+ instead of z. The corrector ∆zcor

+ is the solution to

G(∆zcor
+ ) = 0 (10.16a)

τ+∆κ
cor
+ +κ+∆τ

cor
+ = 0 (10.16b)

W+∆xcor
+ −∆scor

+ = s+ −µ+s̃+. (10.16c)



160 IPM and SA for Nonsymmetric Conic Optimization

It can be seen from (10.16a) that ∆zcor
+ does not change the residuals, so the

progress made by the predictor is maintained. (Skajaa and Ye [101] also use a cor-
rector that satisfies (10.16a), but they take, in our notation, τ2

+∆κ
cor
+ +µ

′
+∆τ

cor
+ =

−κ+τ2
+ − µ′+τ+ and µ′+H(x+)∆xcor

+ − ∆scor
+ = s+ − µ′+s̃+ instead of (10.16b)

and (10.16c).) We take one full corrector step to arrive at

z++ := z+ +∆zcor
+ .

This z++ will be the starting point for the next iteration.
The algorithm in this section is summarized in Algorithm 10.1.

Algorithm 10.1 Algorithm for nonsymmetric conic optimization (based on Dahl
and Andersen [30])
Input: predictor step size γ ∈ (0, 1];

centering parameter % ∈ [0,1];
optimality tolerance ε > 0.

Output: a solution z where µ′ ≤ ε and ‖G(z)‖ ≤ ε‖G(z0)‖
1: z← z0 = (y0, x0,τ0, s0,κ0) as in (10.4)
2: while µ′ > ε or ‖G(z)‖> ε‖G(z0)‖ do
3: Compute scaling matrix W as in (10.10)
4: Find the solution ∆zaff to (10.11a) to (10.11c), and the solution ∆zcen to

(10.12a) to (10.12c)
5: z+← z + γ∆zpred = z + γ(∆zaff +%∆zcen)
6: Compute scaling matrix W+ as in (10.15)
7: Find the solution ∆zcor

+ to (10.16a) to (10.16c)
8: z← z++ = z+ +∆zcor

+

9: return z

In the remainder of this chapter, we will give the outline of our analysis. The
more technical proofs are deferred to Appendix C.

10.3 Scaling Matrix

The scaling matrix W is formed by low-rank updates to µH(x). We would like that
W ≈ µH(x) and W ≈ 1

µH∗(s)−1 to derive further properties of Algorithm 10.1.
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This section is concerned with finding positive scalars uP, lP, uD, and lD such that

lPµH(x)�W � uPµH(x) and
lD

µ
H∗(s)−1 �W � uD

µ
H∗(s)−1, (10.17)

and similarly, positive scalars uP
+, lP

+, uD
+, and lD

+ such that

lP
+µ+H(x+)�W+ � uP

+µ+H(x+) and
lD
+

µ+
H∗(s+)−1 �W+ �

uD
+

µ+
H∗(s+)−1.

(10.18)
For instance, Myklebust and Tunçel [82, Theorem 6.8] derive such bounds

for a different scaling matrix than the one by Dahl and Andersen [30] under the
condition ‖s − µs̃‖∗s ≤ 1/64. Note that through Lemma 2.4, (10.17) would also
give us bounds on W−1 in terms of 1

µH(x)−1 and µH∗(s), and (10.18) would give

bounds on W−1
+ in terms of 1

µ+
H(x+)−1 and µ+H∗(s+).

The bounds on the scaling matrix can be derived with the help of the following
relation between Löwner orderings and operator norms.

Proposition 10.2 ([7, Lemma 2]). Let P,Q ∈ Sn where P � 0, and ε > 0. Then,
‖P−1Q− I‖P ≤ ε if and only if (1− ε)P �Q � (1+ ε)P.

Proof. Assume ‖P−1Q− I‖P ≤ ε. To show Q− (1−ε)P � 0, it suffices to note that

inf
‖u‖P=1

〈u, (Q− (1− ε)P)u〉 ≥ inf
‖u‖P=1

〈u, (Q− P)u〉+ inf
‖u‖P=1

〈u,εPu〉

≥ inf
‖u‖P=1

−‖u‖P‖(Q− P)u‖P−1 + inf
‖u‖P=1

ε‖u‖2P
= − sup

‖u‖P=1
‖(P−1Q− I)u‖P + ε

≥ −ε+ ε= 0.

Therefore, inf‖u‖P≤1〈u, (Q− (1− ε)P)u〉 ≥ 0 as well. Proving (1+ε)P−Q � 0 can
be done similarly.

Next, assume (1 − ε)P � Q � (1 + ε)P, i.e. −εP � Q − P � εP. Hence, for
any u ∈ Rn with ‖u‖P ≤ 1, we have |〈u, (Q − P)u〉| ≤ ε. Using a transformation
v = P−1/2u,

ε≥ sup
u6=0

|〈u, (Q− P)u〉|
‖u‖2P

= sup
v 6=0

|〈v, P−1/2(Q− P)P−1/2v〉|
‖v‖2 .
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It is well known (see e.g. Horn and Johnson [52, Property 1.2.9]) that the supre-
mum on the right hand side is attained at some eigenvector of P−1/2(Q− P)P−1/2

with norm one. Hence,

ε≥ sup
v 6=0

‖v‖‖P−1/2(Q− P)P−1/2v‖
‖v‖2 = sup

u6=0

‖P−1(Q− P)u‖P

‖u‖P
= ‖P−1Q− I‖P .

We are now ready to derive bounds on W as in (10.17), roughly following
the approach by Myklebust and Tunçel [82]. We make the assumption ‖ζP‖x ≤
0.18226 to ensure that all denominators in these bounds are positive.

Theorem 10.3 ([7, Theorem 1]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Let x ∈ intK and s ∈ intK◦, and assume ‖ζP‖x ≤ 0.18226. Let W be defined as
in (10.10). Then, the assumptions (10.17) are satisfied with values

lP = 1− ε− ξ, uP = 1+ ε+ ξ, lD = lP(1− ‖ζP‖x)
2, uD =

uP

(1− ‖ζP‖x)2
,

where

ε :=
1
ϑ f

�
‖ζP‖x +

‖ζP‖2x
(1− ‖ζP‖x)3

��
‖ζP‖x +

‖ζP‖2x
(1− ‖ζP‖x)3

+ 2
q
ϑ f

�

ξ :=
2

(1− ‖ζP‖x)3 − ‖ζP‖x




4‖ζP‖2x
(1− ‖ζP‖x)3

+ 2‖ζP‖x +

�
3‖ζP‖2x

(1−‖ζP‖x )3
+ ‖ζP‖x

�2

‖ζP‖x

�
1− 3‖ζP‖x

(1−‖ζP‖x )3

�


 .

Proof. See Appendix C.

Of course, bounds on W+ in terms of µ+H(x+) and 1
µ+

H∗(s+) can also be found
using Theorem 10.3 by replacing ‖ζP‖x by ‖ζP

+‖x+ in the definition of ε and ξ.

10.4 Properties of the Predictor

Now that we know that the scaling matrix W is approximately equal to µH(x) and
1
µH∗(s)−1, we shift our focus to the predictor direction that it defines. We start with
some simple properties of the predictor, followed by an upper bound on the local
norm of the predictor. Thus, we will be able to derive sufficient conditions for (A1)
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to hold after the predictor step. We then consider what happens to assumptions
(A2) and (A3). It turns out we do not need to consider (A4), so we conclude with
an analysis of (A5).

As we noted in Section 10.2, the affine direction ∆zaff decreases the norm of
the residuals, and the centering direction ∆zcen increases it. Dahl and Andersen
[30, Lemma 3] show by how much the residuals decrease, and what the value of
µ′+ is. For the sake of completeness, we prove this result using our notation, and
we moreover show that 〈∆xpred,∆spred〉+∆τpred∆κpred is zero.

Lemma 10.4 ([7, Lemma 5]). Let K ⊂ Rn be a proper cone admitting a LHSCB f .
Pick z = (y, x ,τ, s,κ) such that (A1) and (A3) hold, and let γ,% ∈ R. Then, the
following properties hold:

(i) G(z + γ∆zpred) = (1− γ(1−%))G(z)

(ii) 〈∆xpred,∆spred〉+∆τpred∆κpred = 0

(iii) µ′+ = (1 − γ(1 − %))µ′, or equivalently, 〈x + γ∆xpred, s + γ∆spred〉 + (τ +
γ∆τpred)(κ+ γ∆κpred) = (1− γ(1−%))[〈x , s〉+τκ].

Proof. See Appendix C.

Let us now consider what happens to (A1) after the predictor step. A question
that needs answering is how big the local norms of the primal and dual predic-
tors ∆xpred and ∆spred can be. Without an upper bound on the norm of these
predictors, it might be that taking the step from z to z+ yields an x+ /∈ intK or
s+ /∈ intK◦.

Theorem 10.5 ([7, Theorem 2]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z = (y, x ,τ, s,κ) such that (A1) to (A5) hold for some α ∈ (0, 1] and
δ ∈ [0,1). Let lP, uD > 0 be bounds such that (10.17) holds, and let % ∈ R. Then,
the primal and dual predictors ∆xpred and ∆spred satisfy

‖∆xpred‖2W + ‖∆spred‖2W−1 ≤ µ′
�
ϑ f

�
1− 2% +

%2

α

�
+ 1− 1

2α−% +
%2

2α

�
,

(10.19)
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and

lP‖∆xpred‖2x +
1
uD
(‖∆spred‖∗s )2 ≤

1
α

�
ϑ f

�
1− 2% +

%2

α

�
+ 1− 1

2α−% +
%2

2α

�
.

(10.20)

Proof. See Appendix C.

We want to remark that both that the coefficient of ϑ f and the constant term
in (10.19) and (10.20) are nonnegative for all % ∈ R and α ∈ (0, 1]. Concerning
the coefficient, since %2 ≥ 0, %2/α≥ %2 for all α ∈ (0,1]. Then,

1− 2% +%2/α≥ 1− 2% +%2 = (% − 1)2 ≥ 0. (10.21)

Next, we show that the constant terms in (10.19) and (10.20) are nonnegative.
To see this, it suffices to show α− 1

2α
2−%α+ 1

2%
2 ≥ 0 for all % ∈ R and α ∈ (0,1].

Since α− 1
2α

2−%α+ 1
2%

2 is concave in α, the claim must hold if α− 1
2α

2−%α+
1
2%

2 ≥ 0 for all α ∈ {0,1} and % ∈ R. For α = 0, α− 1
2α

2 −%α+ 1
2%

2 = 1
2%

2 ≥ 0
for all % ∈ R, while for α= 1, α− 1

2α
2−%α+ 1

2%
2 = 1

2%
2−%+ 1

2 =
1
2(%−1)2 ≥ 0.

Hence,

1− 1
2α−% +

%2

2α
=
α− 1

2α
2 −%α+ 1

2%
2

α
≥ 0. (10.22)

Moreover, the bounds (10.19) and (10.20) are tight in the simple case where
α= % = 1: one can verify that the bounds are then both equal to zero, indicating
that ∆xpred and ∆spred are both zero.

To compress the notation of the upper bounds (10.19) and (10.20) somewhat,
we define

Π :=

�
ϑ f

�
1− 2% +

%2

α

�
+ 1− 1

2α−% +
%2

2α

�
, (10.23)

such that ‖∆xpred‖2W + ‖∆spred‖2W−1 ≤ µ′Π and lP‖∆xpred‖2x + (‖∆spred‖∗s )2/uD ≤
Π/α.

With Theorem 10.5, we can derive values for γ such that x+ and s+ lie in
the Dikin ellipsoids around x and s respectively, which implies x+ ∈ intK and
s+ ∈ intK◦. This would show that (A1) is satisfied after the predictor step. We
now move on to what happens to (A2) and (A3) after the predictor step.
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Lemma 10.6 ([7, Lemma 7]). Let K ⊂ Rn be a proper cone admitting a LHSCB f .
Pick z = (y, x ,τ, s,κ) such that (A1) to (A5) hold for some α ∈ (0,1] and δ ∈ [0,1).
Let γ≤ 1 and % ∈ R. Then,

τ+κ+ ≤ −
µ′+

1− γ(1−%)
�
α(1− γ) + γ% − 1

2γ
2Π
�

. (10.24)

If α < 1 or % < 1, and

0≤ γ < α−% +
p
(α−%)2 + 2αΠ
Π

, (10.25)

then τ+ > 0 and κ+ < 0.

Proof. See Appendix C.

One may wonder what happens to assumption (A4) after the predictor step.
However, we did not find a satisfying way to bound µ′+µ̃+. This is the main reason
we introduced a corrector in this analysis, which we consider in more detail in
Section 10.5.

To complete the analysis of the predictor, we consider (A5). Compared to [7,
Lemma 8], we use a somewhat more elegant bound on (C.13) in the proof of this
result.

Lemma 10.7. Let K ⊂ Rn be a proper cone admitting a LHSCB f . Pick z =
(y, x ,τ, s,κ) such that (A1) to (A5) hold for some α ∈ (0, 1] and δ ∈ [0, 1). Assume
(10.17) holds with uD = (1+ε)/r and lD = r(1−ε) for some r ∈ (0, 1] and ε≥ 0.
Let γ ∈ [0,

p
αmin{lP, 1/uP}/Π) and % ∈ R. Then,

‖ζP
+‖x+ ≤

1

1− γpΠ/(lPα)

�
(1− γ)‖ζP‖x +

γ2Π

2α
Æ
ϑ f (1− ‖ζP‖x)

+
γ
p
Πp

lPα

�
uD(1+ ς)

1− γpuDΠ/α
− 1

��
,

where

ς :=
γ2Π

2αϑ f
+ γmax

n
1− %

2−α ,
%

α
− 1

o
.

Proof. See Appendix C.
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10.5 Properties of the Corrector

We have analyzed what happens to the assumptions (A1) to (A3) and (A5) after
the predictor step, but we have not investigated (A4). Moreover, it is not clear
from Lemma 10.7 that we can pick values for γ, δ, α, and % such that ‖ζP

+‖x+ ≤
‖ζP‖x . As we will see, the corrector introduced in this work fixes both these
problems.

We start with some simple properties of the corrector (10.16a) to (10.16c).
These will allow us – among other things – to argue that (A1) to (A3) hold after
the corrector step.

Lemma 10.8 ([7, Lemma 9]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z+ = (y+, x+,τ+, s+,κ+) such that x+ ∈ intK, s+ ∈ intK◦, τ+ > 0, and
κ+ < 0. Then,

(i) G(z+ +∆zcor
+ ) = G(z+)

(ii) 〈x+,∆scor
+ 〉+ 〈∆xcor

+ , s+〉= 0

(iii) 〈∆xcor
+ ,∆scor

+ 〉+∆τcor
+ ∆κ

cor
+ = 0

(iv) 〈x+ +∆xcor
+ , s+ +∆scor

+ 〉+ (τ+ +∆τcor
+ )(κ+ +∆κ

cor
+ ) = 〈x+, s+〉+ τ+κ+. In

other words, µ′++ = µ
′
+

(v) ‖∆xcor
+ ‖2W+ + ‖∆scor

+ ‖2W−1
+
≤ ‖ζP

+‖2W+

(vi) |〈∆xcor
+ ,∆scor

+ 〉| ≤ 1
2‖ζP

+‖2W+
(vii) (τ++∆τcor

+ )(κ++∆κ
cor
+ )≤ τ+κ++ 1

2‖ζP
+‖2W+ . If τ+κ++

1
2‖ζP

+‖2W+ < 0, then
τ++ > 0 and κ++ < 0.

Proof. See Appendix C.

Moving on to (A4), the following result will show that the corrector step leads
to a small µ+µ̃++. In Section 10.6, we will show that a small µ+µ̃++ implies a
small value of µ′++µ̃++.
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Lemma 10.9 ([7, Lemma 10]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z+ = (y+, x+,τ+, s+,κ+) such that x+ ∈ intK, s+ ∈ intK◦, τ+ > 0, and
κ+ < 0. Assume (10.18) holds with uD

+ = (1 + ε)/r and lD
+ = r(1 − ε) for some

r ∈ (0,1] and ε≥ 0. Suppose ‖ζP
+‖W+/

p
µ+ <

Æ
min{lD

+, 1/uD
+}. Then,

µ+µ̃++ ≤ 1+ ‖ζP
+‖W+


 uD

+Æ
µ+ϑ f

 
1

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!

+
‖ x̃+‖W+
ϑ f

 
1

lD
+(1− ‖ζP

+‖W+/
Æ

lD
+µ+)

− 1

!


+
‖ζP
+‖2W+uD

+

µ+ϑ f lD
+(1− ‖ζP

+‖W+/
Æ

lD
+µ+)(1−

Æ
uD
+/µ+‖ζP

+‖W+)
.

Proof. See Appendix C.

Note that the bound in the lemma above still depends on ‖ x̃+‖W+/ϑ f . Al-
though we chose not to analyze 〈 x̃+, s̃+〉, we can still crudely bound this quantity
as

‖ x̃+‖W+
ϑ f

=
‖µ+ x̃+ − x+ + x+‖W+

µ+ϑ f
≤ ‖ζ

P
+‖W+ + ‖x+‖W+
µ+ϑ f

=
‖ζP
+‖W+
µ+ϑ f

+
1Æ
µ+ϑ f

.

(10.26)
Of course, better bounds could be found through a thorough analysis of 〈 x̃+, s̃+〉.

We end this section by considering (A5). The corrector (10.16a) to (10.16c)
was designed with the goal of reducing the distance ‖ζP

+‖x+ . The following lemma
shows that this goal is indeed attained, provided ‖ζP

+‖W+ is itself not too large (in
which case, uD

+ is close to one).

Lemma 10.10 ([7, Lemma 11]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z+ = (y+, x+,τ+, s+,κ+) such that x+ ∈ intK, s+ ∈ intK◦, τ+ > 0, and
κ+ < 0. Assume (10.18) holds with uD

+ = (1 + ε)/r and lD
+ = r(1 − ε) for some

r ∈ (0, 1] and ε ≥ 0. Suppose ‖ζP
+‖W+/

p
µ+ <

Æ
min{lP

+, 1/uP
+}. Then, ‖ζP

++‖x++
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is at most

‖ζP
+‖W+

(1− ‖ζP
+‖W+/

Æ
µ+lP

+)
Æ
µ+lP

+

 
uD
+

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!

+
‖ζP
+‖2W+

2µ+
Æ
ϑ f


1− ‖ζP

+‖W+
(1− ‖ζP

+‖W+/
Æ
µ+lP

+)
Æ
µ+lP

+

 
uD
+

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!

−1

.

Proof. See Appendix C.

10.6 Complexity Analysis

In the previous two sections, we saw how the predictor and corrector step im-
pacted the starting assumptions (A1) to (A5) for general values of the parameters
γ, α, %, and δ. Below, we will fix

γ=
1

100ϑ f
, α= 0.9, % = 0.9, and δ =

1

400
Æ
ϑ f

. (10.27)

It follows from (10.23) and Theorem 10.3 that

Π= 0.1(ϑ f + 1), lP ≥ 0.97966, and uD ≤ 1.02546.

Moreover, Lemma 10.7 shows that

‖ζP
+‖x+ ≤

0.00268Æ
ϑ f

, (10.28)

and consequently Theorem 10.3 implies that

lP
+ ≥ 0.97819, lD

+ ≥ 0.97296, uP
+ ≤ 1.02181, and uD

+ ≤ 1.02731.

With these values fixed, we can show that Algorithm 10.1 converges to a near-
optimal solution of the homogeneous model in O(ϑ f log(1/ε)) iterations.

Theorem 10.11 ([7, Theorem 3]). Let K ⊂ Rn be a proper cone admitting a LH-
SCB. Assume we start Algorithm 10.1 from a starting point satisfying (10.4), with
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parameter values as in (10.27). For any ε ∈ (0,1], the algorithm produces a solution
z satisfying

µ′ ≤ ε and ‖G(z)‖ ≤ ε‖G(z0)‖,
in O(ϑ f log(1/ε)) iterations.

Proof. We will show that for the parameter values in (10.27), the point z++ sat-
isfies (A1) to (A5) if z satisfies them, and that some progress is made in moving
from z to z++.

(A1): Assumption (A1) states that x ∈ intK and s ∈ intK◦. By Theorem 10.5,
we have ‖γ∆xpred‖x ≤ γ

p
Π/(αlP), which, for the parameter values in (10.27)

and ϑ f ≥ 1, is at most 0.01
Æ

0.1(ϑ f + 1)/0.88169/ϑ f ≤ 0.00477 < 1. Hence,
x+ ∈ intK. Similarly, ‖γ∆spred‖∗s ≤ γ

p
ΠuD/α ≤ 0.01

Æ
0.1(ϑ f + 1)1.1394/ϑ f ≤

0.00478 < 1, implying that s+ ∈ intK◦. Having established that x+ ∈ intK
and s+ ∈ intK◦, we consider the corrector step. It follows from (10.18) and
Lemma 10.8(v) that

lP
+µ+‖∆xcor

+ ‖2x+ +
µ+

uD
+
(‖∆scor

+ ‖∗s+)
2 ≤ ‖∆xcor

+ ‖2W+ + ‖∆scor
+ ‖2W−1

+

≤ ‖ζP
+‖2W+ ≤ uP

+µ+‖ζP
+‖2x+ ≤ uP

+µ+(0.00268)2,

where the final inequality is due to (10.28). We therefore have ‖∆xcor
+ ‖x+ ≤

‖ζP
+‖x+

Æ
uP
+/l

P
+ ≤ 0.00274 < 1 and ‖∆scor

+ ‖∗s+ ≤ ‖ζP
+‖x+

Æ
uP
+uD
+ ≤ 0.00275 < 1.

In conclusion, x++ ∈ intK and s++ ∈ intK◦.
(A2): By Lemma 10.6 and Lemma 10.8(vii),

τ++κ++ ≤ −
µ′+

1− γ(1−%)
�
α(1− γ) + γ% − 1

2γ
2Π
�
+ 1

2‖ζP
+‖2W+ . (10.29)

Since µ′+ = µ
′
++ by Lemma 10.8(iv), our next step is to bound ‖ζP

+‖2W+ in terms of
µ′++. To this end, note that Corollary C.4 shows

µ+
µ
≤ 1+

γ2Π

2αϑ f
+ γ

�%
α
− 1

�
= 1+

ϑ f + 1

180000ϑ3
f

≤ 1+ 1
90000 .

By (10.18), we can therefore write

‖ζP
+‖2W+ ≤ uP

+µ+‖ζP
+‖2x+ ≤ uP

+µ
�
1+ 1

90000

�‖ζP
+‖2x+ .
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Now Lemma 10.1 and Lemma 10.4(iii) show

‖ζP
+‖2W+ ≤ uP

+(2−α)µ′
�
1+ 1

90000

�‖ζP
+‖2x+ =

uP
+(2−α)

�
1+ 1

90000

�

1− γ(1−%) µ′+‖ζP
+‖2x+ .

Plugging the above into (10.29) yields

τ++κ++ ≤
µ′+

1− γ(1−%)
�

1
2γ

2Π−α+ γ(α−%) + 1
2uP
+(2−α)

�
1+ 1

90000

�‖ζP
+‖2x+

�
.

This bound is at most −αµ′++ = −αµ′+ if and only if

1
2γ

2Π−α+ γ(α−%) + 1
2uP
+(2−α)

�
1+ 1

90000

�‖ζP
+‖2x+ ≤ −α[1− γ(1−%)].

Eliminating −α from both sides, and multiplying by ϑ f yields the sufficient con-
dition

ϑ f + 1

200000ϑ f
+ 1

21.02181× 1.1
�
1+ 1

90000

�
(0.00268)2 ≤ 9

10000 ,

which is true for all ϑ f ≥ 1. Hence, (A2) is satisfied for z++.
(A3): To verify that (A3) holds for z++, we first turn to Lemma 10.6. It is not

hard to verify that for the values in (10.27),

% −α+p(α−%)2 + 2αΠ
Π

=

√√2α
Π
=

√√√ 18
ϑ f + 1

>
1

100ϑ f
= γ,

so τ+ > 0 and κ+ < 0. Lemma 10.8(vii) shows that τ++ > 0 and κ++ < 0 as well,
since it was shown above that τ++κ++ ≤ −αµ′++ < 0.

(A4): Lemma 10.9 gives us an upper bound on µ+µ̃++, while we want an
upper bound on αµ′++µ̃++. Note that Lemma 10.8(iv) and Lemma 10.4(iii) show

αµ′++µ̃++ = α(1− γ(1−%))µ′µ̃++ = α(1− γ(1−%))
µ′

µ+
µ+µ̃++. (10.30)

To find an upper bound on µ′/µ+, note that by definition (10.14),

µ′

µ+
=

µ′ϑ f

−〈x + γ∆xpred, s+ γ∆spred〉

=
µ′ϑ f

µϑ f + γ〈x , W∆xpred −∆spred〉 − γ2〈∆xpred,∆spred〉 .
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It follows from (10.11c), (10.12c), and (10.13) that W∆xpred−∆spred = s−%µ′s̃.
Hence, by Corollary C.3 and Lemma 10.1,

µ′

µ+
≤ µ′ϑ f

µϑ f + γ(−µϑ f +%µ′ϑ f )− 1
2γ

2µ′Π

≤ µ′ϑ f

(1− γ)αµ′ϑ f + γ%µ′ϑ f − 1
2γ

2µ′Π
=

1

(1− γ)α+ γ% − 1
2γ

2Π/ϑ f

. (10.31)

Next, note that ‖ζP
+‖W+ ≤

Æ
uP
+µ+‖ζP

+‖x+ ≤ 0.00271
Æ
µ+/ϑ f by (10.18). Conse-

quently, by Lemma 10.9 and (10.26),

α(1−γ(1−%))(µ+µ̃++−1)≤ 0.0001
ϑ f

≤ 0.9
1000ϑ f

− ϑ f + 1

200000ϑ3
f

= γ%(1−α)− γ
2Π

2ϑ f
.

(10.32)
Plugging (10.31) and (10.32) into (10.30) yields

αµ′++µ̃++ ≤
α(1− γ(1−%))

(1− γ)α+ γ% − 1
2γ

2Π/ϑ f

[(µ+µ̃++ − 1) + 1]

≤ α(1− γ(1−%)) + γ%(1−α)−
1
2γ

2Π/ϑ f

(1− γ)α+ γ% − 1
2γ

2Π/ϑ f

= 1.

(A5): It follows from Lemma 10.10 that for the parameter values in (10.27),

‖ζP
++‖x++ ≤

0.00009Æ
ϑ f

<
0.0025Æ
ϑ f

=
1

400
Æ
ϑ f

= δ.

The discussion above demonstrated that for the parameter values (10.27),
an iteration of Algorithm 10.1 starting at a solution z satisfying (A1) to (A5)
ends at a solution z++ for which (A1) to (A5) also hold. By Lemmas 10.4(i),
10.4(iii), 10.8(i), and 10.8(iv), the residuals and complementarity reduce at a
rate of 1 − γ(1 − %) per iteration. If we start at an initial point z0 as in (10.4),
then µ′ = 1 and (A1) to (A5) all hold. Thus, after k iterations of Algorithm
10.1, the complementarity gap is exactly (1 − γ(1 − %))k, and the residuals are
G(z0)(1− γ(1−%))k. This completes the proof.
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11
Conclusions and Future Work

Let us highlight the main insights that we gained throughout this thesis, and point
out possible improvements that future research could focus on. This thesis cov-
ered four approaches to convex programming: the sampling-based interior point
method from Chapter 6, the simulated annealing algorithm by Kalai and Vempala
[56] in Chapter 7, the analytic center cutting plane method in Chapter 8, and
the nonsymmetric conic algorithm in Chapter 10. We will briefly discuss each of
these.

To analyze the first two methods, we needed the prerequisites from Chap-
ters 2 to 5. Where Chapters 2 and 3 contained mostly well-known background
material on interior point theory, Chapters 4 and 5 concerned the quality of ap-
proximations of the mean and covariance of Boltzmann distributions, based on
hit-and-run sampling. The bounds we derived there are likely not tight though.

The first reason is that we cited Theorem 1.1 from Lovász and Vempala [71],
which states a walk length that ensures a hit-and-run sample’s distribution is close
to the target distribution. This number of steps contains an astronomical constant
1030, which makes this walk length, and the walk length in our Theorem 4.14, far
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too big to be used in practice. However, experiments show that hit-and-run does
seem like a viable strategy to generate samples, which suggests the theoretical
analysis is overly pessimistic.

As a second reason, Theorem 5.11 uses O(n2) samples to approximate a co-
variance matrix, which may be too conservative. Results such as Theorem 4.1 in
Adamczak et al. [2] suggest that a covariance matrix may be approximated with
O(n) samples. However, their result depends on the assumption that all samples
are drawn independently from the target distribution. Whether this result can
be extended to near-independent samples from distributions close to the target
distribution is left for future research.

Even with these (possibly) non-tight bounds on the walk length and sample
size, it was shown in Chapter 5 that we can approximate the mean and covariance
of a Boltzmann distribution within polynomial time. Chapter 6 then proposed a
sampling-based interior point method to compute a solution that is near-optimal
with probability at least 1− q∗, where the number of oracle calls is O∗(n8.5/q∗).
The same complexity was found in Chapter 7 for Kalai and Vempala’s simulated
annealing algorithm [56]. It might be that both these complexity results can be
strengthened for the reasons also discussed in Section 7.3. The first reason was
already raised above: the number of samples required to approximate a covari-
ance may be linear in n, not quadratic. It was moreover described in Section 7.3
that a lower bound on the spectrum of Boltzmann covariance matrices which is
not exponential in n would improve the algorithms’ complexity.

But such theoretical improvements would not change these methods’ practical
perspectives. As we saw in Chapter 9, approximating the mean and covariance
of a Boltzmann distribution to high accuracy with hit-and-run sampling takes
an impractically long time. This raises concerns about the applicability of the
sampling-based interior point method, since it depends heavily on these approx-
imations. The simulated annealing algorithm performs worse than the ellipsoid
method, even after applying some improvements and taking a heuristic number of
steps and samples. It seems massive parallelization would be necessary to make
these approaches competitive. This does not appear to be an attractive strategy,
especially since there are viable alternatives.

The analytic center cutting plane method that was introduced in Chapter 8 is
such an alternative. Even if we did not formally analyze the number of oracle calls



Chapter 11. Conclusions and Future Work 175

this method makes, this quantity seems to scale well in practice (see Section 9.3).
The method was successfully applied to copositive programming, using the copos-
itivity oracle from Section 8.2. This oracle solves a mixed integer linear program,
which is theoretically NP-hard, but quite fast in practice. Our implementation is
available online.

Besides the lack of theoretical guarantees, there is another downside to this
method of solving copositive optimization problems: it requires an upper bound
on the norm of an optimal solution. This was easy for our testing problem, since
the entire feasible set was contained in a unit ball. However, it is not clear how
such a bound could be determined ex-ante in general.

The last algorithm we discussed focused on a slightly more structured prob-
lem: convex programming on proper cones that admit a readily computable log-
arithmically homogeneous barrier. In Chapter 10, we analyzed an algorithm that
is closely related to that of Dahl and Andersen [30], which was implemented in
MOSEK 9 [78]. We showed that our algorithm returns a near-optimal solution to
the homogeneous model in O(ϑ f log(1/ε)) iterations. Future work could focus
on improving this bound, or analyzing an algorithm that has fewer differences
with the method by Dahl and Andersen [30]. For instance, we disregarded the
higher-order corrector in their work, and introduced a corrector of our own for
the sake of simplicity.

We have thus covered four algorithms for convex programming – two ran-
domized, two deterministic. The randomized algorithms do not appear attractive
in practice, because they call the membership oracle of the feasible set too many
times. This seems to be caused by their consisting of many layers, as depicted in
Figures 6.1 and 7.1. The randomized methods use the oracle calls to find the end
points of line segments, which yield one hit-and-run step. After many such steps,
we have a hit-and-run sample. With many samples, we can create an estimate of
a covariance matrix, and with many of these estimated covariances, we can run
our randomized methods. By contrast, the analytic center cutting plane method
from Chapter 8 uses each and every oracle call to shrink the outer approximation
of the optimal set. We therefore argue that a practically competitive randomized
method for convex programming would use fewer layers than the methods from
this thesis.
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A
Fréchet Derivatives for Self-Concordance

The definitions of the gradient, Hessian, and third derivative of a function, as
stated in Section 2.1, are all based on Fréchet derivatives. In this appendix, we
provide more details on this type of derivative. This will allow us to fill in some
details in the proof of Theorem 2.6.

Following Dieudonné [39], we adopt the notation that the Fréchet derivative
of a function f is D f , the second Fréchet derivative is D2 f , etcetera. The reader
will find that Definitions 2.1, 2.2, and 2.5 can be recovered by identifying g with
D f , H with D2 f , and T with D3 f .

After providing the formal definition of Fréchet derivatives in Appendix A.1,
we provide the analogues of the well-known chain rule, product rule, and quo-
tient rule in Appendix A.2. Appendix A.3 will then show that the first two Fréchet
derivatives correspond to vectors and linear operators, respectively (in the sim-
plest case, these linear operators are just square matrices). To prove Theorem 2.6,
we will also need to understand the third Fréchet derivative; this topic is covered
in Appendix A.4. We conclude this appendix with a proof of Theorem 2.6 in Ap-
pendix A.5.
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A.1 Definition of Fréchet Derivatives

Recall that L(V ; W ) denotes the space of bounded linear operators from V to W ,
where V and W are Banach spaces. Moreover, below L(V1, ..., Vm; W ) will denote
the space of bounded multilinear operators from V1 × · · · × Vm to W .

The formal definition of Fréchet derivatives is phrased in terms of Banach
spaces, i.e. complete normed vector spaces.

Definition A.1. Let V, W be Banach spaces, and let V ′ ⊆ V be an open (with re-
spect to the norm topology) subset of V . Then f : V ′→W is Fréchet differentiable
at θ ∈ V ′ if there exists a bounded linear operator D f (θ ) : V →W with

lim
‖w‖↓0

‖ f (θ +w)− f (θ )− D f (θ )[w]‖
‖w‖ = 0,

where we use the brackets to emphasize that we are applying a linear operator
to a vector. If such an operator exists, it is unique. f is said to be continuously
differentiable if the function D f : V ′→ L(V ; W ), that is θ 7→ D f (θ ), is continuous.

One should note that L(V ; W ) is also a Banach space (whose norm is the op-
erator norm), so we could define the derivative of the function D f : V ′→ L(V, W )
at θ ∈ V ′, if it exists. We denote this derivative by D2 f : V ′ → L(V ;L(V ; W )).
However, the space L(V ;L(V, W )) can be identified with the space of bounded
bilinear operators L(V, V ; W ): this can be done by identifying with each φ ∈
L(V ;L(V ; W )) the bilinear operator (v, w) 7→ (φ[v])[w], where v, w ∈ V . In par-
ticular, we let D2 f (θ )[v, w]≡ (D2 f (θ )[v])[w].

We can apply this argument once more. The third derivative is denoted by
D3 f : V ′ → L(V ;L(V ;L(V ; W ))). The space L(V ;L(V ;L(V ; W ))) can be identi-
fied with the space of bounded trilinear operatorsL(V, V, V ; W ) by identifying each
φ ∈ L(V ;L(V ;L(V ; W ))) with (u, v, w) 7→ ((φ(θ )[u])[v])[w], where u, v, w ∈ V .
In particular, we let D3 f (θ )[u, v, w]≡ ((D3 f (θ )[u])[v])[w].

Generally, the n-th Fréchet derivative can be identified with the unique mul-
tilinear operator Dn f (θ ) such that, for all w1, ..., wn−1 ∈ V ,

‖Dn−1 f (θ +wn)[wn−1, ..., w1]− Dn−1 f (θ )[wn−1, ..., w1]− Dn f (θ )[wn, ..., w1]‖
‖wn‖

tends to zero when ‖wn‖ ↓ 0.
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A.2 Calculus Rules for Fréchet Derivatives

We will need the analogues of the chain rule, product rule, and quotient rule for
Fréchet derivatives. We start by citing the chain rule from Dieudonné [39].

Theorem A.2 ([39, Theorem 8.2.1]). Let U , V, W be three Banach spaces, U ′ an
open neighborhood of θ ∈ U, f a continuous function from U ′ into V , V ′ an open
neighborhood of f (θ ) ∈ V , and f̃ a continuous function from V into W. Then, if
f is differentiable at θ and f̃ is differentiable at f (θ ), the function φ : U ′ → W
defined by φ(y) = f̃ ( f (y)) is differentiable at θ and

Dφ(θ ) = D f̃ ( f (θ )) ◦ D f (θ ),

that is, Dφ(θ )[w] = D f̃ ( f (θ ))[D f (θ )[w]] for all w ∈ U.

Note that within the setting of the theorem, D f (θ ) is defined as a linear op-
erator from U to V , and D f̃ ( f (θ )) is a linear operator from V to W . Hence their
composition is a linear operator from U to W , as one would expect from Dφ(θ ).

Next, we prove the product rule for Fréchet derivatives.

Theorem A.3. Let V and W be Banach spaces, V ′ an open neighborhood of θ ∈ V ,
f : V ′ → W and f̃ : V ′ → R continuous functions. If f and f̃ are differentiable at
θ , then the function φ : V ′→W defined by φ(y) = f̃ (y) f (y) is differentiable at θ
and for all w ∈ V ,

Dφ(θ )[w] = f̃ (θ )D f (θ )[w] + D f̃ (θ )[w] f (θ ). (A.1)

Proof. The proof runs along the lines of well-known calculus. If we substitute
(A.1),

‖ f̃ (θ +w) f (θ +w)− f̃ (θ ) f (θ )− Dφ(θ )[w]‖
= ‖ f̃ (θ +w)

�
f (θ +w)− f (θ )

�
+
�

f̃ (θ +w)− f̃ (θ )
�

f (θ )− Dφ(θ )[w]‖
≤ ‖ f̃ (θ +w)

�
f (θ +w)− f (θ )

�− f̃ (θ )D f (θ )[w]‖
+ ‖� f̃ (θ +w)− f̃ (θ )− D f̃ (θ )[w]

�
f (θ )‖

≤ ‖ f̃ (θ )
�

f (θ +w)− f (θ )− D f (θ )[w]
�‖

+ ‖� f̃ (θ +w)− f̃ (θ )
��

f (θ +w)− f (θ )
�‖

+ ‖� f̃ (θ +w)− f̃ (θ )− D f̃ (θ )[w]
�

f (θ )‖.
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Thus, the algebraic limit theorem shows

0≤ lim
‖w‖↓0

‖ f̃ (θ +w) f (θ +w)− f̃ (θ ) f (θ )− Dφ(θ )[w]‖
‖w‖

≤ | f̃ (θ )| lim
‖w‖↓0

‖ f (θ +w)− f (θ )− D f (θ )[w]‖
‖w‖

+ lim
‖w‖↓0

| f̃ (θ +w)− f̃ (θ )|
‖w‖ ‖ f (θ +w)− f (θ )‖

+ ‖ f (θ )‖ lim
‖w‖↓0

| f̃ (θ +w)− f̃ (θ )− D f̃ (θ )[w]|
‖w‖ = 0.

where the final equality holds because D f̃ (θ ) is a bounded linear operator.

Finally, we prove the quotient rule.

Theorem A.4. Let V and W be Banach spaces, V ′ an open neighborhood of θ ∈ V ,
f : V ′ → W and f̃ : V ′ → R continuous functions such that f̃ (θ ) 6= 0. If f and f̃
are differentiable at θ , the function φ : V ′ → W defined by φ(y) = f (y)/ f̃ (y) is
differentiable at θ and for all w ∈ V ,

Dφ(θ )[w] =
1

f̃ (θ )2
�

f̃ (θ )D f (θ )[w]− D f̃ (θ )[w] f (θ )
�
.

Proof. We apply the product and chain rule to φ(θ ) = ( f̃ (θ ))−1 f (θ ) to find

Dφ(θ )[w] = ( f̃ (θ ))−1D f (θ )[w] +
�− f̃ (θ )−2D f̃ (θ )[w]

�
f (θ ).

A.3 Associations of Fréchet Derivatives

In this section, we will assume that V is a finite-dimensional Hilbert space, and
W = R. We saw in Appendix A.1 that D f (θ ) is formally a linear operator from
V to R, and D2 f (θ ) is formally a linear operator from V to L(V ;R). However,
Definitions 2.1 and 2.2 defined the gradient and Hessian as a vector and a linear
operator from V to V , respectively. In this section, we argue that these interpre-
tations can be used interchangeably.

Depending on the context, we would like to interpret the Fréchet derivative
D f (θ ) as either a vector in V , or as a linear operator from V to R. The following
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result demonstrates that every vector corresponds to a unique linear operator, and
vice versa.

Proposition A.5. Let V be a finite-dimensional inner product space.

(i) For every a ∈ L(V ;R) and inner product 〈·, ·〉 on V , there exists a unique a ∈ V
such that 〈a, x〉= a[x] for all x ∈ V .

(ii) For every a ∈ V and inner product 〈·, ·〉 on V , the a ∈ L(V ;R) defined by
a[x] = 〈a, x〉 for all x ∈ V is the only operator in L(V ;R) with this property.

Moreover, the pairings betweenL(V ;R) and V in (i) and (ii) are each other’s inverses.

Proof. Let {e1, ..., en} be an orthonormal basis for V with respect to 〈·, ·〉.
(i): Define a =

∑n
i=1 a[ei]ei , and note

〈a, x〉=
n∑

i=1

a[ei]〈ei , x〉= a

� n∑
i=1

〈ei , x〉ei

�
= a[x]. (A.2)

Suppose there is some other b ∈ V such that 〈b, x〉 = a[x]. Then 〈a − b, x〉 = 0
for all x ∈ V . Hence a− b = 0, which proves uniqueness of a.

(ii): The argument for uniqueness is similar to (i).
Finally, it is clear from (ii) and (A.2) that if we start with an a ∈ L(V ;R) and

find its associated vector a =
∑n

i=1 a[ei]ei , then the linear operator induced by a
is again a.

We would like to do something similar for the second derivative D2 f (θ ). It
will be shown below that this linear operator from V to L(V ;R) can be identified
with a linear operator from V to V .

Proposition A.6. Let V be a finite-dimensional inner product space.

(i) For every A∈ L(V ;L(V ;R)) and inner product 〈·, ·〉 on V , there exists a unique
A∈ L(V ; V ) such that 〈A[x], y〉= (A[x])[y] for all x , y ∈ V .

(ii) For every A ∈ L(V ; V ) and inner product 〈·, ·〉, the A ∈ L(V ;L(V ;R)) defined
by (A[x])[y] = 〈A[x], y〉 for all x , y ∈ V is the only operator in L(V ;L(V ;R))
with this property.
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Moreover, the pairings between L(V ;L(V ;R)) and L(V ; V ) in (i) and (ii) are each
other’s inverses.

Proof. Let {e1, ..., en} be an orthonormal basis for V with respect to 〈·, ·〉.
(i): Define A[x] =

∑n
i=1(A[x])[ei]ei , and note

〈A[x], y〉=
n∑

i=1

(A[x])[ei]〈ei , y〉= (A[x])
� n∑

i=1

〈ei , y〉ei

�
= (A[x])[y]. (A.3)

Suppose there is some other B : V → V such that 〈B[x], y〉 = (A[x])[y]. Then
〈(A− B)[x], y〉= 0 for all x , y ∈ V . Hence A− B = 0, which proves uniqueness of
A.

(ii): The argument for uniqueness is similar to (i).
Finally, it is clear from (ii) and (A.3) that if we start with an A∈ L(V ;L(V ;R))

and find its associated A∈ L(V ; V ) with A[x] =
∑n

i=1(A[x])[ei]ei , then the linear
operator induced by A is again A.

Propositions A.5 and A.6 show that, given an inner product on V , the space
L(V ;R) is isomorphic to V , and L(V ;L(V ;R)) is isomorphic to L(V ; V ). Hence,
if V = Rn, we can think of D f (θ ) as a vector in Rn, and of D2 f (θ ) as a linear
operator from Rn to Rn. If moreover 〈·, ·〉 is the Euclidean inner product, the
gradient is the usual vector of partial derivatives, and the Hessian is the usual
matrix of second order partial derivatives.

A.4 Computing the Third Derivative

While we now have some feeling for the gradient and Hessian, the third derivative
D3 f : L(V ;L(V ;R))→ R remains a bit mysterious. We will rephrase its definition
in terms of Renegar’s notation [95] of the Hessian (cf. Definition 2.2) below,
and provide its elements explicitly when V = Rn and 〈·, ·〉 is the Euclidean inner
product.

According to Definition A.1, D3 f is the unique linear operator such that

0= lim
‖u‖↓0

‖D2 f (θ + u)− D2 f (θ )− D3 f (θ )[u]‖
‖u‖ , (A.4)
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where the norm in the numerator is the operator norm on L(V ;L(V ; W )). By the
definition of the operator norm,

‖D2 f (θ + u)− D2 f (θ )− D3 f (θ )[u]‖
= max

v:‖v‖=1
‖(D2 f (θ + u)− D2 f (θ )− D3 f (θ )[u])[v]‖

= max
v:‖v‖=1

max
w:‖w‖=1

‖((D2 f (θ + u)− D2 f (θ )− D3 f (θ )[u])[v])[w]‖.

If W = R, then the norm on W in the last expression is equal to the absolute value
up to scaling. Recall that we can think of every linear operator in L(V ;L(V ; W )) as
an operator in L(V, V ; W ) such that (D2 f (θ )[v])[w]≡ D2 f (θ )[v, w], and similar
for D3 f (θ ). It follows that we may rewrite (A.4) as the condition that for all
v, w ∈ V with ‖v‖,‖w‖= 1,

0= lim
‖u‖→0

|D2 f (θ + u)[v, w]− D2 f (θ )[v, w]− D3 f (θ )[u, v, w]|
‖u‖

= lim
‖u‖→0

|〈w, (H(θ + u)−H(θ ))v〉 − D3 f (θ )[u, v, w]|
‖u‖ .

In other words, D3 f is the unique trilinear operator such that for each u, v, w ∈ V ,
it holds that

D3 f (θ )[u, v, w] = lim
t→0

〈w, (H(θ + tu)−H(θ ))v〉
t

. (A.5)

Thus (A.5) establishes the relationship between the Fréchet definition of D3 f
and Renegar’s notation of the Hessian as in Definition 2.2. Still, it is not immedi-
ately clear how to compute (A.5), even in the simple case where V = Rn and 〈·, ·〉
is the Euclidean inner product. The key lemma is the following.

Lemma A.7. Let 〈·, ·〉 be the Euclidean inner product on Rn, which induces the Eu-
clidean norm ‖ · ‖, and let ei ∈ Rn be the i-th standard basis vector. Let f : Rn→ R
be a three times Fréchet differentiable functional, and θ ∈ dom f . Then,

D3 f (θ )[ei , e j , ek] =
∂ 3 f (θ )

∂ x i∂ x j∂ xk
∀i, j, k ∈ {1, ..., n}.
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Proof. From (A.5), it follows that

D3 f (θ )[ei , e j , ek] = lim
t→0

〈ek, (H(θ + tei)−H(θ ))e j〉
t

= lim
t→0

1
t

�
∂ 2 f (θ + tei)
∂ x j∂ xk

− ∂
2 f (θ )
∂ x j∂ xk

�
=

∂ 3 f (θ )
∂ x i∂ x j∂ xk

.

Because D3 f (θ ) is (identified with) a tri-linear operator, we can compute
(A.5) easily for arbitrary u, v, w ∈ Rn:

D3 f (θ )[u, v, w] = D3 f (θ )




n∑
i=1

uiei ,
n∑

j=1

v je j ,
n∑

k=1

wkek




=
n∑

i=1

n∑
j=1

n∑
k=1

ui v jwkD3 f (θ )
�
ei , e j , ek

�

=
n∑

i=1

n∑
j=1

n∑
k=1

ui v jwk
∂ 3 f (θ )

∂ x i∂ x j∂ xk
.

A.5 Proof of Theorem 2.6

We end this appendix with the proof of Theorem 2.6, which shows that Renegar’s
definition of self-concordance coincides with that of Nesterov and Nemirovskii
[85] for three times continuously differentiable functionals. We follow Renegar’s
proof [95], but we provide some details in separate lemmas. For the reader’s
convenience, we restate the theorem first.

Theorem 2.6 ([95, Theorem 2.5.3]). Let f be a three times continuously differen-
tiable, strictly convex functional such that dom f is an open subset of Rn. Then, f is
self-concordant if and only if the following two properties hold:

(i) For any sequence {θk} ⊂ dom f that converges to a point on the boundary of
dom f , we have f (θk)→∞.

(ii) For any θ ∈ dom f and ∆θ ∈ Rn, the function φ(t) := f (θ + t∆θ ) satisfies
φ′′′(t)≤ 2φ′′(t)3/2 for all t ∈ domφ.
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Proof. The “only if” part follows from Theorem 2.2.9 and page 61 in Renegar [95].
To show the “if” part, it suffices to prove conditions (1c) and (2c) in Theorem 2.5.2
in Renegar [95]. Since (2c) is the same as (i), it remains to show

limsup
∆θ→0

‖I −Hθ (θ +∆θ )‖θ
‖∆θ‖θ

≤ 2, (A.6)

for all θ ∈ dom f whenever (i) and (ii) hold.
By Lemma A.8, Condition (ii) is equivalent to

|D3 f (θ )[u, u, u]| ≤ 2 ∀θ ∈ dom f , u ∈ Rn : ‖u‖θ ≤ 1.

Since Lemma A.9 shows that for any θ ∈ dom f ,

max
u,v,w:

‖u‖θ ,‖v‖θ ,‖w‖θ=1

|D3 f (θ )[u, v, w]|= max
u:

‖u‖θ=1

|D3 f (θ )[u, u, u]|,

it follows that |D3 f (θ )[u, v, w]| ≤ 2 for all θ ∈ dom f and u, v, w ∈ Rn such that
‖u‖θ ,‖v‖θ ,‖w‖θ ≤ 1 (and in particular for v = w). Then, Lemma A.10 shows
(A.6), completing the proof.

We now state the remaining lemmas that were used in the proof of Theo-
rem 2.6.

Lemma A.8. Let f be a three times continuously differentiable, strictly convex func-
tional such that dom f is an open subset of Rn. Then, the following are equivalent:

(i) For any θ ∈ dom f and ∆θ ∈ Rn, the function φ(t) = f (θ + t∆θ ) satisfies
φ′′′(t)≤ 2φ′′(t)3/2 for all t ∈ domφ.

(ii) For any θ ∈ dom f and u ∈ Rn with ‖u‖θ ≤ 1, |D3 f (θ )[u, u, u]| ≤ 2.

Proof. We can assume without loss of generality that t = 0: the given inequality
should hold for t = 0 in particular, and if we want to evaluate f at some θ + t∆θ
with t 6= 0, we can always change θ to the desired point. By Definitions 2.1
and A.1,

φ′(0) =
∂

∂ t
f (θ + t∆θ )

��
t=0 = lim

t→0

f (θ + t∆θ )− f (θ )
t

= 〈∆θ , g(θ )〉= D f (θ )[∆θ].
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Moreover, by Definition 2.2,

φ′′(0) = lim
t→0

〈∆θ , g(θ + t∆θ )− g(θ )〉
t

= 〈∆θ , H(θ )∆θ 〉= D2 f (θ )[∆θ ,∆θ],

and finally it follows from (A.5) that

φ′′′(0) = lim
t→0

〈∆θ , (H(θ + t∆θ )−H(θ ))∆θ 〉
t

= D3 f (θ )[∆θ ,∆θ ,∆θ].

Hence (i) is equivalent to f satisfying the following for all θ ∈ dom f ,∆θ ∈ Rn:

D3 f (θ )[∆θ ,∆θ ,∆θ]≤ 2(D2 f (θ )[∆θ ,∆θ])3/2 = 2‖∆θ‖3θ .

This condition should also hold for −∆θ , so by the multilinearity of D3 f (θ ), it
follows that −D3 f (θ )[∆θ ,∆θ ,∆θ] ≤ 2‖∆θ‖3

θ
as well. We may therefore also

write |D3 f (θ )[∆θ ,∆θ ,∆θ]| on the left hand side of the equation above. Finally,
we divide by ‖∆θ‖3

θ
on both sides, and get our desired result:

2≥ 1

‖∆θ‖3
θ

|D3 f (θ )[∆θ ,∆θ ,∆θ]|

=

����D3 f (θ )
�
∆θ

‖∆θ‖θ
,
∆θ

‖∆θ‖θ
,
∆θ

‖∆θ‖θ

�����= |D3 f (θ )[u, u, u]|,

where ‖u‖θ = 1.

In his proof of [95, Theorem 2.5.3], Renegar claims that for any three times
continuously differentiable function f , any θ ∈ dom f , and any inner product
norm ‖ · ‖= 〈·, ·〉1/2,

max
u,v,w:

‖u‖,‖v‖,‖w‖=1

|D3 f (θ )[u, v, w]|= max
u:

‖u‖=1

|D3 f (θ )[u, u, u]|.

The next lemma is less general than this result used by Renegar. We restrict our-
selves to the local inner product to clearly distinguish the reference inner product.

Lemma A.9. Let f be a three times continuously differentiable, strictly convex func-
tional such that dom f is an open subset of Rn, and fix θ ∈ dom f . Then,

max
u,v,w:

‖u‖θ ,‖v‖θ ,‖w‖θ=1

|D3 f (θ )[u, v, w]|= max
u:

‖u‖θ=1

|D3 f (θ )[u, u, u]| (A.7)
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Proof. Let us first show that we can take v = w in (A.7). Pick t 6= 0. The Cauchy-
Schwarz inequality shows

|〈w, (H(θ + tu)−H(θ ))v〉|= |〈w, (Hθ (θ + tu)−Hθ (θ ))v〉θ |
≤ ‖w‖θ‖(Hθ (θ + tu)−Hθ (θ ))v‖θ ,

with equality attained when w is collinear with (Hθ (θ + tu)− Hθ (θ ))v. In other
words,

max
v,w:

‖v‖θ ,‖w‖θ=1

|〈w, (H(θ + tu)−H(θ ))v〉|= max
v:

‖v‖θ=1

‖(Hθ (θ + tu)−Hθ (θ ))v‖θ . (A.8)

Because Hθ (θ+ tu)−Hθ (θ ) is a self-adjoint operator with respect to 〈·, ·〉θ , it has a
spectral decomposition: (Hθ (θ+ tu)−Hθ (θ ))v =

∑n
i=1λi〈yi , v〉θ yi , where the yi

are orthonormal eigenvectors with respect to 〈·, ·〉θ . If v =
∑n

i=1αi yi , then ‖v‖2
θ
=∑n

i=1α
2
i . It can also be shown that 〈v, (Hθ (θ + tu) − Hθ (θ ))v〉θ =

∑n
i=1α

2
i λi .

Then,

max
v:

‖v‖=1

|〈v, (Hθ (θ + tu)−Hθ (θ ))v〉θ |= max
α1,...,αn:∑

i α
2
i =1

�����
n∑

i=1

α2
i λi

�����= max
i∈{1,...,n}

|λi|

= max
v:

‖v‖θ=1

‖(Hθ (θ + tu)−Hθ (θ ))v‖θ

= max
v,w:

‖v‖θ ,‖w‖θ=1

|〈w, (H(θ + tu)−H(θ ))v〉|,

where the final equality is due to (A.8). Since the relation above holds for all
t 6= 0, it also holds in the limit as t → 0. Thus, we can show that one may take
v = w in (A.7) as follows:

max
u,v,w:

‖u‖θ ,‖v‖θ ,‖w‖θ=1

|D3 f (θ )[u, v, w]|= max
u,v,w:

‖u‖θ ,‖v‖θ ,‖w‖θ=1

lim
t→0

|〈w, (H(θ + tu)−H(θ ))v〉|
|t|

= max
u,v:

‖u‖θ ,‖v‖θ=1

lim
t→0

|〈v, (H(θ + tu)−H(θ ))v〉|
|t|

= max
u,v:

‖u‖θ ,‖v‖θ=1

|D3 f (θ )[u, v, v]|. (A.9)
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By Theorem 8.12.4 in Dieudonné [39], D3 f (θ )[u, v, v] = D3 f (θ )[v, u, v]. Hence,

max
u,v:

‖u‖θ ,‖v‖θ=1

|D3 f (θ )[u, v, v]|= max
u,v:

‖u‖θ ,‖v‖θ=1

|D3 f (θ )[v, u, v]|

= max
u:

‖u‖θ=1

|D3 f (θ )[u, u, u]|,

where the final equality follows from applying (A.9) again.

The final lemma needed for the proof of Theorem 2.6 is the following.

Lemma A.10. Let f be a three times continuously differentiable, strictly convex func-
tional such that dom f is an open subset of Rn, and fix θ ∈ dom f . Then,

lim sup
∆θ→0

‖I −Hθ (θ +∆θ )‖θ
‖∆θ‖θ

≤ 2, (A.10)

if and only if |D3 f (θ )[u, v, v]| ≤ 2 for all u, v ∈ Rn such that ‖u‖θ ,‖v‖θ ≤ 1.

Proof. Since Hθ (θ ) = I ,

‖I −Hθ (θ +∆θ )‖θ
‖∆θ‖θ

=
‖Hθ (θ +∆θ )−Hθ (θ )‖θ

‖∆θ‖θ
= sup

v:‖v‖θ=1

|〈v, (Hθ (θ +∆θ )−Hθ (θ ))v〉θ |
‖∆θ‖θ

.

If (A.10) holds, we have by the max-min inequality

2≥ inf
ε>0

sup
t:|t|≤ε

sup
u,v:

‖u‖θ ,‖v‖θ=1

|〈v, (Hθ (θ + tu)−Hθ (θ ))v〉θ |
|t|

≥ sup
u,v:

‖u‖θ ,‖v‖θ=1

inf
ε>0

sup
t:|t|≤ε

|〈v, (H(θ + tu)−H(θ ))v〉|
|t|

= sup
u,v:

‖u‖θ ,‖v‖θ=1

|D3 f (θ )[u, v, v]|.

Conversely, if (A.10) does not hold, there exists some δ > 0 such that for every
ε > 0,

sup
t:|t|≤ε

sup
u,v:

‖u‖θ ,‖v‖θ=1

|〈v, (H(θ + tu)−H(θ ))v〉|
|t| ≥ 2+δ,
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which shows there exist u, v ∈ Rn such that ‖u‖θ ,‖v‖θ ≤ 1 and

|D3 f (θ )[u, v, v]|= lim
t→0

|〈v, (H(θ + tu)−H(θ ))v〉|
|t| > 2.
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B
Spectra of Boltzmann Covariance Matrices

As it turns out, we can use interior point theory to derive bounds on the spectra of
covariance matrices of the Boltzmann distribution. Of course, covariance matrices
have nonnegative eigenvalues, but for our analysis we need a strictly positive
lower bound on the eigenvalues of Σ(θ ) for θ ∈ Rn. (Recall that we use Σ(θ )
to denote the covariance operator of the Boltzmann distribution with parameter
θ , see Table 3.1 on page 32.) The analysis below has appeared as Section 3.1 in
Badenbroek and De Klerk [8], with only minor differences.

We will denote the smallest and largest eigenvalue of a self-adjoint linear op-
erator A by λmin(A) and λmax(A), respectively. Note that these quantities are in-
dependent of the inner product. Recall that for self-adjoint linear operators A, we
have λmin(A) = minv:‖v‖=1〈v, Av〉 and λmax(A) = maxv:‖v‖=1〈v, Av〉. Moreover, we
remind the reader that when we discuss balls, they are presumed to be balls with
respect to the reference inner product.

One should note that an upper bound of the spectrum of Σ(θ ) is trivial to
derive for any θ ∈ Rn. If the distribution’s support S is contained in a ball with
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radius R, i.e. the diameter of S is at most 2R,

λmax(Σ(θ )) = max
v:‖v‖=1

Eθ [〈X −Eθ [X ], v〉2]≤ (2R)2, (B.1)

where the equality uses Proposition 3.3(ii). Thus, we will focus on bounding the
smallest eigenvalue of Σ(θ ) from below. Our starting point is the following result
from Kannan et al. [57].

Lemma B.1 ([57, Theorem 4.1]). Let S ⊂ Rn be a convex body, and let 〈·, ·〉 be the
Euclidean inner product. If the covariance matrix Σ(0) of the uniform distribution
over S satisfies Σ(0) = I , then S is contained in a ball with radius n+ 1.

Through a transformation, we can use this lemma to bound the spectrum of
Σ(0) from below.

Lemma B.2 ([8, Lemma 3.2]). Let S ⊂ Rn be a convex body, and let 〈·, ·〉 be
the Euclidean inner product. Assume S contains a ball with radius r > 0. Then,
λmin(Σ(0))≥ 1

4(
r

n+1)
2.

Proof. The convex body S ′ = Σ(0)−1/2S has the property that the uniform distri-
bution over S ′ has identity covariance. By Lemma B.1, S ′ is contained in a ball of
radius n+ 1.

Let x ∈ S be the center of the ball with radius r contained in S, and let v
be a unit vector such that Σ(0)−1/2v = λmax(Σ(0)−1/2)v. Since v is a unit vector,
the point x + rv lies in S. Because Σ(0)−1/2 x and Σ(0)−1/2(x + rv) lie in S ′, we
find ‖Σ(0)−1/2((x + rv)− x)‖ ≤ 2(n+1), where 2(n+1) is the diameter of a ball
containing S ′. In conclusion,

2(n+ 1)≥ ‖rΣ(0)−1/2v‖= r λmax(Σ(0)
−1/2) =

rp
λmin(Σ(0))

.

With the spectrum of the uniform covariance matrix bounded, we can con-
tinue to analyze the smallest eigenvalue of Σ(θ ), where θ ∈ Rn. To clarify the
dependence on the smallest eigenvalue of Σ(0), we derive this result for general
inner products. This was first done for the Euclidean inner product in [8], where
the exponent of the lower bound was slightly worse (4

Æ
ϑ f ∗+1 instead of 4

Æ
ϑ f ∗).
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Theorem B.3 (Based on [8, Theorem 3.3]). Let S ⊂ Rn be a convex body, and let
f and f ∗ be its associated log-partition function and entropic barrier, respectively.
Assume S is contained in a ball of radius R> 0. Then, for any θ ∈ Rn with ‖θ‖ ≤ 1

4R ,

λmin(Σ(θ ))≥ 1
4 λmin(Σ(0)),

and for all θ ∈ Rn with ‖θ‖> 1
4R ,

λmin(Σ(θ ))≥ 1
16

�
1

4R‖θ‖
�4
p
ϑ f ∗
λmin(Σ(0)).

Proof. We want to find a lower bound on ‖v‖θ , where v ∈ Rn is an arbitrary unit
vector. The main idea is to move θ to 0, and use the self-concordance of the
log-partition function to bound the change in Σ(θ ) during this shift.

If ‖θ‖ ≤ 1
4R , then (B.1) shows

‖θ − 0‖0 ≤
Æ
λmax(Σ(0))‖θ‖ ≤ 2R‖θ‖ ≤ 1

2 < 1,

and thus we may apply the first inequality in (2.1) to show that

‖v‖θ ≥ ‖v‖0(1− ‖θ − 0‖0)≥ 1
2

Æ
λmin(Σ(0))‖v‖. (B.2)

It then follows from (B.2) that

λmin(Σ(θ )) = min
v:‖v‖=1

‖v‖2θ ≥ 1
4 λmin(Σ(0)).

Next, suppose that ‖θ‖> 1
4R . Let θ0 := θ and recursively define

θk :=

�
1− 1

2
Æ
ϑ f ∗

�
θk−1.

Observe that by (3.1), for all k,

‖θk−1 − θk‖θk−1
=
‖θk−1‖θk−1

2
Æ
ϑ f ∗

≤
Æ
ϑ f ∗

2
Æ
ϑ f ∗
= 1

2 < 1.

Since θk and θk−1 are close in the sense above, we can apply self-concordance. By
the second inequality of (2.1), for all k, ‖v‖θk−1

≥ �1− ‖θk−1 − θk‖θk−1

�‖v‖θk
≥

1
2‖v‖θk

. Thus, after m steps, we have

‖v‖θ = ‖v‖θ0
≥ 2−m‖v‖θm

. (B.3)
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Setting

m=




log2(
1

4R‖θ‖)

log2(1− 1
2
p
ϑ f ∗
)




,

we obtain

‖θm‖=
�

1− 1

2
Æ
ϑ f ∗

�m

‖θ0‖ ≤
1

4R‖θ‖‖θ0‖=
1

4R
.

We may now apply (B.2) to see that ‖v‖θm
≥ 1

2

p
λmin(Σ(0))‖v‖. Combined with

(B.3), it follows that

‖v‖θ ≥ 2−m‖v‖θm
≥ 2−m

2

Æ
λmin(Σ(0))‖v‖= 2−m−1

Æ
λmin(Σ(0))‖v‖. (B.4)

Because m is an integer, we arrive at the following lower bound for 2−m−1:

2−m−1 ≥ 1
4 (4R‖θ‖)1/ log2(1−1/(2

p
ϑ f ∗ )) .

Since 4R‖θ‖ > 1 by assumption, and 1/ log2(1− t) ≥ −1/t for all t ∈ (0,1), this
bound can be developed to

2−m−1 ≥ 1
4 (4R‖θ‖)1/ log2(1−1/(2

p
ϑ f ∗ )) ≥ 1

4 (4R‖θ‖)−2
p
ϑ f ∗ ,

and we can conclude from (B.4) that

λmin(Σ(θ )) = min
v:‖v‖=1

‖v‖2θ ≥ 1
16

�
1

4R‖θ‖
�4
p
ϑ f ∗
λmin(Σ(0)).

For the Euclidean inner product, we can then plug in our lower bound on
λmin(Σ(0)) from Lemma B.2 to obtain the following.

Corollary B.4 (Based on [8, Theorem 3.3]). Let S ⊂ Rn be a convex body, and let
〈·, ·〉 be the Euclidean inner product. Let f and f ∗ be the log-partition function and
entropic barrier associated with S, respectively. Assume S contains a ball with radius
r > 0 and is contained in a ball of radius R. Then, for any θ ∈ Rn with ‖θ‖ ≤ 1

4R ,

λmin(Σ(θ ))≥ 1
16

� r
n+ 1

�2
,

and for all θ ∈ Rn with ‖θ‖> 1
4R ,

λmin(Σ(θ ))≥ 1
64

�
1

4R‖θ‖
�4
p
ϑ f ∗ � r

n+ 1

�2
.
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Note that the lower bounds from Theorem B.3 and Corollary B.4 are expo-
nential in ϑ f ∗ = n + o(n) (see Theorem 3.4). We can in fact derive a stronger
lower bound on ‖θ‖θ =

p〈θ ,Σ(θ )θ 〉 than the one obtained from Theorem B.3
by setting v = θ/‖θ‖. The following result gives such a lower bound that is not
exponential in n.

Theorem B.5 (Based on [8, Lemma 3.4]). Let S ⊂ Rn be a convex body, and let f
be its associated log-partition function. Then, for all θ ∈ Rn,

‖θ‖θ ≥
p
λmin(Σ(0))‖θ‖

1+
p
λmin(Σ(0))‖θ‖

(B.5)

Proof. Note that the right hand side of (B.5) is always strictly smaller than one.
The claim therefore holds automatically for all θ with ‖θ‖θ ≥ 1, and we can
assume in the remainder that ‖θ‖θ < 1. The second inequality in (2.1) gives us

Æ
λmin(Σ(0))‖θ‖ ≤ ‖θ‖0 ≤

‖θ‖θ
1− ‖θ‖θ

,

which can be rewritten as (B.5).

Again, we can find a more explicit bound for the Euclidean inner product by
applying Lemma B.2.

Corollary B.6 ([8, Lemma 3.4]). Let S ⊂ Rn be a convex body, and let 〈·, ·〉 be the
Euclidean inner product. Assume S contains a ball with radius r > 0. Let f be the
log-partition function associated with S. Then, for all θ ∈ Rn,

‖θ‖θ ≥
r‖θ‖

2(n+ 1) + r‖θ‖ .
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C
Proofs for the Nonsymmetric Conic

Algorithm

In this appendix, we collect the more technical proofs that we omitted in Chap-
ter 10 for the sake of brevity. The results in Section 10.3 are proven in Ap-
pendix C.1, the results from Section 10.4 are proven in Appendix C.2, and the
results from Section 10.5 are proven in Appendix C.3. Like Chapter 10, this ap-
pendix is based on Badenbroek and Dahl [7], but changes various signs without
fundamentally changing the results.

C.1 Scaling Matrix

The following lemma from Myklebust and Tunçel [82] is crucial to our proof of
Theorem 10.3. Some minor details are different in our setting.

Lemma C.1 ([82, Theorem B.1(4)]). Let K ⊂ Rn be a proper cone admitting a
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self-concordant barrier f . Let x ∈ intK and s ∈ intK◦. If ‖ζP‖x < 1, then

‖µH(x)ζP + ζD‖−1
x ≤

µ‖ζP‖2x
(1− ‖ζP‖x)3

. (C.1)

Proof. Let v ∈ Rn be an arbitrary vector, and consider the function φ : [0,1]→ R
defined as

φ(t) := 〈v, g(x − tζP)〉.
By Taylor’s theorem, we have φ(1) = φ(0) +φ′(0) + 1

2φ
′′(r) for some r ∈ [0,1].

We first derive an upper bound on φ′′(r). Note that by the Cauchy-Schwarz in-
equality,

φ′′(r) = lim
t→0

〈v, [H(x − (r + t)ζP)−H(x − rζP)]ζP〉
t

≤ lim
t→0

‖v‖x−rζP‖[Hx−rζP(x − (r + t)ζP)− I]ζP‖x−rζP

t

≤ ‖v‖x−rζP‖ζP‖x−rζP lim
t→0

‖Hx−rζP(x − rζP − tζP)− I‖x−rζP

t
.

Using Theorem 2.2.1 in Renegar [95], it follows that

φ′′(r)≤ ‖v‖x−rζP‖ζP‖x−rζP lim
t→0

1
t

�
1

(1− t‖ζP‖x−rζP)2
− 1

�

= 2‖v‖x−rζP‖ζP‖2x−rζP

≤ 2‖v‖x‖ζP‖2x
(1− ‖ζP‖x)3

,

where the final inequality uses self-concordance and r ≤ 1. Hence,

〈v, H(x)ζP + s/µ− s̃〉= −φ′(0) +φ(1)−φ(0) = 1
2φ
′′(r)≤ ‖v‖x‖ζP‖2x

(1− ‖ζP‖x)3
.

With this upper bound, we can show

‖µH(x)ζP + ζD‖−1
x = sup

v:‖v‖x≤1
〈v,µH(x)ζP + ζD〉 ≤ sup

v:‖v‖x≤1
µ‖v‖x

‖ζP‖2x
(1− ‖ζP‖x)3

,

which proves the claim.
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To prove Theorem 10.3, we will use Proposition 10.2 to relate the desired
Löwner orderings to operator norms. We first establish some straightforward
properties of the operator norm. For any vectors v, w and invertible linear op-
erator P, we have

‖P−1vw>‖P = sup
‖u‖P≤1

‖P−1v〈w, u〉‖P = ‖v‖P−1 sup
‖u‖P≤1

〈w, u〉= ‖v‖P−1‖w‖P−1 ,

and therefore, as Myklebust and Tunçel [82] showed,

‖P−1
�
vv> −ww>

�‖P =


P−1

�1
2(v +w)(v −w)> + 1

2(v −w)(v +w)>
�



P

≤ ‖P−1(v +w)(v −w)>‖P = ‖v +w‖P−1‖v −w‖P−1 .
(C.2)

Moreover, for any t > 0 and Q ∈ Sn,

‖(tP)−1Q‖tP = sup
‖ptu‖P≤1

‖ptP−1Qu‖P

t
= sup
‖v‖P≤1

‖P−1Qv‖P

t
=
‖P−1Q‖P

t
. (C.3)

We are now ready to prove Theorem 10.3.

Theorem 10.3 ([7, Theorem 1]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Let x ∈ intK and s ∈ intK◦, and assume ‖ζP‖x ≤ 0.18226. Let W be defined as
in (10.10). Then, the assumptions (10.17) are satisfied with values

lP = 1− ε− ξ, uP = 1+ ε+ ξ, lD = lP(1− ‖ζP‖x)
2, uD =

uP

(1− ‖ζP‖x)2
,

where

ε :=
1
ϑ f

�
‖ζP‖x +

‖ζP‖2x
(1− ‖ζP‖x)3

��
‖ζP‖x +

‖ζP‖2x
(1− ‖ζP‖x)3

+ 2
q
ϑ f

�

ξ :=
2

(1− ‖ζP‖x)3 − ‖ζP‖x




4‖ζP‖2x
(1− ‖ζP‖x)3

+ 2‖ζP‖x +

�
3‖ζP‖2x

(1−‖ζP‖x )3
+ ‖ζP‖x

�2

‖ζP‖x

�
1− 3‖ζP‖x

(1−‖ζP‖x )3

�


 .

Proof. We will try to bound W −µH(x) in two steps, each considering two terms
from (10.10). First, observe that by (C.2),





H(x)−1

�
ss>

ϑ f µ
− µs̃s̃>

ϑ f

�




x

≤ ‖s−µs̃‖−1
x ‖s+µs̃‖−1

x

µϑ f

≤ ‖ζ
D‖−1

x (‖ζD‖−1
x + 2µ‖s̃‖−1

x )

µϑ f
, (C.4)
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where it can be shown that ‖s̃‖−1
x = ‖s̃‖∗s̃ =

Æ
ϑ f by Theorem 2.12 and (10.5).

Moreover, by Lemma C.1,

‖ζD‖−1
x ≤ ‖µH(x)ζP‖−1

x + ‖µH(x)ζP − ζD‖−1
x ≤ µ‖ζP‖x +

µ‖ζP‖2x
(1− ‖ζP‖x)3

, (C.5)

and therefore, by using (C.3) and (C.4), we can show




[µH(x)]−1

�
ss>

ϑ f µ
− µs̃s̃>

ϑ f

�




µH(x)

≤ ‖ζ
D‖−1

x (‖ζD‖−1
x + 2µ‖s̃‖−1

x )

µ2ϑ f
≤ ε. (C.6)

For the second step, let

R := µH(x) +
ss>

ϑ f µ
− µs̃s̃>

ϑ f
,

be a rank-two update to µH(x) such that Rx = −s but Rx̃ 6= −s̃ in general. Then,
as was noted in Myklebust and Tunçel [82, Theorem 6.6], we can write

ζD(ζD)>

〈ζP,ζD〉 +
µ[H(x) x̃ + µ̃s̃][H(x) x̃ + µ̃s̃]>

‖ x̃‖2x − ϑ f µ̃2

=
ζD(ζD)> − RζP(ζP)>R

〈ζP,ζD〉 +

�
1

‖ζP‖2R
+

1
〈ζP,ζD〉

�
RζP(ζP)>R. (C.7)

Since
����

1
〈ζP,ζD〉 +

1

‖ζP‖2R

����=
����
〈ζP, RζP + ζD〉
〈ζP,ζD〉‖ζP‖2R

����≤
‖ζP‖x‖RζP + ζD‖−1

x

|〈ζP,ζD〉|‖ζP‖2R
,

it will suffice to know upper bounds on ‖ζD−RζP‖−1
x , ‖ζD+RζP‖−1

x , ‖RζP‖−1
x , and

〈ζP,ζD〉 = µϑ(1− µµ̃) ≤ 0, as well as a lower bound on ‖ζP‖2R. We derive these
bounds in a manner similar to [82, Lemma B.4], although minor details again
differ.

Using Lemma C.1, is it easy to show, similar to [82, Lemma B.4(3)],

〈ζP,ζD〉= 〈ζP,−µH(x)ζP +µH(x)ζP + ζD〉
≤ −µ‖ζP‖2x + ‖ζP‖x‖µH(x)ζP + ζD‖−1

x

≤ −µ‖ζP‖2x
�

1− ‖ζP‖x

(1− ‖ζP‖x)3

�
. (C.8)
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Moreover, as in [82, Lemma B.4(7)],

|〈x ,µH(x)ζP〉| ≤ |〈x ,ζD〉|+‖x‖x‖µH(x)ζP+ζD‖−1
x = 0+

q
ϑ f ‖µH(x)ζP+ζD‖−1

x ,

where we used 〈x ,ζD〉= 〈x , s−µs̃〉= −µϑ f +µϑ f and (10.5). Thus, Lemma C.1
shows (cf. [82, Lemma B.4(8)])

‖RζP + ζD‖−1
x =





µH(x)ζP + ζD − µ〈s̃,ζ
P〉

ϑ f
s̃






−1

x

≤ ‖µH(x)ζP + ζD‖−1
x +

|〈x ,µH(x)ζP〉|
ϑ f

‖s̃‖∗s̃

≤ 2µ‖ζP‖2x
(1− ‖ζP‖x)3

. (C.9)

Combining (C.8) and (C.9) as in [82, Lemma B.4(11)],

‖ζP‖2R = 〈ζP,ζD〉+ 〈ζP, RζP − ζD〉

≥ µ‖ζP‖2x
�

1− ‖ζP‖x

(1− ‖ζP‖x)3

�
− 2µ‖ζP‖3x
(1− ‖ζP‖x)3

= µ‖ζP‖2x
�

1− 3‖ζP‖x

(1− ‖ζP‖x)3

�
.

Finally, as in [82, Lemma B.4(9-10)], it follows from (C.5) and (C.9) that

‖RζP‖−1
x ≤ ‖RζP + ζD‖−1

x + ‖ζD‖−1
x ≤

3µ‖ζP‖2x
(1− ‖ζP‖x)3

+µ‖ζP‖x ,

and similarly,

‖RζP − ζD‖∗x ≤ ‖RζP + ζD‖−1
x + 2‖ζD‖−1

x ≤
4µ‖ζP‖2x
(1− ‖ζP‖x)3

+ 2µ‖ζP‖x .

We now have the tools to bound the operator norm of (C.7). By (C.2),




H(x)−1

�
ζD(ζD)> − RζP(ζP)>R

〈ζP,ζD〉 +

�
1

‖ζP‖2R
+

1
〈ζP,ζD〉

�
RζP(ζP)>R

�




x

≤ ‖Rζ
P − ζD‖−1

x ‖RζP + ζD‖−1
x

|〈ζP,ζD〉| +
‖ζP‖x‖RζP + ζD‖−1

x

|〈ζP,ζD〉|‖ζP‖2R
(‖RζP‖−1

x )
2

=
‖RζP + ζD‖−1

x

|〈ζP,ζD〉|

�
‖RζP − ζD‖−1

x + ‖ζP‖x
(‖RζP‖−1

x )
2

‖ζP‖2R

�
≤ ξµ.
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Therefore, (C.3) shows that




[µH(x)]−1

�
ζD(ζD)> − RζP(ζP)>R

〈ζP,ζD〉 +

�
1

‖ζP‖2R
+

1
〈ζP,ζD〉

�
RζP(ζP)>R

�




µH(x)

is at most ξ. Hence, we see from the triangle inequality and (C.6) that

‖[µH(x)]−1[W −µH(x)]‖µH(x) ≤ ε+ ξ.

Proposition 10.2 thus shows

(1− ε− ξ)µH(x)�W � (1+ ε+ ξ)µH(x).

Finally, we can use (2.2) to bound 1
µH∗(s)−1 = µH(µ x̃) as

(1− ε− ξ)(1− ‖ζP‖x)
2 1
µH∗(s)−1 �W � 1+ ε+ ξ

(1− ‖ζP‖x)2
1
µH∗(s)−1,

similar to [82, Theorem 6.8].

C.2 Properties of the Predictor

The simple properties of the predictor can be derived mostly through substitution
of various definitions.

Lemma 10.4 ([7, Lemma 5]). Let K ⊂ Rn be a proper cone admitting a LHSCB f .
Pick z = (y, x ,τ, s,κ) such that (A1) and (A3) hold, and let γ,% ∈ R. Then, the
following properties hold:

(i) G(z + γ∆zpred) = (1− γ(1−%))G(z)

(ii) 〈∆xpred,∆spred〉+∆τpred∆κpred = 0

(iii) µ′+ = (1 − γ(1 − %))µ′, or equivalently, 〈x + γ∆xpred, s + γ∆spred〉 + (τ +
γ∆τpred)(κ+ γ∆κpred) = (1− γ(1−%))[〈x , s〉+τκ].

Proof. (i): Follows directly from (10.11a), (10.12a), and the fact that G is a linear
operator.
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(ii): Using (i) and the linearity of G, we have

0= G(z + γ∆zpred − (1− γ(1−%))z) = γG(∆zpred + (1−%)z).

A skew-symmetry argument shows

0=

*

∆ypred + (1−%)y
∆xpred + (1−%)x
∆τpred + (1−%)τ


 , G(∆zpred + (1−%)z)

+

= 〈∆xpred + (1−%)x ,∆spred + (1−%)s〉
+ (∆τpred + (1−%)τ)(∆κpred + (1−%)κ).

Therefore, we can write

〈∆xpred,∆spred〉+∆τpred∆κpred = −(1−%)2[〈x , s〉+τκ]− (1−%)[〈x ,∆spred〉
+ 〈∆xpred, s〉+τ∆κpred +∆τpredκ].

(C.10)
From (10.11c) and (10.12c), we can see that

〈x ,∆spred〉+ 〈∆xpred, s〉= 〈x ,∆saff +%∆scen〉 − 〈∆xaff +%∆xcen, W x〉
= 〈x ,∆saff −W∆xaff〉+%〈x ,∆scen −W∆xcen〉
= 〈x ,−s〉+%〈x ,µ′s̃〉= −%µ′ϑ f − 〈x , s〉.

Moreover, (10.11b) and (10.12b) show that

τ∆κpred +∆τpredκ= τ(∆κaff +%∆κcen) + (∆τaff +%∆τcen)κ

= τ∆κaff +∆τaffκ+%(τ∆κcen +∆τcenκ)

= −τκ−%µ′.

Combining the above, we get

〈x ,∆spred〉+ 〈∆xpred, s〉+τ∆κpred +∆τpredκ= −%µ′ϑ f − 〈x , s〉 −τκ−%µ′
= (% − 1)[〈x , s〉+τκ],

(C.11)
by definition of µ′. Hence, (C.10) must be zero.
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(iii): Using (ii) to substitute 〈∆xpred,∆spred〉+∆τpred∆κpred, we get

〈x + γ∆xpred, s+ γ∆spred〉+ (τ+ γ∆τpred)(κ+ γ∆κpred)

= 〈x , s〉+τκ+ γ[〈x ,∆spred〉+ 〈∆xpred, s〉+τ∆κpred +∆τpredκ] + γ20

= (1− γ(1−%))[〈x , s〉+τκ],
where the final equality is due to (C.11).

As we will see, the norms of the predictors depend on ∆τpred∆κpred. We first
show that ∆τpred∆κpred ≥ (τκ+%µ′)2/(4τκ).
Lemma C.2 ([7, Lemma 6]). Let τ,µ′ > 0, κ < 0, and % ≥ 0. Then, the optimiza-
tion problem

min
∆κaff,∆κcen,∆τaff,∆τcen

(∆τaff +%∆τcen)(∆κaff +%∆κcen)

subject toτ∆κaff + κ∆τaff = −τκ
τ∆κcen + κ∆τcen = −µ′,

has optimal value (τκ+%µ′)2/(4τκ).

Proof. The constraints show that∆τaff = −τ− τκ∆κaff and∆τcen = −µ′κ − τκ∆κcen.
Then, the objective is equal to

(∆τaff +%∆τcen)(∆κaff +%∆κcen)

=
�
−τ− τ

κ
∆κaff +%

�
−µ

′

κ
− τ
κ
∆κcen

��
(∆κaff +%∆κcen)

= −τ
κ
(∆κaff +%∆κcen)2 − (∆κaff +%∆κcen)

�
τ+%

µ′

κ

�
.

This expression is minimized if and only if the first order condition

−2τ
κ
(∆κaff +%∆κcen)−

�
τ+%

µ′

κ

�
= 0

holds. Hence, all minimizers satisfy∆κaff+%∆κcen = −1
2(%µ

′/τ+κ). Therefore,
the optimal value is

− τ
κ
(∆κaff +%∆κcen)2 − (∆κaff +%∆κcen)

�
τ+%

µ′

κ

�

= − τ
4κ

�
%µ′

τ
+κ

�2

+ 1
2

�
%µ′

τ
+ κ

��
τ+%

µ′

κ

�
=
(τκ+%µ′)2

4τκ
.
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We are now ready to bound the norm of the predictor.

Theorem 10.5 ([7, Theorem 2]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z = (y, x ,τ, s,κ) such that (A1) to (A5) hold for some α ∈ (0, 1] and
δ ∈ [0,1). Let lP, uD > 0 be bounds such that (10.17) holds, and let % ∈ R. Then,
the primal and dual predictors ∆xpred and ∆spred satisfy

‖∆xpred‖2W + ‖∆spred‖2W−1 ≤ µ′
�
ϑ f

�
1− 2% +

%2

α

�
+ 1− 1

2α−% +
%2

2α

�
,

(10.19)
and

lP‖∆xpred‖2x +
1
uD
(‖∆spred‖∗s )2 ≤

1
α

�
ϑ f

�
1− 2% +

%2

α

�
+ 1− 1

2α−% +
%2

2α

�
.

(10.20)

Proof. Note that for any v, w ∈ Rn with 〈v, w〉= 0, we have ‖v−w‖2 = ‖v‖2+‖w‖2.
As shown by Lemma 10.4(ii), 〈(W 1/2∆xpred,∆τpred), (W−1/2∆spred,∆κpred)〉= 0,
so

‖W∆xpred −∆spred‖2W−1 + (∆τpred −∆κpred)2

= ‖∆xpred‖2W + ‖∆spred‖2W−1 + (∆τpred)2 + (∆κpred)2.

By (10.11c), (10.12c), and (10.13), W∆xpred −∆spred = s−%µ′s̃. Therefore,

‖∆xpred‖2W + ‖∆spred‖2W−1 = ‖s−%µ′s̃‖2W−1 − 2∆τpred∆κpred

= −〈x , s〉 − 2%µ′ϑ f +%
2(µ′)2µ̃ϑ f − 2∆τpred∆κpred,

where the final equality used 〈x , s̃〉= 〈x , g(x)〉= −ϑ f and the definition of µ̃. By
Lemma C.2,

‖∆xpred‖2W + ‖∆spred‖2W−1

≤ −〈x , s〉 − 2%µ′ϑ f +%
2(µ′)2µ̃ϑ f −

(τκ+%µ′)2

2τκ

= −〈x , s〉 − 2%µ′ϑ f +%
2(µ′)2µ̃ϑ f − 1

2τκ−%µ′ −
%2(µ′)2

2τκ
.
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To bound all the above in terms of µ′, we use (A2) and (A4):

‖∆xpred‖2W + ‖∆spred‖2W−1

≤ −(〈x , s〉+τκ) + 1
2τκ− 2%µ′ϑ f +%

2µ′
ϑ f

α
−%µ′ + %

2µ′

2α

≤ µ′
�
(ϑ f + 1)− 1

2α− 2%ϑ f +%
2
ϑ f

α
−% + %

2

2α

�
,

which proves (10.19). Towards proving (10.20), we note that by (10.17) and
Lemma 2.4,

lP‖∆xpred‖2x +
1
uD
(‖∆spred‖∗s )2 ≤

‖∆xpred‖2W + ‖∆spred‖2W−1

µ
.

The claim now follows from Lemma 10.1 and (10.19).

The following is a straightforward consequence of Theorem 10.5.

Corollary C.3 ([7, Corollary 2]). Under the conditions of Theorem 10.5,

|〈∆xpred,∆spred〉| ≤ 1
2µ
′Π≤ Πµ

2α
.

Proof. Note that

0≤ ‖W∆xpred +∆spred‖2W−1 = ‖∆xpred‖2W + ‖∆spred‖2W−1 + 2〈∆xpred,∆spred〉,

which implies −〈∆xpred,∆spred〉 ≤ 1
2[‖∆xpred‖2W +‖∆spred‖2W−1]. The bound then

follows from (10.19). By considering ‖W∆xpred−∆spred‖2W−1 , one can show sim-
ilarly that 〈∆xpred,∆spred〉 ≤ 1

2[‖∆xpred‖2W +‖∆spred‖2W−1]. The final inequality is
due to Lemma 10.1.

As a second consequence, we can bound the difference between µ+ and µ, in
the following sense.

Corollary C.4 ([7, Corollary 3]). Under the conditions of Theorem 10.5,
����1−

µ+
µ
+ γ

�
%
µ′

µ
− 1

�����=
����
γ2

µϑ f
〈∆xpred,∆spred〉

����≤
γ2Π

2αϑ f
.



Appendix C. Proofs for the Nonsymmetric Conic Algorithm 207

Proof. By the definition (10.13),

µ+
µ
= −〈x + γ∆xpred, s+ γ∆spred〉

µϑ f

= 1+
γ

µϑ f
〈x , W∆xpred −∆spred〉 − γ2

µϑ f
〈∆xpred,∆spred〉.

It follows from (10.11c), (10.12c), and (10.13) that W∆xpred−∆spred = s−%µ′s̃.
This proves the desired equality. The inequality follows from Corollary C.3.

We now analyze τ+ and κ+, which covers assumptions (A2) and (A3).

Lemma 10.6 ([7, Lemma 7]). Let K ⊂ Rn be a proper cone admitting a LHSCB f .
Pick z = (y, x ,τ, s,κ) such that (A1) to (A5) hold for some α ∈ (0,1] and δ ∈ [0,1).
Let γ≤ 1 and % ∈ R. Then,

τ+κ+ ≤ −
µ′+

1− γ(1−%)
�
α(1− γ) + γ% − 1

2γ
2Π
�

. (10.24)

If α < 1 or % < 1, and

0≤ γ < α−% +
p
(α−%)2 + 2αΠ
Π

, (10.25)

then τ+ > 0 and κ+ < 0.

Proof. Recall that z+ = z + γ∆zpred. By (10.11b), (10.12b), and (10.13),

τ+κ+ = τκ+ γ(τ∆κ
pred + κ∆τpred) + γ2∆τpred∆κpred

= τκ+ γ(−τκ−%µ′) + γ2∆τpred∆κpred

≤ −(1− γ)αµ′ − γ%µ′ + γ2∆τpred∆κpred,

where the inequality is due to (A2). Hence, the main remaining task is to upper
bound ∆τpred∆κpred. By Lemma 10.4(ii), ∆τpred∆κpred = −〈∆xpred,∆spred〉. It
therefore follows from Corollary C.3 that τ+κ+ ≤ −µ′[α(1 − γ) + γ% − 1

2γ
2Π].

Lemma 10.4(iii) then proves the bound (10.24).
It can be seen from (10.21) that 1 − 2% + %2/α ≤ 0 only if α = % = 1.

To avoid trivial difficulties, we therefore assume that α < 1 or % < 1. Then,
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Π = ϑ f

�
1− 2% +%2/α

�
+ 1− 1

2α−% + 1
2%

2/α is positive by (10.22). The zeros
of the right hand side of (10.24) in γ are

α−% ±p(α−%)2 + 2αΠ
Π

.

We see that the square root above is greater than |α−%|, and the denominator is
positive. Thus, for all γ satisfying (10.25), the upper bound (10.24) on τ+κ+ is
negative.

If τ+κ+ < 0, then τ+ > 0 and κ+ < 0, or τ+ < 0 and κ+ > 0. For the sake of
contradiction, suppose that τ+ < 0 and κ+ > 0. Since γ0 7→ τ+ γ0∆τ

pred is con-
tinuous and τ > 0, the intermediate value theorem implies that there exists some
γ0 ∈ (0,γ) where τ+ γ0∆τ

pred = 0. But for this γ0, we have (τ+ γ0∆τ
pred)(κ+

γ0∆κ
pred) = 0, while the upper bound (10.24) is negative for all γ0 ∈ (0,γ). Thus,

we have a contradiction, and therefore τ+ > 0 and κ+ < 0.

We close this section with the upper bound on ‖ζP
+‖x+ , which relates to as-

sumption (A5).

Lemma 10.7. Let K ⊂ Rn be a proper cone admitting a LHSCB f . Pick z =
(y, x ,τ, s,κ) such that (A1) to (A5) hold for some α ∈ (0, 1] and δ ∈ [0, 1). Assume
(10.17) holds with uD = (1+ε)/r and lD = r(1−ε) for some r ∈ (0,1] and ε≥ 0.
Let γ ∈ [0,

p
αmin{lP, 1/uP}/Π) and % ∈ R. Then,

‖ζP
+‖x+ ≤

1

1− γpΠ/(lPα)

�
(1− γ)‖ζP‖x +

γ2Π

2α
Æ
ϑ f (1− ‖ζP‖x)

+
γ
p
Πp

lPα

�
uD(1+ ς)

1− γpuDΠ/α
− 1

��
,

where

ς :=
γ2Π

2αϑ f
+ γmax

n
1− %

2−α ,
%

α
− 1

o
.

Proof. By definition, we have

ζP
+ = x+ −µ+ x̃+ = x + γ∆xpred −µ+g∗

�
s+ γ∆spred

�
.
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It can be shown using (10.11c), (10.12c), and (10.13) that ∆xpred = %µ′ x̃ − x +
W−1∆spred. Therefore,

x + γ∆xpred = x + γ
�
%µ′ x̃ − x

�
+ γW−1∆spred

= (1− γ)(x −µ x̃) +
�
(1− γ)µ+ γ%µ′� x̃ + γW−1∆spred.

Moreover, the fundamental theorem of calculus (see e.g. Renegar [95, Theorem
1.5.6]) implies

µ+g∗
�
s+ γ∆spred

�

= µ+

�
g∗(s) +

∫ 1

0

H∗
�
s+ tγ∆spred

�
γ∆spred dt

�

= µ+ x̃ + γ

∫ 1

0

�
µ+H∗

�
s+ tγ∆spred

�−W−1
�
∆spred dt + γW−1∆spred.

Combining the above observations yields

ζP
+ = (1− γ)(x −µ x̃) +

�
(1− γ)µ+ γ%µ′ −µ+

�
x̃

− γ
∫ 1

0

�
µ+H∗

�
s+ tγ∆spred

�−W−1
�
∆spred dt

= (1− γ)ζP +
�

1− γ+ γ%µ
′

µ
− µ+
µ

�
µ x̃ (C.12)

− γ
∫ 1

0

�
µ+H∗

�
s+ tγ∆spred

�−W−1
�
∆spred dt. (C.13)

We will bound each of the three terms in (C.12) and (C.13) separately in ‖ · ‖x .
Of course, ‖ζP‖x is known to be bounded by assumption (A5).

To bound the second term of (C.12), note that by Corollary C.4,
����1− γ+ γ%

µ′

µ
− µ+
µ

����≤
γ2Π

2αϑ f
.

Since ‖µ x̃‖x ≤ ‖µ x̃‖µ x̃/(1−‖ζP‖x) =
Æ
ϑ f /(1−‖ζP‖x) by self-concordance and

logarithmic homogeneity,





�

1− γ+ γ%µ
′

µ
− µ+
µ

�
µ x̃






x
≤ γ2Π

2α
Æ
ϑ f (1− ‖ζP‖x)

. (C.14)
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To bound (C.13), we will boundµ+H∗
�
s+ tγ∆spred

�
in terms of W−1 to invoke

Proposition 10.2. First, note that by Corollary C.4 and Lemma 10.1,

����
µ+
µ
− 1

����≤
γ2Π

2αϑ f
+ γ

����%
µ′

µ
− 1

����≤
γ2Π

2αϑ f
+ γmax

n
1− %

2−α ,
%

α
− 1

o
= ς.

Hence, we have

(1− ς)µH∗
�
s+ tγ∆spred

�� µ+H∗
�
s+ tγ∆spred

�� (1+ ς)µH∗
�
s+ tγ∆spred

�
.

Next, we apply self-concordance as in (2.2) to see that

H∗
�
s+ tγ∆spred

�� 1
(1− tγ‖∆spred‖∗s )2

H∗(s)� 1

(1− tγ
p

uDΠ/α)2
H∗(s),

by Theorem 10.5, and similarly H∗(s+ tγ∆spred)� (1− tγ
p

uDΠ/α)2H∗(s). Com-
bined with (10.17), we thus get

(1− ς)
�
1− tγ

Æ
uDΠ/α

�2
lDW−1 � µ+H∗

�
s+ tγ∆spred

�

� uD(1+ ς)

(1− tγ
p

uDΠ/α)2
W−1.

With these bounds, it follows from Proposition 10.2 that



µ+W H∗
�
s+ tγ∆spred

�− I




W−1

≤max

�
1− (1− ς)

�
1− tγ

Æ
uDΠ/α

�2
lD,

uD(1+ ς)

(1− tγ
p

uDΠ/α)2
− 1

�

=
uD(1+ ς)

(1− tγ
p

uDΠ/α)2
− 1,

where the value of the maximization is determined by the fact that for all ε,ς≥ 0
and r ∈ (0, 1],

1− r(1− ς)(1− ε)≤ (1+ ς)(1+ ε)
r

− 1.

Using (10.17) and Theorem 10.5, we can thus bound the local norm of (C.13) as
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follows:





γ
∫ 1

0

�
µ+H∗

�
s+ tγ∆spred

�−W−1
�
∆spred dt







x

≤ γp
lPµ

∫ 1

0



�µ+H∗
�
s+ tγ∆spred

�−W−1
�
∆spred




W dt

≤ γp
lPµ

∫ 1

0



µ+W H∗
�
s+ tγ∆spred

�− I




W−1 ‖∆spred‖W−1 dt

≤ γ
p
µ′Πp
lPµ

∫ 1

0

�
uD(1+ ς)

(1− tγ
p

uDΠ/α)2
− 1

�
dt ≤ γ

p
Πp

lPα

�
uD(1+ ς)

1− γpuDΠ/α
− 1

�
,

where the final inequality uses Lemma 10.1.
If we combine the above with the bound (C.14), it can be seen from (C.12)

and (C.13) that

‖ζP
+‖x ≤ (1− γ)‖ζP‖x +

γ2Π

2α
Æ
ϑ f (1− ‖ζP‖x)

+
γ
p
Πp

lPα

�
uD(1+ ς)

1− γpuDΠ/α
− 1

�
.

Since ‖x − x+‖x = γ‖∆xpred‖x ≤ γ
p
Π/(lPα) by Theorem 10.5, the proof is com-

pleted by applying self-concordance.

C.3 Properties of the Corrector

As for the predictor, some properties of the corrector can be derived directly from
the definitions.

Lemma 10.8 ([7, Lemma 9]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z+ = (y+, x+,τ+, s+,κ+) such that x+ ∈ intK, s+ ∈ intK◦, τ+ > 0, and
κ+ < 0. Then,

(i) G(z+ +∆zcor
+ ) = G(z+)

(ii) 〈x+,∆scor
+ 〉+ 〈∆xcor

+ , s+〉= 0

(iii) 〈∆xcor
+ ,∆scor

+ 〉+∆τcor
+ ∆κ

cor
+ = 0



212 IPM and SA for Nonsymmetric Conic Optimization

(iv) 〈x+ +∆xcor
+ , s+ +∆scor

+ 〉+ (τ+ +∆τcor
+ )(κ+ +∆κ

cor
+ ) = 〈x+, s+〉+ τ+κ+. In

other words, µ′++ = µ
′
+

(v) ‖∆xcor
+ ‖2W+ + ‖∆scor

+ ‖2W−1
+
≤ ‖ζP

+‖2W+
(vi) |〈∆xcor

+ ,∆scor
+ 〉| ≤ 1

2‖ζP
+‖2W+

(vii) (τ++∆τcor
+ )(κ++∆κ

cor
+ )≤ τ+κ++ 1

2‖ζP
+‖2W+ . If τ+κ++

1
2‖ζP

+‖2W+ < 0, then
τ++ > 0 and κ++ < 0.

Proof. (i): Follows directly from (10.16a) and the fact that G is a linear operator.
(ii): By (10.16c) and the fact that W+x+ = −s+,

〈x+,∆scor
+ 〉+ 〈∆xcor

+ , s+〉= 〈x+, W+∆xcor
+ +µ+s̃+ − s+〉+ 〈∆xcor

+ , s+〉
= 〈x+,µ+s̃+ − s+〉,

which is zero because 〈x+, s̃+〉= −ϑ f .
(iii): From (10.16a) and skew-symmetry, it can be seen that

0=

*

∆ycor

+
∆xcor

+
∆τcor

+


 , G(∆zcor

+ )

+
= 〈∆xcor

+ ,∆scor
+ 〉+∆τcor

+ ∆κ
cor
+ .

(iv): A simple expansion shows

〈x+ +∆xcor
+ , s+ +∆scor

+ 〉+ (τ+ +∆τcor
+ )(κ+ +∆κ

cor
+ )− [〈x+, s+〉+τ+κ+]

equals

[〈x+,∆scor
+ 〉+〈∆xcor

+ , s+〉]+[τ+∆κcor
+ +κ+∆τ

cor
+ ]+[〈∆xcor

+ ,∆scor
+ 〉+∆τcor

+ ∆κ
cor
+ ],

where the first term is zero by (ii), the second term is zero by (10.16b), and the
third term is zero by (iii).

(v): Recall that for any v, w ∈ Rn such that 〈v, w〉 = 0, we have ‖v − w‖2 =
‖v‖2+ ‖w‖2. By (iii), we have 〈(W 1/2

+ ∆xcor
+ ,∆τcor

+ ), (W
−1/2
+ ∆scor

+ ,∆κcor
+ )〉= 0, so

‖W+∆xcor
+ −∆scor

+ ‖2W−1
+
+ (∆τcor

+ −∆κcor
+ )

2

= ‖∆xcor
+ ‖2W+ + ‖∆scor

+ ‖2W−1
+
+ (∆τcor

+ )
2 + (∆κcor

+ )
2.
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Subtracting (∆τcor
+ )

2+(∆κcor
+ )

2 from both sides and using W+∆xcor
+ −∆scor

+ = −ζD
+,

we get
‖ζD
+‖2W−1

+
− 2∆τcor

+ ∆κ
cor
+ = ‖∆xcor

+ ‖2W+ + ‖∆scor
+ ‖2W−1

+
. (C.15)

Since τ+∆κ
cor
+ + κ+∆τ

cor
+ = 0 by (10.16b), we can derive the upper bound

−∆κcor
+ ∆τ

cor
+ =∆τ

cor
+

κ+∆τ
cor
+

τ+
≤ 0.

Hence, (v) follows from (C.15) and the observation ‖ζD
+‖2W−1

+
= ‖ζP

+‖2W+ .

(vi): Can be proven similar to Corollary C.3 using (v).
(vii): From (10.16b) and (iii), we get

(τ+ +∆τ
cor
+ )(κ+ +∆κ

cor
+ ) = τ+κ+ +∆τ

cor
+ ∆κ

cor
+ = τ+κ+ − 〈∆xcor

+ ,∆scor
+ 〉.

The upper bound now follows from (vi). If this upper bound on (τ++∆τcor
+ )(κ++

∆κcor
+ ) is negative, then either τ++ > 0 and κ++ < 0, or τ++ < 0 and κ++ > 0.

Suppose for the sake of contradiction that τ++ < 0 and κ++ > 0. Then,∆τcor
+ < 0

and ∆κcor
+ > 0. However, it follows from (10.16b) that these cannot hold at the

same time if τ+ > 0 and κ+ < 0. Hence, τ++ > 0 and κ++ < 0.

We move on to an analysis of (A4) after the corrector step.

Lemma 10.9 ([7, Lemma 10]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z+ = (y+, x+,τ+, s+,κ+) such that x+ ∈ intK, s+ ∈ intK◦, τ+ > 0, and
κ+ < 0. Assume (10.18) holds with uD

+ = (1 + ε)/r and lD
+ = r(1 − ε) for some

r ∈ (0,1] and ε≥ 0. Suppose ‖ζP
+‖W+/

p
µ+ <

Æ
min{lD

+, 1/uD
+}. Then,

µ+µ̃++ ≤ 1+ ‖ζP
+‖W+


 uD

+Æ
µ+ϑ f

 
1

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!

+
‖ x̃+‖W+
ϑ f

 
1

lD
+(1− ‖ζP

+‖W+/
Æ

lD
+µ+)

− 1

!


+
‖ζP
+‖2W+uD

+

µ+ϑ f lD
+(1− ‖ζP

+‖W+/
Æ

lD
+µ+)(1−

Æ
uD
+/µ+‖ζP

+‖W+)
.
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Proof. We are interested in finding a lower bound on 〈g(x+ + ∆xcor
+ ), g∗(s+ +

∆scor
+ )〉. It follows from (10.16c) that x+ +∆xcor

+ = µ+ x̃+ +W−1
+ ∆scor

+ . By the
fundamental theorem of calculus,

g(x+ +∆xcor
+ ) = g(µ+ x̃+ +W−1

+ ∆scor
+ )

= g(µ+ x̃+) +

∫ 1

0

H(µ+ x̃+ + tW−1
+ ∆scor

+ )W
−1
+ ∆scor

+ dt

=
1
µ+

s+ +

∫ 1

0

H(µ+ x̃+ + tW−1
+ ∆scor

+ )W
−1
+ ∆scor

+ dt,

where the final equality uses (2.20) and Theorem 2.12 to see that g(µ+ x̃+) =
g(g∗(s+))/µ+ = s+/µ+. Another application of the fundamental theorem of cal-
culus yields

g∗(s+ +∆scor
+ ) = g∗(s+) +

∫ 1

0

H∗(s+ + t∆scor
+ )∆scor

+ dt.

Consequently, it can be seen that

〈g(x+ +∆xcor
+ ), g∗(s+ +∆scor

+ )〉

= −ϑ f

µ+
+

∫ 1

0

­
∆scor
+ ,

1
µ+

H∗(s+ + t∆scor
+ )s+ +W−1

+ H(µ+ x̃+ + tW−1
+ ∆scor

+ ) x̃+

·
dt

(C.16)

+

∫ 1

0

∫ 1

0

〈∆scor
+ , W−1

+ H(µ+ x̃+ + tW−1
+ ∆scor

+ )H
∗(s+ + r∆scor

+ )∆scor
+ 〉dt dr.

(C.17)

Using the Cauchy-Schwartz inequality, it follows that the inner product in
(C.16) is at least

−‖∆scor
+ ‖W−1

+






1
µ+

H∗(s+ + t∆scor
+ )s+ +W−1

+ H(µ+ x̃+ + tW−1
+ ∆scor

+ ) x̃+






W+

.

The latter norm can be further bounded by the triangle inequality and the fact
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that −H∗(s+)s+ = g∗(s+) = x̃+:






1
µ+

H∗(s+ + t∆scor
+ )s+ +W−1

+ H(µ+ x̃+ + tW−1
+ ∆scor

+ ) x̃+






W+

≤






1
µ+
[H∗(s+ + t∆scor

+ )−H∗(s+)]s+






W+

(C.18)

+
1
µ+



W−1
+ [µ+H(µ+ x̃+ + tW−1

+ ∆scor
+ )−W+] x̃+




W+

. (C.19)

Starting with the norm in (C.18), note that by (10.18) and Lemma 2.4,

µ+[H
∗(s+ + t∆scor

+ )−H∗(s+)]�
�

1
(1− t‖∆scor

+ ‖s+)2
− 1

�
µ+H∗(s+)

�
�

uD
+

(1− t‖∆scor
+ ‖s+)2

− uD
+

�
W−1
+ .

(C.20)

Similarly,

µ+[H
∗(s+ + t∆scor

+ )−H∗(s+)]�
�
(1− t‖∆scor

+ ‖s+)2 − 1
�
µ+H∗(s+)

� �lD
+(1− t‖∆scor

+ ‖s+)2 − lD
+

�
W−1
+ .

(C.21)

Hence, by Proposition 10.2,

1

µ2
+



µ+[H∗(s+ + t∆scor
+ )−H∗(s+)]s+




W+

=
1

µ2
+



�W+
�
µ+[H

∗(s+ + t∆scor
+ )−H∗(s+)] +W−1

+

�− I
�

s+




W−1
+

≤
‖s+‖W−1

+

µ2
+



W+
�
µ+[H

∗(s+ + t∆scor
+ )−H∗(s+)] +W−1

+

�− I




W−1
+

≤
‖s+‖W−1

+

µ2
+

max

�
uD
+

(1− t‖∆scor
+ ‖s+)2

− uD
+, lD
+ − lD

+(1− t‖∆scor
+ ‖s+)2

�

=

Æ
ϑ f

µ+
p
µ+

�
uD
+

(1− t‖∆scor
+ ‖s+)2

− uD
+

�
, (C.22)

since 1/(1− r)2 − 1≥ 1− (1− r)2 for all r ∈ [0, 1).
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To bound the norm in (C.19) with Proposition 10.2, we first note that by self-
concordance and the observation that µ+H(µ+ x̃+) = H∗(s+)−1/µ+,

µ+H(µ+ x̃+ + tW−1
+ ∆scor

+ )�
1

(1− t‖W−1
+ ∆scor

+ ‖µ+ x̃+)
2
µ+H(µ+ x̃+)

� 1

lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2
W+,

(C.23)

where the last step used (10.18). Similarly,

µ+H(µ+ x̃+ + tW−1
+ ∆scor

+ )� (1− t‖W−1
+ ∆scor

+ ‖µ+ x̃+)
2µ+H(µ+ x̃+)

� (1− t‖W−1
+ ∆scor

+ ‖µ+ x̃+)
2

uD
+

W+,
(C.24)

such that Proposition 10.2 shows

1
µ+



W−1
+ [µ+H(µ+ x̃+ + tW−1

+ ∆scor
+ )−W+] x̃+




W+

≤ ‖ x̃+‖W+
µ+



µ+W−1
+ H(µ+ x̃+ + tW−1

+ ∆scor
+ )− I




W+

≤ ‖ x̃+‖W+
µ+

max

¨
1

lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2
− 1,1− (1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2

uD
+

«

=
‖ x̃+‖W+
µ+

�
1

lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2
− 1

�
, (C.25)

since 1/[(1− ε)r]− 1≥ 1− r/(1+ ε) for all r ∈ (0, 1] and ε≥ 0.

In summary, the inner product in (C.16) is, using the bounds (C.22) and (C.25)
on (C.18) and (C.19), at least

−‖∆scor
+ ‖W−1

+

� Æ
ϑ f

µ+
p
µ+

�
uD
+

(1− t‖∆scor
+ ‖s+)2

− uD
+

�

+
‖ x̃+‖W+
µ+

�
1

lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2
− 1

��
.

(C.26)
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By the properties of the operator norm, the inner product in (C.17) is at least

−
‖∆scor

+ ‖2W−1
+

µ2
+

‖H(µ+ x̃+ + tW−1
+ ∆scor

+ )H
∗(s+ + r∆scor

+ )‖W−1
+

≥ −
‖∆scor

+ ‖2W−1
+

µ2
+

‖H(µ+ x̃+ + tW−1
+ ∆scor

+ )W
−1
+ ‖W−1

+
‖W+H∗(s+ + r∆scor

+ )‖W−1
+

.

(C.27)

To bound the first norm in (C.27), we note that for any linear operator P,

‖PW−1
+ ‖W−1

+
= sup
‖u‖W−1

+
≤1
‖PW−1

+ u‖W−1
+
= sup
‖v‖W+≤1

‖Pv‖W−1
+
= ‖W−1

+ P‖W+ .

Therefore, ‖H(µ+ x̃+ + tW−1
+ ∆scor

+ )W
−1
+ ‖W−1

+
equals

‖W−1
+ [µ+H(µ+ x̃+ + tW−1

+ ∆scor
+ ) +W+]− I‖W+

µ+
.

Using the bounds (C.23) and (C.24), it can be shown that
�
(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2

uD
+

+ 1

�
W+ � µ+H(µ+ x̃+ + tW−1

+ ∆scor
+ ) +W+

�
�

1

lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2
+ 1

�
W+.

Hence, Proposition 10.2 shows

‖H(µ+ x̃+ + tW−1
+ ∆scor

+ )W
−1
+ ‖W−1

+

=
‖W−1
+ [µ+H(µ+ x̃+ + tW−1

+ ∆scor
+ ) +W+]− I‖W+

µ+

≤ 1

µ+lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2
. (C.28)

Similarly, one can show along the lines of (C.20) and (C.21) that
�
lD
+(1− r‖∆scor

+ ‖s+)2 + 1
�

W−1
+ � µ+H∗(s+ + r∆scor

+ ) +W−1
+

�
�

uD
+

(1− r‖∆scor
+ ‖s+)2

+ 1

�
W−1
+ ,

(C.29)
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such that Proposition 10.2 shows

‖µ+H∗(s+ + r∆scor
+ )‖W−1

+
≤ uD

+

(1− r‖∆scor
+ ‖s+)2

. (C.30)

In summary, the inner product in (C.17) is, using the bounds (C.27), (C.28), and
(C.30), at least

−
‖∆scor

+ ‖2W−1
+

uD
+

µ2
+lD
+(1− t‖W−1

+ ∆scor
+ ‖µ+ x̃+)

2(1− r‖∆scor
+ ‖s+)2

. (C.31)

Combining the bounds (C.26) and (C.31) on the inner products in (C.16) and
(C.17) respectively yields

〈g(x+ +∆xcor
+ ), g∗(s+ +∆scor

+ )〉

≥ −ϑ f

µ+
− ‖∆scor

+ ‖W−1
+

� Æ
ϑ f

µ+
p
µ+

�
uD
+

1− ‖∆scor
+ ‖s+

− uD
+

�

+
‖ x̃+‖W+
µ+

�
1

lD
+(1− ‖W−1

+ ∆scor
+ ‖µ+ x̃+)

− 1

��

−
‖∆scor

+ ‖2W−1
+

uD
+

µ2
+lD
+(1− ‖W−1

+ ∆scor
+ ‖µ+ x̃+)(1− ‖∆scor

+ ‖s+)
.

The proof is complete after a multiplication by −µ+/ϑ f and bounding the remain-
ing norms. Lemma 10.8(v) shows ‖∆scor

+ ‖W−1
+
≤ ‖ζP

+‖W+ . Moreover, H(µ+ x̃+) =
H∗(s+)−1/µ2

+, so

‖W−1
+ ∆scor

+ ‖µ+ x̃+ =
‖W−1
+ ∆scor

+ ‖−1
s+

µ+
≤
‖∆scor

+ ‖W−1
+Æ

lD
+µ+

≤ ‖ζ
P
+‖W+Æ
lD
+µ+

,

by (10.18). Finally, ‖∆scor
+ ‖s+ ≤

Æ
uD
+/µ+‖∆scor

+ ‖W−1
+
≤
Æ

uD
+/µ+‖ζP

+‖W+ .

We end this section with an analysis of (A5) after the corrector step.

Lemma 10.10 ([7, Lemma 11]). Let K ⊂ Rn be a proper cone admitting a LHSCB
f . Pick z+ = (y+, x+,τ+, s+,κ+) such that x+ ∈ intK, s+ ∈ intK◦, τ+ > 0, and
κ+ < 0. Assume (10.18) holds with uD

+ = (1 + ε)/r and lD
+ = r(1 − ε) for some
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r ∈ (0, 1] and ε ≥ 0. Suppose ‖ζP
+‖W+/

p
µ+ <

Æ
min{lP

+, 1/uP
+}. Then, ‖ζP

++‖x++
is at most

‖ζP
+‖W+

(1− ‖ζP
+‖W+/

Æ
µ+lP

+)
Æ
µ+lP

+

 
uD
+

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!

+
‖ζP
+‖2W+

2µ+
Æ
ϑ f


1− ‖ζP

+‖W+
(1− ‖ζP

+‖W+/
Æ
µ+lP

+)
Æ
µ+lP

+

 
uD
+

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!

−1

.

Proof. By the triangle inequality, self-concordance, and (10.18),

‖ζP
++‖x++ = ‖x++ −µ++ x̃++‖x++

≤ ‖x++ −µ+ x̃++‖x++ +

����
µ++
µ+
− 1

����‖µ+ x̃++‖x++

≤ ‖x++ −µ+ x̃++‖x+

1− ‖∆xcor
+ ‖x+

+

����
µ++
µ+
− 1

����
‖µ+ x̃++‖µ+ x̃++

1− ‖x++ −µ+ x̃++‖x++

≤ ‖x++ −µ+ x̃++‖W+
(1− ‖∆xcor

+ ‖x+)
Æ
µ+lP

+

+

����
µ++
µ+
− 1

����
Æ
ϑ f

1− ‖x++−µ+ x̃++‖W+
(1−‖∆xcor

+ ‖x+ )
q
µ+ lP

+

. (C.32)

We continue by bounding ‖x++ − µ+ x̃++‖W+ . Note that by the fundamental the-
orem of calculus and (10.16c),

x++ −µ+ x̃++ = (x+ +∆xcor
+ )−µ+g∗(s+ +∆scor

+ )

= x+ +∆xcor
+ −µ+

�
g∗(s+) +

∫ 1

0

H∗(s+ + t∆scor
+ )∆scor

+ dt

�

= µ+ x̃+ +W−1
+ ∆scor

+ −µ+ x̃+ −
∫ 1

0

µ+H∗(s+ + t∆scor
+ )∆scor

+ dt

=

∫ 1

0

�
W−1
+ −µ+H∗(s+ + t∆scor

+ )
�
∆scor
+ dt. (C.33)

To bound the integrand of (C.33) in the norm induced by W+, we will bound the
operator norm of W−1

+ −µ+H∗(s++ t∆scor
+ ). One can show similarly to (C.29) that

(1− t‖∆scor
+ ‖s+)2lD

+W−1
+ � µ+H∗(s+ + t∆scor

+ )�
uD
+

(1− t‖∆scor
+ ‖s+)2

W−1
+ .
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It then follows from Proposition 10.2 that


�W−1

+ −µ+H∗(s+ + t∆scor
+ )

�
∆scor
+




W+

=


W+

�
W−1
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+ )
�
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+ )− I




W−1
+
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− 1,1− (1− t‖∆scor
+ ‖s+)2lD

+

�

= ‖∆scor
+ ‖W−1

+

�
uD
+

(1− t‖∆scor
+ ‖s+)2

− 1

�
,

where the final equality uses 1/[(1−ε)r]−1≥ 1− r/(1+ε) for all r ∈ (0, 1] and
ε≥ 0. We can therefore bound the W+-norm of (C.33) by

‖x++ −µ+ x̃++‖W+ ≤
∫ 1

0

‖∆scor
+ ‖W−1

+

�
uD
+

(1− t‖∆scor
+ ‖s+)2

− 1

�
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= ‖∆scor
+ ‖W−1

+

�
uD
+

1− ‖∆scor
+ ‖s+

− 1

�

≤ ‖ζP
+‖W+

 
uD
+

1−
Æ

uD
+/µ+‖ζP

+‖W+
− 1

!
, (C.34)

where the final inequality uses Lemma 10.8(v) and (10.18).
The next factor from (C.32) we look at is |µ++/µ+−1|. Lemma 10.8(ii) implies

that 〈x++∆xcor
+ , s++∆scor

+ 〉= 〈x+, s+〉+〈∆xcor
+ ,∆scor

+ 〉. Therefore, it follows from
Lemma 10.8(vi) that

����
µ++
µ+
− 1

����=
|〈∆xcor

+ ,∆scor
+ 〉|

µ+ϑ f
≤
‖ζP
+‖2W+

2µ+ϑ f
. (C.35)

The last quantity in (C.32) that we have yet to bound is ‖∆xcor
+ ‖x+ . By (10.18)

and Lemma 10.8(v),

‖∆xcor
+ ‖x+ ≤

‖∆xcor
+ ‖W+Æ
µ+lP

+

≤ ‖ζ
P
+‖W+Æ
µ+lP

+

. (C.36)

The proof can be completed by using (C.34), (C.35), and (C.36) to develop
(C.32).
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L2-norm, 49
σ-finite, 48

absolutely continuous, 48
analytic center, 8, 123
analytic center cutting plane

method, 8, 122

ball, 18
in local norm, 18, 21

barrier, see self-concordant barrier
Boltzmann distribution, 28

central path, 3, 37
chain rule, 179
completely positive cone, 110
complexity parameter, 17

entropic barrier, see entropic
barrier, complexity
parameter

conjugate, 18
domain, 18
gradient, 20
Hessian, 20
self-concordance, 21

convex programming, 1, 2

copositive cone, 121

differentiable, 14
continuously, 178
three times, 16
twice, 14

Dikin ellipsoid, 131
doubly nonnegative cone, 111

entropic barrier, 6, 27
complexity parameter, 32

exponential cone, 4, 152

Fréchet derivative, 19, 177
functional, 14

gradient, 14

heat path, 6
Hessian, 14
hit-and-run sampling, 5, 46
homogeneous model, 153

inner product
induced, 14, 18
local, 14, 186

Löwner ordering, 14
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level set, 50
LHSCB, 23
linear operators, 16
linear programming, 1
log-concave, 50
log-partition function, 27

gradient, 29
Hessian, 30
third derivative, 30

logarithmically homogeneous, 23

Markov kernel, 60
membership oracle, 5
MILP, 122
mixing time, 45

near-independent, 60
norm

induced, 13, 18

local, 14

operator norm, 14

power cone, 4, 152
product rule, 179
proper cone, 23

quotient rule, 180

Radon-Nikodym derivative, 48

self-concordant, 15
barrier, 17

self-concordant barrier, 2
shadow iterates, 155
simulated annealing, 6, 101
symmetric cone, 4, 131

third derivative, 16
total variation distance, 49
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