8 research outputs found

    Robust inversion and detection techniques for improved imaging performance

    Full text link
    Thesis (Ph.D.)--Boston UniversityIn this thesis we aim to improve the performance of information extraction from imaging systems through three thrusts. First, we develop improved image formation methods for physics-based, complex-valued sensing problems. We propose a regularized inversion method that incorporates prior information about the underlying field into the inversion framework for ultrasound imaging. We use experimental ultrasound data to compute inversion results with the proposed formulation and compare it with conventional inversion techniques to show the robustness of the proposed technique to loss of data. Second, we propose methods that combine inversion and detection in a unified framework to improve imaging performance. This framework is applicable for cases where the underlying field is label-based such that each pixel of the underlying field can only assume values from a discrete, limited set. We consider this unified framework in the context of combinatorial optimization and propose graph-cut based methods that would result in label-based images, thereby eliminating the need for a separate detection step. Finally, we propose a robust method of object detection from microscopic nanoparticle images. In particular, we focus on a portable, low cost interferometric imaging platform and propose robust detection algorithms using tools from computer vision. We model the electromagnetic image formation process and use this model to create an enhanced detection technique. The effectiveness of the proposed technique is demonstrated using manually labeled ground-truth data. In addition, we extend these tools to develop a detection based autofocusing algorithm tailored for the high numerical aperture interferometric microscope

    Simplifications and speedups of the pseudoflow algorithm

    No full text
    The pseudoflow algorithm for solving the maximum flow and minimum cut problems was devised in Hochbaum (2008). The complexity of the algorithm was shown in (2008) to be O(nm log n). Chandran and Hochbaum, (2009) demonstrated that the pseudoflow algorithm is very efficient in practice, and that the highest label version of the algorithm tends to perform best. Here, we improve the running time of the highest label pseudoflow algorithm to O(n[superscript 3]) using simple data structures and to O(nm log (n[superscript 2]/m)) using the dynamic trees data structure. Both these algorithms use a new form of Depth-First-Search implementation that is likely to be fast in practice as well. In addition, we give a new simpler description of the pseudoflow algorithm by relating it to the simplex algorithm as applied to the maximum preflow problem defined here. The interpretation of the generic pseudoflow algorithm as a simplex-like algorithm for the maximum preflow problem motivates the pseudoflow algorithm and highlights differences between the pseudoflow algorithm and the preflow-push algorithm of Goldberg and Tarjan

    Operational research:methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order
    corecore