2,428 research outputs found

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Distributed formation control of multiple unmanned aerial vehicles over time-varying graphs using population games

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a control technique based on distributed population dynamics under time-varying communication graphs for a multi-agent system structured in a leader-follower fashion. Here, the leader agent follows a particular trajectory and the follower agents should track it in a certain organized formation manner. The tracking of the leader can be performed in the position coordinates x; y; and z, and in the yaw angle phi. Additional features are performed with this method: each agent has only partial knowledge of the position of other agents and not necessarily all agents should communicate to the leader. Moreover, it is possible to integrate a new agent into the formation (or for an agent to leave the formation task) in a dynamical manner. In addition, the formation configuration can be changed along the time, and the distributed population-games-based controller achieves the new organization goal accommodating conveniently the information-sharing graph in function of the communication range capabilities of each UAV. Finally, several simulations are presented to illustrate different scenarios, e.g., formation with time-varying communication network, and time-varying formationPeer ReviewedPostprint (author's final draft

    Independence ratio and random eigenvectors in transitive graphs

    Get PDF
    A theorem of Hoffman gives an upper bound on the independence ratio of regular graphs in terms of the minimum λmin\lambda_{\min} of the spectrum of the adjacency matrix. To complement this result we use random eigenvectors to gain lower bounds in the vertex-transitive case. For example, we prove that the independence ratio of a 33-regular transitive graph is at least q=1234πarccos(1λmin4).q=\frac{1}{2}-\frac{3}{4\pi}\arccos\biggl(\frac{1-\lambda _{\min}}{4}\biggr). The same bound holds for infinite transitive graphs: we construct factor of i.i.d. independent sets for which the probability that any given vertex is in the set is at least qo(1)q-o(1). We also show that the set of the distributions of factor of i.i.d. processes is not closed w.r.t. the weak topology provided that the spectrum of the graph is uncountable.Comment: Published at http://dx.doi.org/10.1214/14-AOP952 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    GTI-space : the space of generalized topological indices

    Get PDF
    A new extension of the generalized topological indices (GTI) approach is carried out torepresent 'simple' and 'composite' topological indices (TIs) in an unified way. Thisapproach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randićconnectivity indices are expressed by means of the same GTI representation introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index andreverse MTI. Using GTI-space approach we easily identify mathematical relations between some composite and simple indices, such as the relationship between hyper-Wiener and Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI space with the sub-structural cluster expansion of property/activity is also analysed and some routes for the applications of this approach to QSPR/QSAR are also given
    corecore