research

Independence ratio and random eigenvectors in transitive graphs

Abstract

A theorem of Hoffman gives an upper bound on the independence ratio of regular graphs in terms of the minimum λmin\lambda_{\min} of the spectrum of the adjacency matrix. To complement this result we use random eigenvectors to gain lower bounds in the vertex-transitive case. For example, we prove that the independence ratio of a 33-regular transitive graph is at least q=1234πarccos(1λmin4).q=\frac{1}{2}-\frac{3}{4\pi}\arccos\biggl(\frac{1-\lambda _{\min}}{4}\biggr). The same bound holds for infinite transitive graphs: we construct factor of i.i.d. independent sets for which the probability that any given vertex is in the set is at least qo(1)q-o(1). We also show that the set of the distributions of factor of i.i.d. processes is not closed w.r.t. the weak topology provided that the spectrum of the graph is uncountable.Comment: Published at http://dx.doi.org/10.1214/14-AOP952 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works