57,649 research outputs found

    Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky and the locations of the fiber positioners in the focal plane of the telescope, with the observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, but with coverage varying between zero and twelve, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P(k,μ)P(k,\mu) and remove the lowest μ\mu bin, leaving μ>0\mu>0 modes accurate at the few-percent level. Here, μ\mu is the cosine of the angle between the line-of-sight and the direction of k\vec{k}. We also investigate two alternative definitions of the random catalog and show they are comparable but less effective than the coverage randoms method.Comment: Submitted to JCA

    Continuous formulations and analytical properties of the link transmission model

    Full text link
    The link transmission model (LTM) has great potential for simulating traffic flow in large-scale networks since it is much more efficient and accurate than the Cell Transmission Model (CTM). However, there lack general continuous formulations of LTM, and there has been no systematic study on its analytical properties such as stationary states and stability of network traffic flow. In this study we attempt to fill the gaps. First we apply the Hopf-Lax formula to derive Newell's simplified kinematic wave model with given boundary cumulative flows and the triangular fundamental diagram. We then apply the Hopf-Lax formula to define link demand and supply functions, as well as link queue and vacancy functions, and present two continuous formulations of LTM, by incorporating boundary demands and supplies as well as invariant macroscopic junction models. With continuous LTM, we define and solve the stationary states in a road network. We also apply LTM to directly derive a Poincar\'e map to analyze the stability of stationary states in a diverge-merge network. Finally we present an example to show that LTM is not well-defined with non-invariant junction models. We can see that Newell's model and LTM complement each other and provide an alternative formulation of the network kinematic wave model. This study paves the way for further extensions, analyses, and applications of LTM in the future.Comment: 27 pages, 5 figure

    Optimization of miRNA-seq data preprocessing.

    Get PDF
    The past two decades of microRNA (miRNA) research has solidified the role of these small non-coding RNAs as key regulators of many biological processes and promising biomarkers for disease. The concurrent development in high-throughput profiling technology has further advanced our understanding of the impact of their dysregulation on a global scale. Currently, next-generation sequencing is the platform of choice for the discovery and quantification of miRNAs. Despite this, there is no clear consensus on how the data should be preprocessed before conducting downstream analyses. Often overlooked, data preprocessing is an essential step in data analysis: the presence of unreliable features and noise can affect the conclusions drawn from downstream analyses. Using a spike-in dilution study, we evaluated the effects of several general-purpose aligners (BWA, Bowtie, Bowtie 2 and Novoalign), and normalization methods (counts-per-million, total count scaling, upper quartile scaling, Trimmed Mean of M, DESeq, linear regression, cyclic loess and quantile) with respect to the final miRNA count data distribution, variance, bias and accuracy of differential expression analysis. We make practical recommendations on the optimal preprocessing methods for the extraction and interpretation of miRNA count data from small RNA-sequencing experiments

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig
    corecore