23,134 research outputs found

    Simple, optimal and efficient auctions

    Get PDF
    Proceedings of the 7th International Workshop, WINE 2011, Singapore, December 11-14, 2011.We study the extent to which simple auctions can simultaneously achieve good revenue and efficiency guarantees in single-item settings. Motivated by the optimality of the second price auction with monopoly reserves when the bidders’ values are drawn i.i.d. from regular distributions [12], and its approximate optimality when they are drawn from independent regular distributions [11], we focus our attention to the second price auction with general (not necessarily monopoly) reserve prices, arguably one of the simplest and most intuitive auction formats. As our main result, we show that for a carefully chosen set of reserve prices this auction guarantees at least 20% of both the optimal welfare and the optimal revenue, when the bidders’ values are distributed according to independent, not necessarily identical, regular distributions. We also prove a similar guarantee, when the values are drawn i.i.d. from a—possibly irregular—distribution.National Science Foundation (U.S.) (award CCF-0953960)National Science Foundation (U.S.) (CCF-1101491

    Auctioning incentive contracts; application to welfare-to-work programs

    Get PDF
    This paper applies the theory of auctioning incentive contracts to welfare-to-work programs. In several countries, the government procures welfare-to-work projects to employment service providers. In doing so, the government trades off adverse selection (the winning provider is not the most efficient one) and moral hazard (the winning provider shirks in his effort to reintegrate unemployed people). We compare three simple auctions with the socially optimal mechanism and show that two of these auctions approximate the optimal mechanism if the number of providers is large. Using simulations, we observe that competition between three bidders is already sufficient for the outcome of these auctions to reach 95% of the optimal level of social welfare.

    Procurement When Price and Quality Matter

    Get PDF
    A buyer seeks to procure a good characterized by its price and its quality from suppliers who have private information about their cost structure (fixed cost + marginal cost of providing quality). We solve for the optimal buying procedure, i.e. the procedure that maximizes the buyer’s expected utility. We then use the optimal procedure as a theoretical and numerical benchmark to study practical and simple buying procedures such as scoring auctions and negotiation. Specifically, we derive the restrictions that these simpler procedures place on allocations and compare them with the optimal allocations to generate insights about the properties of these simpler procedures and identify environments where they are likely to do well. We also use the optimal procedure benchmark to compare the performance of these procedures numerically. We find that scoring auctions are able to extract a good proportion of the surplus from being a strategic buyer, that is, the difference between the expected revenue from the optimal mechanism and the efficient auction. Sequential procedures (to which many negotiation processes belong) do less well, and, in fact, often do worse than simply holding an efficient auction. In each case, we identify the underlying reason for these results

    Auctions with Severely Bounded Communication

    Full text link
    We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare- and profit-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove non-surprising properties of these kinds of auctions, e.g., that in optimal mechanisms bidders simply report the interval in which their valuation lies in, as well as some surprising properties, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor

    Approximately Optimal Mechanism Design: Motivation, Examples, and Lessons Learned

    Full text link
    Optimal mechanism design enjoys a beautiful and well-developed theory, and also a number of killer applications. Rules of thumb produced by the field influence everything from how governments sell wireless spectrum licenses to how the major search engines auction off online advertising. There are, however, some basic problems for which the traditional optimal mechanism design approach is ill-suited --- either because it makes overly strong assumptions, or because it advocates overly complex designs. The thesis of this paper is that approximately optimal mechanisms allow us to reason about fundamental questions that seem out of reach of the traditional theory. This survey has three main parts. The first part describes the approximately optimal mechanism design paradigm --- how it works, and what we aim to learn by applying it. The second and third parts of the survey cover two case studies, where we instantiate the general design paradigm to investigate two basic questions. In the first example, we consider revenue maximization in a single-item auction with heterogeneous bidders. Our goal is to understand if complexity --- in the sense of detailed distributional knowledge --- is an essential feature of good auctions for this problem, or alternatively if there are simpler auctions that are near-optimal. The second example considers welfare maximization with multiple items. Our goal here is similar in spirit: when is complexity --- in the form of high-dimensional bid spaces --- an essential feature of every auction that guarantees reasonable welfare? Are there interesting cases where low-dimensional bid spaces suffice?Comment: Based on a talk given by the author at the 15th ACM Conference on Economics and Computation (EC), June 201

    Truthful approximation mechanisms for restricted combinatorial auctions

    Get PDF
    When attempting to design a truthful mechanism for a computationally hard problem such as combinatorial auctions, one is faced with the problem that most efficiently computable heuristics can not be embedded in any truthful mechanism (e.g. VCG-like payment rules will not ensure truthfulness). We develop a set of techniques that allow constructing efficiently computable truthful mechanisms for combinatorial auctions in the special case where each bidder desires a specific known subset of items and only the valuation is unknown by the mechanism (the single parameter case). For this case we extend the work of Lehmann, O'Callaghan, and Shoham, who presented greedy heuristics. We show how to use If-Then-Else constructs, perform a partial search, and use the LP relaxation. We apply these techniques for several canonical types of combinatorial auctions, obtaining truthful mechanisms with provable approximation ratios

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market
    • …
    corecore