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Abstract. We study the extent to which simple auctions can simul-
taneously achieve good revenue and efficiency guarantees in single-item
settings. Motivated by the optimality of the second price auction with
monopoly reserves when the bidders’ values are drawn i.i.d. from regular
distributions [12], and its approximate optimality when they are drawn
from independent regular distributions [11], we focus our attention to
the second price auction with general (not necessarily monopoly) reserve
prices, arguably one of the simplest and most intuitive auction formats.
As our main result, we show that for a carefully chosen set of reserve
prices this auction guarantees at least 20% of both the optimal welfare
and the optimal revenue, when the bidders’ values are distributed ac-
cording to independent, not necessarily identical, regular distributions.
We also prove a similar guarantee, when the values are drawn i.i.d. from
a—possibly irregular—distribution.

1 Introduction

Social welfare and revenue are without doubt the two most important objectives
in mechanism design. They are both well-studied, and extremely well-understood
when there is a single item for sale. Not only do the Vickrey and Myerson
auctions optimize these objectives in isolation, but there also exist (typically
randomized) mechanisms that simultaneously optimize for both objectives, in
the sense of maximizing revenue subject to a lower bound on social welfare, or
vice-versa [13]. Interestingly, when the bidders’ values are independently and
identically distributed according to some regular distribution, 3 the Vickrey and
Myerson mechanisms behave very much alike: Myerson’s auction is just Vick-
rey’s auction with an additional reserve price. Motivated by this astonishing
similarity (and the somewhat peculiar format of Myerson’s auction in more gen-
eral settings), Hartline and Roughgarden [11] showed that a Vickrey auction
with appropriately chosen reserve prices can approximate the revenue of the op-
timal auction in more general settings. Inspired by their result, and the fact that
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the mechanism of [13] is at least as complicated as Myerson’s mechanism and
potentially randomized, in this paper we ask the question of whether one can
design simple and deterministic mechanisms that achieve approximately-optimal
guarantees for both objectives simultaneously.

At first glance it is not obvious why such simple auctions should even exist.
Indeed, despite the fact that Vickrey’s auction achieves at least half of the op-
timal revenue, when the values are drawn i.i.d. from regular distributions (see
e.g. [9]), this is no longer the case when the values are independent but drawn
from different regular distributions. In particular, it is easy to see that the rev-
enue of Vickrey’s auction can be arbitrarily far from the optimal revenue: just
consider n − 1 bidders distributed independently and uniformly in [0, 1], and
a single bidder distributed uniformly in [h, h + 1], for some large h > 1. The
situation does not become any better if we resort to the mechanism of [11],
i.e. running Vickrey with a different reserve price for every bidder, taken to be
Myerson’s monopoly reserve price for that bidder. The auction now can be arbi-
trarily inefficient even for a single bidder whose value is distributed according to
a regular distribution: consider the (almost) equal revenue distribution, where
the bidder’s value is supported on {1 − ε, 2 − ε, . . . , h − ε}, for some ε ∈ (0, 1)
and h > 1, and the probability that it is larger than or equal to i− ε is exactly
1/i, for i = 1 . . . h. In this paper, we show that by appropriately tweaking the
reserve price of each bidder, we can fix this inefficiency:

Main Result (Th. 1 of Sec. 3): In every single-item setting with n bidders
whose values are distributed according to independent (possibly non-identical)
regular distributions and for every p ∈ [0, 1], there exists a Vickrey auction
with (generally non-anonymous) reserve prices that simultaneously achieves a p-
fraction of the optimal social welfare and a

(
1−p
4

)
-fraction of the optimal revenue.

In particular, there exists a Vickrey auction with reserve prices that achieves at
least a 20% of the optimal social welfare and revenue.

We can use our techniques to prove a similar approximation guarantee for
non-identical distributions satisfying the monotone hazard rate condition (which
has already been obtained by [7]), and we also show that a Vickrey auction
with an anonymous reserve simultaneously approximates both objectives for
general (possibly non-regular) distributions, as long as all values are i.i.d (Th. 3).
We summarize our results together with already known welfare and revenue
guarantees for various settings in Table 1.
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Table 1. (α, β) stands for α-approximation for welfare and β-approximation for rev-
enue. Notice that our result for regular distributions gets a handle on the whole Pareto
boundary achieved by the Vickrey auction with non-anonymous reserve prices.



Two questions left open are whether one can extend our results to the setting
of n bidders distributed according to independent but not necessarily identical
and possibly irregular distributions, and to general single-dimensional settings.

1.1 Related Work

The work closer in spirit to ours is that of [11], where the authors show that
for a variety of single-dimensional settings, second price auctions with carefully
chosen reserve prices are approximately revenue-optimal. In particular, when
the bidders’ values are independently drawn from (possibly different) regular
distributions, they show that Vickrey’s auction with monopoly reserve prices (see
Sec. 2 for a definition) achieves at least half of the optimal revenue. Moreover
they show that Vickrey’s auction with an anonymous reserve achieves a factor
4 approximation to the optimal revenue.

In an unpublished manuscript [8], the authors study the problem of designing
deterministic mechanisms that optimize for both objectives, as a multi-objective
optimization problem. They show that, even though exactly optimizing the
trade-off curve is an NP-hard problem, there exists a polynomial-time deter-
ministic mechanism that approximates within arbitrary precision any point on
the trade-off curve of those two objectives, when there are 2 bidders with ar-
bitrarily correlated values. Their mechanism, despite being deterministic, is far
from simple; this work complements theirs by showing that, if one is willing to
settle for less than an arbitrarily small approximation factor, simple mechanisms
are possible, even when the number of bidders is large. Moreover, the existence
of an auction that simultaneously achieves a constant factor approximation to
both objectives, characterizes the “knee” of the Pareto curve, a structural result
which is of independent interest.

A different type of result relating the two objectives is that of Bulow and
Klemperer [4], where it is shown that in a single-item setting the revenue benefits
of adding an extra bidder and running the efficiency-maximizing (Vickrey) auc-
tion surpass those of running the revenue-maximizing (Myerson) auction without
adding the extra bidder, when the bidders’ values are i.i.d. according to a reg-
ular distribution. In [2] the authors show that for values drawn i.i.d. from a
monotone hazard rate distribution, an analogous theorem holds for efficiency:
by adding Θ(log n) extra bidders and running Myerson’s auction, one gets at
least the efficiency of Vickrey’s auction. Finally, [11] extends Bulow and Klem-
perer’s result to more general single-dimensional settings, as follows: they show
that by duplicating all bidders (whose values are drawn independently from not
necessarily identical, regular distributions), and then running the VCG auction,
one can guarantee at least half of the optimal revenue (while being optimal with
respect to welfare). Our result shows that in single-item settings with indepen-
dent (but not necessarily i.i.d.) bidders, one can simultaneously achieve constant
factor approximations to both optimal revenue and welfare without adding any
extra bidders via the use of a Vickrey auction with appropriate (non-anonymous)
reserve prices.



There has also been substantial work studying the revenue and welfare guar-
antees of welfare-optimizing and revenue-optimizing auctions respectively. In [2]
the authors show that, for values drawn independently from the same mono-
tone hazard rate distribution, both the welfare and revenue ratios of Vickrey
and Myerson’s auctions are bounded by 1/e (see the top-left square of Table 1).
Similar kinds of revenue and welfare ratios are also studied in [9] for keyword
auctions, in [14] for single-item English auctions, and in [1], where the authors
present bounds on the efficiency loss of revenue-optimal mechanisms in single-
item settings with i.i.d. bidders of finite support. Moreover, in [9] and [7] the
authors present simple auctions that simultaneously achieve constant factor ap-
proximations to both objectives in single-item settings where bidders’ values are
i.i.d. from a regular distribution (see the middle-left square of Table 1), and
independently (but not necessarily identically) distributed according to a mono-
tone hazard rate distribution (see the top-right square of Table 1). Some of their
results also hold for more general single-dimensional settings, namely when the
feasibility constraints form a matroid.

Finally, despite our different motivation, methodologically our paper is some-
what related to [3]: in that paper the goal is to provide a general reduction from
the mechanism design problem for many bidders, to that of a single bidder, while
preserving the value of a separable objective (such as welfare or revenue) within
a constant factor. In Lem. 3 and 5 we establish analogous many-to-one reduc-
tions; however, our goal is not only to preserve the approximation factor, but
also for the resulting auction to be of a specific simple format, in contrast to the
much more generic reduction of [3].

2 Preliminaries
Our auction setting is that of a single item for sale and n interested bidders,
each with a value vi for the item, which is distributed independently according
to some distribution Fi. The distributions {Fi}i are not necessarily identical.
For simplicity we assume that all Fi’s in this paper are differentiable. So we can
define the corresponding probability density functions as follows fi(x) = F ′i (x).

A single-item auction A consists of an allocation rule x and a payment rule
p; an allocation rule is a function from bid vectors to [0, 1]n, encoding the proba-
bility by which every bidder receives the item, while a payment rule is a function
from bid vectors to n-vectors of non-negative payments. We want from our auc-
tions to satisfy the two standard constraints of ex-post incentive compatibility
(IC) and individual rationality (IR) [12], so that the terms “bid” and “value”
can be used interchangeably. We are interested in the objectives of revenue and
welfare, defined as follows:

Rev[A] = E

[
n∑

i=1

pi(v1, . . . , vn)

]
and SW[A] = E

[
n∑

i=1

vi · xi(v1, . . . , vn)

]
,

where the above expectations are with respect to value vectors v = (v1, . . . , vn)
drawn from the product distribution ×iFi. For convenience, we sometimes write
RA =

∑n
i=1 pi(v1, . . . , vn), so that Rev[A] = E [RA].



We say that an auction A is an α-approximation for welfare (resp. revenue)
if SW[A] ≥ α · SW[Vic] (resp. Rev[A] ≥ α · Rev[Mye]), where Vic denotes the
Vickrey auction and Mye denotes Myerson’s auction. We say that an auction is an
(α, β)-approximation if it is simultaneously an α-approximation for welfare and a
β-approximation for revenue. Also, given an auction A, and a set B ⊆ {1, . . . , n},
we may write A(B) to denote the auction A run only on the subset B of bidders.
When we use this notation it will be clear from context how the “projected”
auction operates.

In [12] Myerson introduced the notion of a bidder’s virtual valuation function
φi, defined as follows:

φi(vi) = vi −
1− Fi(vi)
fi(vi)

.

In terms of this notion, we say a distribution Fi is regular if the virtual value
function φi is non-decreasing, and that it satisfies the monotone hazard rate
condition if the ratio 1−Fi(x)

fi(x) is non-increasing. For distributions that are non-
regular, Myerson’s ironing technique can be used to get the corresponding ironed
virtual valuation function φ̂i(vi). The following result is central to Myerson’s
analysis, and we also use it in the present paper:

Proposition 1. [Myerson’s Lemma] For any truthful mechanism (x,p), where
all Fi are regular distributions, we can express the expected payment of bidder i
as follows, where the expectation is over the players’ values:

E [pi(v1, . . . , vn)] = E [φi(vi) · xi(v1, . . . , vn)] .

We are interested in the following (family) of auction(s):

Definition 1. The Vickrey auction with reserve prices r = (r1, . . . , rn), denoted
Vicr, is the following mechanism:

1. Reject all bidders whose values are vi < ri.
2. Allocate the item to the highest valued of the remaining bidders (or to none

if no one clears their reserve in Step 1).
3. Charge the winner the maximum of the second highest bidder (among those

who were not eliminated in Step 1) and her reserve price.

Tie-break lexicographically if there are multiple highest bidders in Step 2.

Two cases of particular interest are the Vickrey auction with an anonymous
reserve, where a common reserve r is used for all bidders, and the Vickrey auction
with monopoly reserves, denoted by Vicm, where mi = φ−1

i (0), the monopoly
reserve of bidder i.

3 The regular, independent case

In this section we focus on the setting of n bidders whose values are distributed
according to regular, but not necessarily identical, distributions. We start with a
couple of probabilistic lemmas –not requiring regularity– whose easy proofs are
deferred to the Appendix.



Lemma 1. Let X and Y be independent random variables and g : R → R a
(weakly) increasing function. Then, for any constant c ∈ R,

Pr [X ≥ Y | g(X) ≥ c] ≥ Pr [X ≥ Y | g(X) ≤ c] .

Lemma 2. Let X and Y be independent random variables and g : R → R a
(weakly) increasing function. Then

E [g(X)] ≤ E [g(X) | X ≥ Y ] .

Our next lemma shows that if we take the Vickrey auction and add a reserve
price for each bidder, such that the probability of any single bidder’s value
exceeding her reserve price is at least p, then the resulting welfare is at least a
p fraction of Vickrey’s (optimal) social welfare E [maxi{vi}]. The proof of this
lemma is relatively straightforward and is deferred to the Appendix as well. In
what follows we use I(·) to denote the indicator function.

Lemma 3. [Many-to-One Reduction—Welfare] Suppose that X1, . . . , Xn

are independent, non-negative random variables (possibly non-identically dis-
tributed), t1, . . . , tn are (possibly different) thresholds, and p ∈ [0, 1]. If it holds
that Pr [Xi ≥ ti] ≥ p, for all i = 1 . . . n, then:

E
[
max

i
{Xi · I(Xi≥ti)}

]
≥ p · E

[
max

i
{Xi}

]
.

Lemma 3 immediately implies the following corollary, already known from [7].

Corollary 1. [mhr, independent] In every single-item setting with n bidders
whose values are distributed according to independent (possibly non-identical)
distributions that satisfy the monotone hazard rate condition, the Vickrey auction
with monopoly reserves is a (1/e, 1/2)-approximation.

Proof. It is known from [11] that, if m is the vector of monopoly reserve prices,
then Vicm (the Vickrey auction with monopoly reserves) is a 1/2-approximation
to the optimal revenue. The welfare guarantee follows from Lem. 3 and the
following fact from [2]: if v is drawn from a monotone hazard rate distribution,
then Pr

[
v ≥ φ−1(0)

]
≥ 1/e. ut

Unfortunately, as discussed in Sec. 1, the Vickrey auction with monopoly re-
serve prices may be arbitrarily inefficient when we allow for regular distributions;
in particular we cannot employ Lem. 3 directly as the probability of any single
bidder being above her monopoly reserve may be arbitrarily small. To fix this,
we recall a lemma for regular distributions from [5]. For a single bidder setting,
this lemma guarantees that there is always a reserve price r (which generally
needs to be smaller than the monopoly reserve) that achieves a constant factor
of the optimal revenue, while at the same time is smaller than the bidder’s value
with constant probability.



Lemma 4 ([5]). Let F be a regular distribution, and let RF (x) = x·F−1(1−x),
for all x ∈ [0, 1], 4 be the revenue curve in quantile space. Then, for all 0 < q̃ ≤
q ≤ p < 1,

RF (q̃) ≤ 1
1− p

RF (q).

If we try to use Lem. 4 to generalize Cor. 1 to regular distributions, we run
into an additional difficulty. Indeed, if we lower the bidders’ reserve prices to
some vector r ≤m below their monopoly reserves and run Vicr, the bidders will
start contributing negative virtual values to the expected virtual welfare of the
auction (i.e. its expected revenue). So we need to control the absolute value of
the overall negative contribution to the expected virtual social welfare. This is
not straightforward and is established in the following lemma, which alongside
our main result is one of the main contributions of this paper.

Before providing its proof, it is worth noting that the obvious approach of
decomposing the auction’s virtual welfare into every bidder’s contribution, using
the law of total expectation, and then comparing each bidder’s contribution un-
der different reserve prices poses technical challenges. In particular, the terms of
the decomposition cannot be directly compared as each of these terms depends
on the probabilistic experiment that determines the winner of the auction, and
this experiment depends on the reserves in ways that makes it hard to find a
useful coupling that enables term-by-term comparisons. Our technique tries to
disentangle the contribution of each bidder to the virtual welfare of the auction
from the competition among the bidders, enabling us to first relate the revenue
of Vicr with the revenue of a hybrid auction, instead of Vicm (for which we have
good revenue guarantees from [11]). Our hybrid auction uses the tweaked re-
serves r to truncate the bidders’ values, but only gives the item to the winner of
Vicr if the winner also meets her monopoly reserve. Next we relate the revenue
of our hybrid auction to Vicm. This is quite more challenging and involves a
calculation that matches events where the hybrid auction makes no sale while
Vicm makes a sale to events where both auctions make a sale, establishing a fac-
tor 2 approximation. We expect our technique to find broader use in mechanism
design.

Lemma 5. [Many-to-One Reduction—Revenue] Consider a single-item
setting with n bidders whose values are distributed according to independent
(possibly non-identical) regular distributions. Let also r = (r1, . . . , rn) be a vec-
tor of reserve prices such that, for all i ∈ {1, . . . , n}, ri ≤ φ−1

i (0) (i.e. ri
is no larger than the monopoly reserve for bidder i) and Rev[Vicri

({i})] ≥
(1−p)·Rev[Mye({i})], for some p ∈ (0, 1). (That is, if bidder i were considered in
isolation then the Vickrey auction with reserve price ri would achieve a (1− p)-
fraction of the optimal revenue.) Then it holds that Rev[Vicr] ≥ 1−p

4 ·Rev[Mye].

4 See the discussion in [5] for why F−1 is a well-defined function for a differentiable
regular distribution.



Proof. Let Ei denote the event that i is the winner of the Vikrey auction with
reserves r, i.e. i = arg maxj{vj · I(vj≥rj)} 5 and vi ≥ ri. Using Prop. 1 we can
write Rev[Vicr] in terms of the bidders’ virtual values as follows:

Rev[Vicr] =
n∑

i=1

E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] Pr [Ei, φi(vi) ∈ [φi(ri), 0]]

+ E [φi(vi) | Ei, φi(vi) ≥ 0] Pr [Ei, φi(vi) ≥ 0] . (1)

In the course of the proof, we use the following inequalities:

E [φi(vi)|φi(vi) ∈ [φi(ri), 0]] ≤ E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] (≤ 0) (2)

(0 ≤) E [φi(vi)|φi(vi) ≥ 0] ≤ E [φi(vi) | Ei, φi(vi) ≥ 0] (3)

|E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] | · Pr [φi(vi) ∈ [φi(ri), 0]] ≤
p · E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] (4)

Inequalities (2) and (3) follow from Lem. 2 when g is φi and Y = maxj 6=i{vj ·
Ivj≥rj

}. Inequality (4) involves a single bidder, and follows immediately from
our assumption Rev[Vicri

({i})] ≥ (1− p) · Rev[Mye({i})] and noting that

Rev[Vicri
({i})] = E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] · Pr [φi(vi) ∈ [φi(ri), 0]]

+ E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] ;
Rev[Mye({i})] = E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] .

Using (2), (3) and (4), we can bound the terms of the negative contribution to
the expected revenue (1) as follows:

|E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] | · Pr [Ei, φi(vi) ∈ [φi(ri), 0]]
≤ |E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] |Pr [φi(vi) ∈ [φi(ri), 0]]︸ ︷︷ ︸Pr [Ei | φi(vi) ∈ [φi(ri), 0]]︸ ︷︷ ︸
≤
︷ ︸︸ ︷
p · E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] ·

︷ ︸︸ ︷
Pr [Ei | φi(vi) ≥ 0]

≤ p · E [φi(vi) | Ei, φi(vi) ≥ 0] · Pr [Ei, φi(vi) ≥ 0]

where for the first inequality we used (2) (and the fact that both sides of the
inequality are non-positive), for the second inequality we used (4) and Lem. 1
taking g equal to φi, X = vi (conditioned on X ≥ ri), Y = maxj 6=i{vj · Ivj≥rj}
and c = 0, and in the third inequality we used (3). We can now bound the
revenue as follows:

Rev[Vicr] ≥ (1− p) ·
n∑

i=1

E [φi(vi) | Ei, φi(vi) ≥ 0] · Pr [Ei, φi(vi) ≥ 0] . (5)

5 Throughout the proof we assume that all maximizations have a unique maximizer.
This is ok, since we consider continuous distributions so this happens with prob. 1.



To continue, we observe that the summation on the right-hand-side of (5)
can be interpreted as the revenue of the following hybrid auction, H, which
lies between Vicr and Vicm: H truncates all bidders at their respective reserve
prices ri; among the surviving bidders it identifies the larger bidder i∗ as a
potential winner, but only allocates the item to i∗ if she clears her monopoly
reserve mi∗ ; if this happens, i∗ pays the maximum of her reserve price mi∗ and
maxj 6=i∗{vj · I(vj≥rj)}. We can clearly lower bound the expected payment of
bidder i in the hybrid auction by the following expression:∫ mi

x=0

Pr
[
max
j 6=i
{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx.

Hence:

E [RH] ≥
n∑

i=1

∫ mi

x=0

Pr
[
max
j 6=i
{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx. (6)

Next we compare the revenue of H to that of the Vickrey auction with
monopoly reserves Vicm. Our first observation is that whenever (i.e. for any
value vector for which) H sells to some bidder i, Vicm also sells to the same bid-
der i; moreover, the payment of bidder i in H is at least as large as her payment
in Vicm.6 So the contribution of bidder i to the revenue from the event where
she gets the item in both auctions is larger in the hybrid auction. This implies
that the revenue in the event that both H and Vicm sell the item is larger in H
than Vicm. Let us call this event the good event G. We have just argued that

E [RH | G] · Pr[G] ≥ E [RVicm | G] · Pr[G]. (7)

So it suffices to bound the revenue of Vicm under the event that Vicm sells to
some bidder, but the hybrid auction does not sell to any bidder. Let us call this
event the bad event, B. We claim that the bad event is contained in the union of
the following disjoint events:

Bi =
{
vi · I(vi≥ri) = max

j
vj · I(vj≥rj) and vi ≤ mi

}
, for all i.

Indeed, if the bad event happens it must be that the winner j∗ of Vicm does not
satisfy vj∗ · I(vj∗≥rj∗ ) = maxj{vj · I(vj≥rj)}. Suppose instead that vi · I(vi≥ri) =
maxj{vj · I(vj≥rj)}. For i not to be the winner in the hybrid auction it must be
that vi ≤ mi. Hence Bi is satisfied.

6 The reason for this is that H uses lower reserves to truncate the bidders’ values.
So if i wins in H her value is larger than her monopoly reserve as well as all other
bidders’ values truncated at the reserves r. So her value must also be larger than the
other bidders’ values truncated at the (higher) monopoly reserves m. By the same
token, the second highest truncated value will be higher if truncation happens at r
than if it happens at m.



Now, in event Bi, the maximum possible revenue that any auction (and hence
Vicm) could be making is maxj 6=i vj · I(vj≥rj). Hence, the revenue of Vicm from
the event Bi can be upper bounded as:

E [RVicm | Bi] · Pr[Bi] ≤
∫ mi

x=0

Pr
[
max
j 6=i
{vj · I(vj≥rj)} = x

]
· x · Pr [x ≤ vi ≤ mi] dx

≤
∫ mi

x=0

Pr
[
max
j 6=i
{vj · I(vj≥rj)} = x

]
· x · Pr [vi ≥ x] dx

≤
∫ mi

x=0

Pr
[
max
j 6=i
{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx (8)

where the last inequality follows from the definition of the monopoly reserve mi.
Hence, the revenue of Vicm from the bad event B can be upper bounded as:

E [RVicm | B] · Pr[B] ≤
n∑

i=1

E [RVicm | Bi] · Pr[Bi] ≤ E [RH] , (9)

where for the first inequality we used that B ⊆ ∪iBi, and for the second inequal-
ity we combined (8) and (6). Combining (9) and (7) we obtain:

Rev[H] ≥ 1
2
· Rev[Vicm]. (10)

The lemma follows by combining (5), (10) and noticing that the revenue of
Vicm is known by [11] to be a 1/2-approximation to the optimal revenue, i.e.
Rev[Vicm] ≥ 1

2 · Rev[Mye]. ut

We are now ready to prove our main theorem:

Theorem 1 (Main). For every single-item setting with n bidders whose values
are distributed according to independent (possibly non-identical) regular distri-
butions, and any p ∈ [0, 1], there is a vector of reserve prices r = (r1, . . . , rn)
such that Vicr is a (p, (1− p)/4)-approximation.

Proof. We argue that, for all i, there exists a price ri such that the following are
satisfied:

Pr[vi ≥ ri] ≥ p; and

Rev[Vicri({i})] ≥ (1− p) · Rev[Mye({i})].
Indeed, we distinguish two cases. If 1−F (φ−1

i (0)) ≥ p, we take ri = φ−1
i (0) and

the above are satisfied automatically. Otherwise, the existence of a reserve with
the above properties is implied by Lem. 4. Given reserves r1, . . . , rn as above,
the theorem follows immediately from Lem. 3 and 5. ut

Picking p = 1/5 we obtain a (1/5, 1/5)-approximate mechanism for regular
distributions.

Corollary 2. [regular, independent] For every single-item setting with n
bidders whose values are distributed according to independent (possibly non-
identical) regular distributions, there exist reserve prices r such that Vicr achieves
a (1/5, 1/5)-approximation.



4 The non-regular, i.i.d. case

In this section we show that the Vickrey auction with an anonymous reserve price
achieves a constant factor approximation to both objectives for general distri-
butions, when the bidders’ values are distributed independently but identically.
We will follow the approach of [6], which makes use of prophet inequalities [15]
to show that this auction achieves a 1/2-approximation to the optimal revenue.

We first describe prophet inequalities. Imagine a gambler facing a series of n
games in a casino, one on each of n days. Game i has a prize associated with it,
whose value is distributed according to some distribution Fi. The distributions
of the prize values are known to the gambler in advance, but their exact real-
ization is not known in advance, and neither is the order of the games. On day
i a game is chosen by an adversary trying to minimize the gambler’s profit and
its prize value is drawn from the corresponding distribution; the gambler needs
to decide whether to pick the prize and leave the casino, or ignore it and keep
playing. Clearly the gambler’s optimal strategy can be computed using back-
wards induction; on the other hand, there exists a simple threshold strategy that
guarantees the gambler at least half of the expected value of the maximum prize.
A threshold strategy is a single value t, such that the gambler accepts the first
prize i with vi ≥ t; the proof of the following theorem can be found in [15, 10].

Theorem 2. There exists a threshold t such that, independently of the order the
games are played, the expected prize of the gambler is at least half of the expected
value of the maximum prize, and the probability that the gambler receives a prize
is exactly 1/2.

In [6] they leverage this theorem to show that the Vickrey auction with an
anonymous reserve price achieves at least half of the optimal revenue. We can
easily extend this to show a guarantee for both social welfare and revenue.

Theorem 3. In every single-item setting with n bidders whose values are drawn
independently from the same (possibly non-regular) distribution, a Vickrey auc-
tion with an anonymous reserve price achieves a 1/2-approximation to both op-
timal revenue and welfare.

Proof. For the sake of completeness we first sketch the proof for revenue. (For
full details we refer the reader to [10].) Observe that the problem a revenue-
optimizing auctioneer faces is similar to the gambler’s problem described above,
if prizes are taken to be the bidders’ ironed virtual values (assuming that the
gambler’s strategy treats all values in every flat region of the ironed virtual
valuation functions the same). Indeed, let t be the threshold that is guaranteed
by Th. 2, and pick the reserve price to be p = φ̂−1(t), where φ̂ denotes the ironed
virtual valuation of the bidders. If there are multiple p’s mapped to t by φ̂ pick
the smallest such p. Given this tie-breaking, observe that the Vickrey auction
with reserve price p treats all flat regions in the ironed virtual valuation function
the same; hence its revenue is equal to the expected ironed virtual value of the
winner (prize picked), which by Th. 2 is at least 1/2 of the optimal expected



ironed virtual surplus (expected maximum prize). Since the latter is an upper
bound to the optimal revenue, the revenue of the Vickrey auction with reserve p
is a 1/2-approximation to the optimal revenue. Moreover, Th. 2 guarantees that
a prize will be picked with probability at least 1/2, i.e.

Pr
[
max

i
{vi} ≥ p

]
≥ 1/2 ≥ Pr

[
max

i
{vi} ≤ p

]
. (11)

Note that the way we defined our tie-breaking rule is important for this to hold.
Next we show that this auction achieves at least half of the optimal social welfare:

E
[
max

i
{vi}

]
=
∫ p

0

x · Pr
[
max

i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max

i
{vi} = x

]
dx

≤ p ·
∫ p

0

Pr
[
max

i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max

i
{vi} = x

]
dx

(11)

≤ p ·
∫ ∞

p

Pr
[
max

i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max

i
{vi} = x

]
dx

≤
∫ ∞

p

x · Pr
[
max

i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max

i
{vi} = x

]
dx

= 2 · E
[
max

i
{vi · Ivi≥p}

]
ut
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A Missing Proofs

Before stating the proofs, we remind the reader the notion of stochastic domi-
nance of measures.

Definition 2 (Stochastic Dominance). Let F1 and F2 be distributions over
R. We say that F2 stochastically dominates F1 iff there exist random variables
X1 and X2 that are marginally distributed according to F1 and F2 respectively,
and a coupling of X1 and X2 such that X1 ≤ X2, with probability 1.

Proof (of Lemma 1). Fix c, let I := {x | g(x) = c} and, without loss of generality,
assume that Pr[g(x) ≤ c] ≤ Pr[g(x) ≥ c]. Let F1 be the distribution of X, condi-
tioning on g(X) ≤ c, and F2 the distribution of X, conditioning on g(X) ≥ c. We
claim that F2 stochastically dominates F1. Indeed, let X1 be a random variable
distributed according to F1 and X2 a random variable distributed according to
F2. Define any coupling of X1 and X2 enforcing that whenever X2 ∈ I, X1 = X2.
This is easy to achieve since, at every point x ∈ I, F1 has more probability mass
than F2 (using our assumption that Pr[g(x) ≤ c] ≤ Pr[g(x) ≥ c].) It is now easy
to verify that any such coupling satisfies that X1 ≤ X2, with probability 1. (For
completeness, we note that, if instead we had Pr[g(x) ≤ c] ≥ Pr[g(x) ≥ c], we
would pick any coupling satisfying that whenever X1 ∈ I, X2 = X1.)

Suppose that X1 and X2 are coupled as above and sample Y independently
from X1 and X2. In the joint distribution F thus defined, whenever X1 ≥ Y ,
it must also be that X2 ≥ Y (since by stochastic domination Pr [X2 ≥ X1] =
1). Hence under F : Pr [X2 ≥ Y ] ≥ Pr [X1 ≥ Y ]. The lemma now follows by
simply noticing that the marginal of F over the pair (X1, Y ) is identical to the
distribution of X and Y conditioning on g(X) ≤ c, and similarly for (X2, Y ). ut

Proof (of Lemma 2). For any constant c ∈ R:

E [g(X)] = E [g(X) | X ≥ c] Pr [X ≥ c] + E [g(X) | X ≤ c] Pr [X ≤ c]
= E [g(X) | X ≥ c] + (E [g(X) | X ≤ c]− E [g(X) | X ≥ c]) · Pr [X ≤ c]
≤ E [g(X) | X ≥ c] , (12)

where the inequality follows from the fact E [g(X) | X ≤ c] ≤ E [g(X) | X ≥ c].
This is true since g is a non-decreasing function, and the conditional distribution



of X, conditioning on X ≥ c, stochastically dominates the conditional distribu-
tion of X, conditioning on X ≤ c (this is a special case of what we argued in the
beginning of the proof of Lem. 1).

To conclude the lemma, let f(y) be the density function of Y . Notice that:

E [g(X)] ≡
∫

y

E [g(X)] f(y)dy ≤
∫

y

E [g(X) | X ≥ y] f(y)dy ≡ E [g(X) | X ≥ Y ] ,

where the equalities follow from the independence of X and Y and the inequality
follows from applying (12) pointwise for all y. ut
Proof (of Lemma 3). Let Ei = {Xi = maxj{Xj}}. Then E [maxi{Xi}] is:

n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] + E [Xi | Ei, Xi ≤ ti] Pr [Ei, Xi ≤ ti]

To proceed we need the following claims:

Claim 1: Pr [Ei, Xi ≥ ti] ≥ p
1−p · Pr [Ei, Xi ≤ ti].

Proof (of Claim 1).

Pr [Ei, Xi ≥ ti] = Pr [Ei | Xi ≥ ti] · Pr [Xi ≥ ti]

≥ Pr [Ei | Xi ≤ ti] ·
p

1− p
Pr [Xi ≤ ti]

=
p

1− p
· Pr [Ei, Xi ≤ ti] ,

where in the inequality above we used the following facts: First, Pr [Ei | Xi ≥ ti] ≥
Pr [Ei | Xi ≤ ti], which follows from Lem. 1 taking X = Xi, c = ti, g the identity
function, Y = maxj 6=i{Xj} and noticing that the event Ei is the same as the
event X ≥ Y ; the second fact we use is that Pr [Xi ≥ ti] ≥ p

1−pPr [Xi ≤ ti],
which follows from the fact that Pr [Xi ≥ ti] ≥ p and Pr [Xi ≤ ti] ≤ 1− p. ut

Claim 2: E [Xi | Ei, Xi ≥ ti] ≥ E [Xi | Ei, Xi ≤ ti] .
Proof (of Claim 2). Just note: E [Xi | Ei, Xi ≥ ti] ≥ ti ≥ E [Xi | Ei, Xi ≤ ti]. ut
From the above claims and the non-negativity of Xi it follows that:

E
[
max

i
{Xi}

]
≤ 1
p
·

n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] . (13)

Next we write E
[
maxi{Xi · I(Xi≥ti)}

]
as follows:

n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] + E [Xi | ¬Ei, Xi ≥ ti] Pr [¬Ei, Xi ≥ ti]

≥
n∑

i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] ,

where in the last inequality we used the non-negativity of Xi. The lemma follows
by combining the above lower bound on E

[
maxi{Xi · I(Xi≥ti)}

]
with (13). ut


