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Abstract

A buyer seeks to procure a good characterized by its price and its quality from suppliers who
have private information about their cost structure (fixed cost + marginal cost of providing
quality). We solve for the optimal buying procedure, i.e. the procedure that maximizes the
buyer’s expected utility. We then use the optimal procedure as a theoretical and numerical
benchmark to study practical and simple buying procedures such as scoring auctions and nego-
tiation. Specifically, we derive the restrictions that these simpler procedures place on allocations
and compare them with the optimal allocations to generate insights about the properties of these
simpler procedures and identify environments where they are likely to do well. We also use the
optimal procedure benchmark to compare the performance of these procedures numerically. We

find that scoring auctions are able to extract a good proportion of the surplus from being a
strategic buyer, that is, the difference between the expected revenue from the optimal mech-
anism and the efficient auction. Sequential procedures (to which many negotiation processes
belong) do less well, and, in fact, often do worse than simply holding an efficient auction. In
each case, we identify the underlying reason for these results.
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1 Introduction

Procurement rarely involves considerations solely based on price. Instead, concerns about the

quality of the good or service provided are often important to the final decision. In this paper,

we consider how a buyer who cares about quality should structure his purchasing process when

suppliers compete for a single procurement contract and we evaluate the performance of simpler

(but suboptimal) procedures.

When suppliers’ private information about their costs can be captured by a one-dimensional para-

meter, the answer to the first question is well-known (Laffont and Tirole, 1987, and Che, 1993). In

addition, Che (1993) provides a partial answer to the second question by showing that a scoring

auction implements the optimal mechanism. This paper extends the analysis of the first question

to environments with multidimensional private information and answers the second question more

exhaustively and for several alternative procedures.

The two distinguishing features of our model are that suppliers’ private information about their

cost structure is multidimensional and that quality is contractable and endogenously determined as

part of the procurement process. US State Highway Authorities’ procurement for highway repair

jobs illustrates these aspects of the contracting environment.1 For high density traffic areas, these

agencies care about the cost of the job and the time in which the job will be completed. A contractor

may be able to speed up the job by hiring extra labor, by using some equipment more intensively,

or by shifting some resources from other jobs. Hence, suppliers’ quality (here, the time they need

to complete the job) is not fixed but is endogenous, with increased quality incurring a higher cost.

Moreover, this marginal cost of quality is likely to vary across potential contractors in a way that is

not observable to their competitors. Therefore, it represents one dimension of private information.

However, there are other sources of unobserved cost heterogeneity. These include the contractors’

material costs, existing contractual obligations and organizational structure, which combine to

determine the fixed cost of undertaking a job at any quality level. Thus, private information is

likely to be better captured by a multidimensional parameter.

We first derive the optimal procurement mechanism in a model where each potential supplier has

private information about two components of her cost structure: her fixed cost and her marginal

cost of providing quality. Costs on each dimension can be high or low, and we allow for any pattern

of correlation between a supplier’s fixed cost and her marginal cost. Across bidders, costs are

independently distributed. The buyer’s objective is to maximize his expected utility subject to the

suppliers’ participation and incentive compatibility constraints.

The optimal procurement mechanism differs significantly from its counterpart in one-dimensional

environments. It depends finely on the exact parameters of the problem, including the number

of suppliers. Moreover, it is not easily amenable to implementation by a simple-looking auction

1See for instance Arizona Department of Transport (2002) and Herbsman et al. (1995).
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format, unlike its one-dimensional counterpart. The source of these discrepancies can be traced

back to the well-known endogeneity of the direction in which incentive compatibility constraints

bind in multidimensional screening problems.

While the fragility of the intuitions gained from one-dimensional models is useful to illustrate, the

research agenda on multidimensional screening has left the economist concerned with the appli-

cation of mechanism design on unsure footing. In this paper, we take a new approach and use

the characterization of the optimal mechanism as a benchmark to investigate the performance of

practical and simpler buying procedures.

This benchmark role plays out at two levels. At the theoretical level, we can compare the allocation

(probabilities of getting the contract and qualities delivered) of the optimal mechanism and that of

any other mechanism of interest to understand its advantages and disadvantages.

At a numerical level, the characterization of the optimal mechanism solves what is essentially a free

parameter problem in interpreting numerical comparisons of the performance of other procedures.

Without such a characterization, the only readily available benchmark is the efficient mechanism.

Unfortunately, the efficient mechanism is not useful on its own. To illustrate, suppose that, for

some set of parameters, the efficient mechanism generates an expected utility for the buyer of

1, while the mechanism of interest returns 2. This looks like a 100% improvement in revenue.

However, by adding 9 to the buyer’s utility function, we could well generate expected utilities of

10 and 11 respectively. Now the improvement looks like only 10%. The characterization of the

optimal mechanism gives an extra point of comparison. Suppose the optimal mechanism returns

an expected utility of 3 (or 12). This allows us to conclude that the mechanism of interest captures

50% of the rents available from being a strategic buyer (that is, the difference between the revenue

from the optimal mechanism and the efficient mechanism).

We apply this new approach to evaluate the performance of the efficient auction, scoring auctions

and sequential procedures where suppliers are approached one at a time. Our motivation for looking

at these procedures is twofold. First, Asker and Cantillon (2006) have shown that scoring auctions

dominate price-only auctions, beauty contests and menu auctions. Thus, scoring auctions are an

obvious candidate for a simple second-best procedure. Second, negotiation is often preferred by

buyers when quality matters and our model of sequential procedures bounds many realistic models

of negotiation.

We characterize the allocations that can be implemented by a scoring auction (Theorem 2) and

derive the optimal sequential procedure (Theorem 3). By definition, both procedures underperform

against the optimal buying mechanism. The comparison with the allocation generated by the

optimal mechanism highlights several characteristics of these alternatives. First, scoring auctions

can replicate the allocation probabilities of the optimal procedure in many cases. Where scoring

auctions fall short of the optimal auction concerns their inflexibility in terms of qualities. Second,

the efficient auction can be implemented by a scoring auction. Thus, scoring auctions can always do
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weakly better than the efficient procedure. Third, sequential mechanisms are inherently inefficient

and can never replicate the allocation probabilities of the optimal procedure. However, we identify

two classes of environments where they can do better than the efficient auction thanks to the

distortion in production or in allocation probabilities that they generate.

We further investigate these questions numerically by evaluating the proportion of the surplus to

being strategic that simpler procedures capture across a wide range of environments. To do this,

we compute an upper bound to the expected utility from these procedures by deriving the optimal

scoring auction and the optimal sequential procedure. We find that the optimal scoring auction

does very well and on average captures more than two thirds of the surplus, given the parameters

we consider. Because this result holds for the upper bound and may not extend for all scoring

auctions, we also investigate the performance of scoring auctions that use “naïve” scoring rules

that distort the buyer’s true preferences in the same direction as the optimal scoring auction but in

an arbitrary way. We find that small deviations from the buyer’s true preferences often uniformly

increase his expected utility. We then turn to sequential procedures. We find that the optimal

sequential procedure does very badly and often worse than the efficient auction, except when the

fixed and marginal costs are highly correlated, or when there is little uncertainty about suppliers’

fixed costs. Because these two classes of environments are near one-dimensional environments, it

seems safe to claim that efficient auctions generally dominate sequential procedures when private

information is multidimensional.

Related literature. This paper is related to the literatures on procurement and on multidimen-
sional screening.

The literature on procurement is organized around several themes, including the question of how

to take factors other than price into account in the procurement process (Laffont and Tirole, 1987,

Che, 1993, Branco, 1997, Ganuza and Pechlivanos, 2000, Rezende, 2003, de Frutos and Pechlivanos,

2004), the impact of the potential non-contractability of quality (Klein and Leffler, 1981; Taylor,

1993; Manelli and Vincent, 1995; Morand and Thomas, 2002; Che and Gale, 2003), and the impact

of moral hazard and renegotiation (Bajari and Tadelis, 2001, Bajari, McMillan and Tadelis, 2004).

See Che (2006) for an overview.

Our paper fits squarely into the first group and we abstract from the other issues. Our contribution

to this literature is twofold. First, we extend prior analyses of optimal procurement to the richer

environment where private information is multidimensional. Laffont and Tirole (1987) and Che

(1993) characterize the optimal buying mechanism when private information is one-dimensional

(the marginal cost of providing quality). Under some regularity conditions, the optimal buying

scheme distorts the quality provided by the suppliers downwards relative to their first best levels.

The optimal level of distortion is independent of the number of suppliers, a property known as

the “separation between screening and selection” (Laffont and Tirole, 1987). In addition, except

for the presence of a reserve price, the contract is always allocated efficiently. Finally, Che shows
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that a scoring auction with a scoring rule that is linear in price implements the optimal scheme.

Our analysis shows that these results depend heavily on the assumption of one-dimensional signals:

except for the downward distortion of quality, none of these properties holds when we move to a

multidimensional setting. Second, we evaluate existing buying procedures against the benchmark of

the optimal scheme. Other papers compare the performance of different procedures: Dasgupta and

Spulber (1989), Che (1993) and Chen-Ritzo et al. (2003) compare the scoring auction, which turns

out to be optimal in their setting, with price-only auctions, Asker and Cantillon (2006) compare

the scoring auction with price-only auctions, beauty contests, and menu auctions, Manelli and

Vincent (1995) and Bulow and Klemperer (1996) compare (two different models of) negotiation with

auctions. Except for Asker and Cantillon (2006), all these papers are restricted to one-dimensional

private information. Moreover, our paper goes beyond simply ranking procedures by providing a

quantitative assessment of the difference in expected utility, and identifying environments where

these alternative procedures are likely to perform well.

This paper also contributes to the literature in multidimensional screening. Rochet and Stole (2003)

present a recent survey of the contracting applications of multidimensional screening. Auction ap-

plications include the optimal multi-unit auction problems studied by Armstrong (2000), Avery

and Henderschott (2000), Manelli and Vincent (2004) and Malakhov and Vohra (2004), and the

optimal auction with externalities studied by Jehiel et al. (1999). Unlike contracting environments,

our problem involves a resource constraint because the contract can only be allocated to one sup-

plier. Unlike multi-unit auction environments, quality in our problem introduces some non-linearity.

Hence, none of the existing characterization results applies to our problem and the method we use

to solve for the solution is somewhat different from the methods used in these papers (even if the

underlying principle is the same).2

Through our emphasis on second-best mechanisms, our work echoes the research agenda laid out

in Wilson (1993) of identifying simple and robust second best mechanisms. Our contribution here

is in leveraging the characterization of the optimal mechanism to analyze second-best candidates

in auction environments with multidimensional private information.

2 Model

We consider a buyer who wants to buy an indivisible good for which there are N potential suppliers.

The good is characterized by its price, p, and its quality, q.

Preferences. The buyer values the good (p, q) at v(q)−p, where vq > 0 (we assume that vq(0) =∞
and limq→∞ vq(q) = 0 to ensure an interior solution) and vqq < 0. Supplier i’s profit from selling

good (p, q) is given by p− θi1− θi2q, where θ
i
1 ∈ {l, h} and θi2 ∈ {L,H} (l < h and 0 < L < H.). For

2Asker and Cantillon (2005, section 6) investigate in more detail the formal analogies and differences with existing

multidimensional screening problems.
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future reference, let ∆θ1 = h− l and ∆θ2 = H −L. Given the binomial support of θ1 and θ2, there

are four supplier types: (h,H), (l,H), (h,L), (l, L), which we denote for brevity hH, lH, hL and

lL. We will sometimes use (θ1k, θ2k) to denote supplier type k. For example, (θ1lH , θ2lH) = (l,H).

Note that the buyer and the suppliers are risk neutral.

Social welfare. Let Wk(q) = v(q) − θ1k − θ2kq, the social welfare associated with giving the

contract to type k with quality q. Define WFB
k = maxqWk(q). Given the single crossing condition,

qFBlH = qFBhH < qFBhL = qFBlL (to save on notation we will use the short-hand notation q and q to

describe the first best levels of qualities, q < q).

Our assumptions thus far yield an incomplete ordering of types in terms of the first best levels of

welfare they generate. To simplify the analysis, we restrict attention to the case where WFB
lH <

WFB
hL . This assumption does not affect the method we use or the results we get (in particular,

Theorems 2 and 3 do not need this assumption). It simply reduces the number of cases we need

to consider when we characterize the optimal mechanism (Theorem 1). Under this assumption,

having a low marginal cost for delivering a higher quality product is more important than having

a low fixed cost, at least in the first best solution. This case includes, as a limit, the case where

firms only differ in their marginal cost parameter, which has been studied by Laffont and Tirole

(1987), Che (1993) and Branco (1997). The natural ordering of types is thus lL Â hL Â lH Â hH.

Note that this assumption implies that ∆θ1 −∆θ2q < 0.

Information. Preferences are common knowledge among suppliers and the buyer, with the excep-
tion of suppliers’ types, (θ1i, θ2i), i = 1, ...,N, which are privately observed by each supplier. Types

are independently and symmetrically distributed across suppliers, in the sense that the probability

of supplier i being of some type is independent of other suppliers’ types, but the ex-ante distribution

of types is the same for all bidders. Thus we can write the probability of each type as αk > 0,

k ∈ {hH, lH, hL, lL} . Notice that we do not put any restriction on the αk’s except for the fact that
they need to sum to one. Any pattern of correlation among a supplier’s fixed cost and her marginal

cost is allowed.

Note: The 2-by-2 discrete type space considered here is a concession to the practical difficulties
of optimal screening problems in multidimensional environments. Armstrong (1996) and Rochet

and Choné (1998) consider a nonlinear pricing problem in a continuous type-space. Their analyses

suggest that for tractability a lot of ex ante structure needs to be imposed at the expense of

economic richness. Much of the recent work in multidimensional screening has tended to focus on

discrete type spaces (Armstrong, 2000; Avery and Henderschott, 2000; Malakhov and Vohra, 2004).

In the conclusions, we discuss the applicability of our results to richer informational environments.
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3 Characterization of the Optimal Mechanism

The buyer’s problem is to find a mechanism that maximizes his expected utility from the pro-

curement process. For simplicity, we assume that the buyer buys with probability one (that is,

we assume non exclusion).3 A direct revelation mechanism in this setting is a mapping from the

announcements of all suppliers, {θ1i, θ2i}Ni=1, into probabilities of getting the contract, the level of
quality to deliver and a money transfer.

Given that the buyer’s preference over quality levels is strictly concave, there is no loss of generality

in restricting attention to quality levels that are only a function of suppliers’ types. Let qk denote

the quality level to be delivered by a type k supplier. This, together with suppliers’ risk neutrality,

implies that suppliers’ payoffs and thus behavior only depends on their expected probabilities of

winning and their expected payment. Let xk be the probability of winning the contract conditional

on being type k and let mk the expected payment she receives. Finally, let Uk denote type k’s

equilibrium expected utility. We have: Uk = mk − xk(θ1k + θ2kqk).

With these simplifications and notation, the buyer’s expected utility from the mechanism is given

by

F (xk, qk, Uk) = N
X

k∈{hH,lH,hL,lL}
αk(xkWk(qk)− Uk) (1)

The buyer seeks to maximize this expression over contracts (xk, qk, Uk), subject to suppliers’ incen-

tive compatibility (IC) constraints:

Uk ≥ Uj + xj(θ1j − θ1k) + xjqj(θ2j − θ2k) for all k, j ∈ {hH, lH, hL, lL}, (2)

individual rationality (IR) constraints:

Uk ≥ 0 for all k ∈ {hH, lH, hL, lL}, (3)

and subject to the feasibility constraint that the probability of awarding the contract to a subset

of the types is always less than or equal to the probability of such types in the population:

N
X
k∈K

αkxk ≤ 1− (1−
X
k∈K

αk)
N for all subsets K of {hH, lH, hL, lL} (4)

Finally, non exclusion imposes that

N
X

αkxk
k∈{hH,lH,hL,lL}

= 1 (5)

Border (1991) guarantees that the feasibility constraint is both necessary and sufficient for the

expected probabilities xk to be derived from a real allocation mechanism. This ensures that the

solution to the maximization problem of (1) subject to (2), (3), (4) and (5) is implementable.
3Note that, unlike in environments with continuous multidimensional types (Armstrong, 1996), the assumption of

non exclusion is not particularly restrictive in discrete type environments. It is easy to find parameter values such

that all virtual welfares in the solution are positive making exclusion non-optimal (this can be seen for example in

expression (6) below).
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The buyer’s problem has four individual rationality constraints, 12 incentive compatibility con-

straints and 15 feasibility constraints. We can simplify them somewhat with the following results:

Lemma 1: Consider the feasibility constraints (4), and define an n-type constraint as a feasibility
constraint with the relevant subset K having n elements. The following statements hold:

i. At most one one-type constraint binds, at most one two-type constraint binds and at most

one three-type constraint binds.

ii. These binding constraints are nested, in the sense that the type in the binding one-type

constraint must belong to the binding two-type constraint, and so on.

The proof of Lemma 1 is in the Appendix. The intuition is as follows. Suppose that, at the solution,

the contract is allocated according to the following order of priority: lL Â lH Â hL Â hH, i.e. give

the contract to a type lL if there is one, otherwise to a type lH if there is one, and so on. This

means that the ex-ante probability that a lL type gets the contract is the probability that there

is at least one type lL suppliers among the N suppliers, i.e. NαlLxlL = 1− (1− αlL)
N . Thus the

one-type constraint binds for lL. It cannot bind for any other types because a binding constraint

for another type would imply that that type has priority over all other types in the allocation, a

contradiction. Next, lL Â lH Â hL Â hH also means that the contract is allocated to a type lL

or lH whenever there is one among the N suppliers. This means that the ex-ante probability of a

type lL or lH winning, N(αlLxlL + αlHxlH), is the probability that there is at least one of these

types among the suppliers, 1− (1− αlL −αlH)
N . Thus the two-type constraint binds for {lL, lH},

showing that the binding constraints are indeed nested. Statement (i) of Lemma 1 suggests that it

could be the case that, say, no one-type constraint binds. This will be the case, for instance if the

order of priority is lL ∼ lH Â hL Â hH, that is, lL and lH have priority over all the other types,

but if there are a lL type and a lH type, the buyer allocates the contract among them randomly.

In this case, no one-type constraint binds. Finally, note that the suppliers’ expected probabilities

are weakly aligned with their order of priority in the sense that, if k Â j, then xk > xj but if k ∼ j,

then xk T xj .

For future reference, denote the winning probabilities resulting from the efficient allocation (lL Â
hL Â lH Â hH) by xFBk , k ∈ {hH, lH, hL, lL}. Denote the winning probabilities for type lH and

hL resulting from the allocation according to order of priority lL Â lH Â hL Â hH by xmaxlH and

xminhL .

Standard manipulation of the incentive compatibility constraints and the individual rationality

constraints allows us to order the probabilities of winning in a limited way.

Lemma 2: At any solution, xlH ≥ xhH , xlL ≥ xhL and UhH = 0

The key difficulty we face in characterizing the solution to the buyer’s problem is in identifying the

set of binding constraints at the optimum together with the associated partition of the parameter

space. Our approach is to start with the buyer-optimal efficient mechanism. The buyer-optimal

efficient mechanism is the mechanism that implements the efficient allocation in the way most
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favorable to the buyer. Efficiency requires that qualities are set such that qlL = qhL = q and

qhL = qhH = q, and that the probabilities are set equal to the first best probabilities, i.e. xk = xFBk
for all k. Efficiency does not pin down payments to suppliers when private information is discrete.

The buyer-optimal efficient mechanism (which we will simply refer to as “the efficient auction”)

sets payments to maximize the buyer’s expected utility while satisfying all incentive compatibility

constraints. In practice, only two sets of IC constraints bind at the efficient auction, as the next

lemma establishes:

Lemma 3: When ∆θ1 > ∆θ2q, IClH,hH , IChL,hH and IClL,hL bind in the efficient auction. When

∆θ1 < ∆θ2q IClH,hH , IChL,hH and IClL,hL bind (see Figure 1).

Insert Figure 1 Here

The proof of Lemma 3 can be found in the Appendix. From this starting point, we progressively

increase the buyer’s expected utility by adjusting the conditional probabilities of winning (the x’s)

and the qualities (the q’s) until there is no further scope for improvement. At this point, we will

have reached the global maximum as guaranteed by the next lemma. Moreover, this approach

ensures that we cover the entire parameter space.

Lemma 4: The first order conditions of the maximization problem (1) subject to (2), (3), (4) and

(5) are necessary and sufficient for a global maximum.

The proof of Lemma 4 is in the Appendix. It allows us to prove the main result of this section:

Theorem 1: Characterization of the optimal buying mechanism
Define q2hH = argmaxq{WhH(q)− αhL+αlL

αhH
q∆θ2} and q2lH = argmaxq{WlH(q)− αhL+αlL

αlH
q∆θ2}.

Part I: When ∆θ1−∆θ2q ≥ 0, the probabilities of winning and quality levels in the optimal buying
mechanism are as given in Table 1.

Part II: When ∆θ1−∆θ2q < 0, the probabilities of winning and quality levels in the optimal buying
mechanism are as given in Table 2.

Insert Tables 1&2 Here

Sketch of Proof : The full proof of Theorem 1 is very long (18 pages). Here we only provide a

proof for solutions 1.1.a and 1.1.b to illustrate our approach to deriving the full characterization.

The reader is referred to Asker and Cantillon (2005) for the full proof.

Consider the efficient auction. Let Uk,j be the expected utility of a type k pretending she is of type

j. To ensure incentive compatibility, while minimizing suppliers’ rents, suppliers’ expected utilities

in the efficient auction must be set such that Uk = maxj 6=k Uk,j . UhH = 0 by Lemma 2.
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From Lemma 4, we need to consider only two cases. If ∆θ1 −∆θ2q ≥ 0, the per-supplier buyer’s
expected utility in the efficient auction,

P
k αk[x

FB
k Wk(qk)− Uk], is given by:

αlHx
FB
lH WlH(qlH)− αlHx

FB
hH∆θ1 + αhHx

FB
hHWhH(qhH) + αhLx

FB
hL WhL(qhL)− αhLx

FB
hH qhH∆θ2

+αlLx
FB
lL WlL(qlL)− αlLx

FB
hL ∆θ1 − αlLx

FB
hH qhH∆θ2

(where all qualities are initially equal to the first best qualities) or, to highlight the virtual welfare

generated by each supplier:

αlHx
FB
lH WlH(qlH) + αhHx

FB
hH [WhH(qhH)−

αlH
αhH

∆θ1 −
αhL + αlL

αhH
qhH∆θ2] (6)

+αhLx
FB
hL [WhL(qhL)−

αlL
αhL
∆θ1] + αlLx

FB
lL WlL(qlL)

The rents of suppliers lL and hL depend positively on qhH and the buyer can increase his expected

utility by decreasing qhH , ideally until

q2hH = argmaxqhH
{WhH(qhH)−

αlH
αhH

∆θ1 −
αhL + αlL

αhH
qhH∆θ2}

Suppose no new IC constraint binds in the process. (This will be the case if xFBlH [∆θ1 −∆θ2q] >
xFBhH [∆θ1 − ∆θ2q2hH ]). Now consider again (6). There is no further scope for improvement by

distorting qualities. Furthermore, the virtual welfare of lL is clearly the largest of all so that it

is optimal to set xlL = xFBlL . However, the relative ranking of the virtual welfare of lH and hL

is unclear. If WhL(q) − αlL
αhL
∆θ1 > WlH(q), the virtual welfare generated by supplier hL remains

larger than that of lH so the optimal allocation is the first best allocation. This is solution 1.1.a.

Suppose instead that the virtual welfare associated with lH is larger than that associated with hL,

itself larger than the virtual welfare associated with hH (formally, and referring to (6), WlH(q) >

WhL(q) − αlL
αhL
∆θ1 ≥ WhH(q

2
hH) −

αlH
αhH
∆θ1 − αhL+αlL

αhH
q2hH∆θ2). In this case, the buyer would

rather give the contract to supplier lH than to supplier hL, i.e. he would like to change the

order of priority in the allocation. Increasing xlH while decreasing xhL concurrently (keeping

αlHxlH + αhLxhL + αlLx
FB
lL constant) does not initially affect any of the virtual welfare and it

increases the buyer’s expected utility. This process continues until either a new IC constraint binds

or we have reached the feasibility constraint for xlH : N
¡
αlHx

max
lH + αlLx

FB
lL

¢
= 1− (αhL+αhH)

N .

Suppose we reach xlH = xmaxlH before any new IC constraint binds. The qualities and probabilities

are then all optimized given the binding constraints. This corresponds to solution 1.1.b. Solution

1.1.c. arises if a new IC constraint binds in the process. Solutions 1.1.d. and 1.1.e. arise when the

ordering of virtual social welfares is such that type lH is preferred to type hH which, in turn, is

preferred to type hL. End of the sketch of the proof.

Tables 1 and 2 present the main features of the solution. The second column describes the probabil-

ities of winning and the last four columns describe the qualities at the solution (an interval means

that the optimal level of quality lies in this interval). For instance, Solution 1.2.b has xlL = xFBlL
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which is greater than xhL(< xFBhL ). This is in turn greater than xlH
¡
> xFBlH

¢
and xhH = xFBhH . Both

qlL and qhL are at the first best levels and qhH ∈ (q2hH , q) and qlH ∈ (q2lH , q). Both are distorted
below the first best level. The conditions that define each solution depend on the resulting binding

constraints and virtual welfares as summarized in Figures 2 and 3. The value of the objective

function and the value of the control variables at the solution are continuous in the parameters of

the model.

Insert Figure 2 Here

The following patterns emerge from the tables. First, the solution describing the optimal scheme

depends on the number of suppliers as well as the usual parameters of the environment (distributions

of types and cost structure). The reason is that the number of bidders affects the probabilities of

winning and thus which incentive compatibility constraints bind. The dependence of the optimal

scheme on the number of bidders is typical of multidimensional environments where the binding

IC constraints are endogenous. No such effect is present in one-dimensional environments (Laffont

and Tirole, 1987).

Second, there is some downward distortion in the quality provided by the high cost marginal

suppliers. The quality provided by the low marginal cost suppliers is never distorted.

Third, probabilities of winning are also often distorted. Specifically, the probabilities of winning

of the high marginal cost suppliers are sometimes distorted upwards, whereas the probability of

winning of low marginal cost supplier hL is sometimes distorted downwards. The allocation of

supplier lL is never distorted.

Insert Figure 3 Here

Putting these two last aspects together - productive and allocative distortions - we find no sys-

tematic “bias against quality” in the two-dimensional model, unlike in the one-dimensional model

(Laffont and Tirole, 1987 and Che, 1993). While the economic conclusions differ, the underlying

economic motivation is the same: reducing suppliers’ rents. The qualities of the high marginal cost

types are distorted downwards to reduce the low marginal cost supplier’s benefit from imitating

them. As illustrated in Figures 3 and 4, all binding constraints between suppliers with different

marginal costs are from the low marginal cost supplier to the high marginal cost supplier so this

“trick” is effective. This is also the case in the one-dimensional model where the distortion of

high-cost types’ quality lowers the informational rents of the low cost types. Similarly, the reason

why supplier hL’s probability of winning is sometimes below her first best level is to reduce supplier

lL’s rent. In each case, the optimal level of distortion balances a trade-off between the costs in

terms of lost social welfare and the benefits in terms of reduced rents.
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The optimal scheme has two disadvantages. First, it depends finely on the parameters of the

environment. Second, it is complex and does not seem to be implementable using a transparent

procedure, a point on which we elaborate below. Yet, transparency is desirable and even often

a requirement, as in public procurement. This suggests that, for practical purposes, second best

solutions that are simple and robust performers in a variety of settings are likely to be more

useful. Commonly used procedures are obvious candidates. They include scoring auctions, price-

only auctions with minimum quality standards, beauty contests, menu auctions where suppliers

can submit several price-quality offers, and negotiation. Asker and Cantillon (2006) have shown

that scoring auctions yield a higher expected utility to the buyer than a price-only auction with

minimum standards and beauty contests, and that they dominate menu auctions when a second

price or an ascending format is used. Hence, our contenders for second best procedures are scoring

auctions and negotiation. We analyze these procedures in the next sections.

4 Scoring Auctions

In a scoring auction, the buyer announces a scoring rule that is linear in price, S(p, q) = ev(q) − p

(with evq ≥ 0, evqq ≤ 0 andmax ev(q)−θ2iq admitting a single interior solution), suppliers submit price-
quality bids (p, q), and the winner is the supplier whose bid generates the highest score according to

the scoring rule.4 The winner’s resulting obligation depends on the auction format. For example,

in a first score scoring auction, the winner must deliver a quality level at a price that matches the

score of his bid. In a second score scoring auction, the winner must deliver a quality level at a price

that matches the second highest score submitted. Scoring auctions are increasingly used in public

and private procurement and are supported by several procurement software packages (see, Asker

and Cantillon, 2006 for examples and references).

4.1 Theoretical properties

Scoring auctions put some structure on suppliers’ bidding behavior. First, given a scoring ruleev(q) − p, suppliers choose their bids to maximize the score they generate given their profit target

π, i.e. they solve max(p,q){ev(q) − p} subject to p − θ1i − θ2iq = π. Substituting for p inside the

maximizer yields

max
q
{ev(q)− θ1i − θ2iq − π} (7)

A property of the solution is that it is independent of π, the profit target, and of θ1i, the fixed cost.

Second, a standard incentive compatibility argument establishes that the ordering of suppliers’

winning probabilities must correspond to their ability to generate a higher score (intuitively, define

maxq{ev(q)− θ1i−θ2iq} as the supplier’s type). Thus, a scoring auction will implement a particular
allocation if two conditions hold:

4Asker and Cantillon (2006) refer to this auction format as a quasilinear scoring auction to emphasize the linearity

of the scoring rule in p.
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1. [production constraint] Given the scoring rule, suppliers maximize (7) by choosing the level

of quality assigned by the allocation.

2. [ranking constraint] The ranking of maxq{ev(q) − θ1i − θ2iq} and, thus, the ranking of the
scores is consistent with the assigned probabilities of winning.

The next Theorem characterizes the set of allocations that can be implemented by a scoring auction.

Theorem 2: An allocation can be implemented with a scoring auction if and only if (1) qlH = qhH ,

qhL = qlL with qlH , qhH < qhL, qlL, (2) αlHxlH + αhLxhL = αlHx
FB
lH + αhLx

FB
hL , xhH = xFBhH and

xlL = xFBlL , (3) ∆θ1 − ∆θ2qhL ≤ 0 when xhL > xminhL and (4) ∆θ1 − ∆θ2qlH ≥ 0 whenever the

allocation is such that xlH > xFBlH .

Theorem 2 clarifies the constraints that a scoring auction places on the possible allocations. Its

proof can be found in the Appendix. The first condition says that two suppliers with the same

marginal cost of quality must be providing the same level of quality. Moreover, suppliers with

a lower marginal cost of quality must deliver higher levels of quality at equilibrium. These two

properties follow from the structure of (7). The second condition says that, at equilibrium, type lL

must win over any other type, and that type hH must lose against any other type. The reason is

that type lL generates the highest value formaxq{ev(q)−θ1i−θ2iq} for any scoring rule and that type
hH generates the lowest such value. The third and fourth conditions follow from the combination

of the production constraint and the ranking constraint. Finally, to prove the sufficiency part of

the claim, we construct a scoring rule that implements the allocation under conditions (1) through

(4).

An immediate consequence of Theorem 2 is that the efficient auction can be implemented by a

scoring auction. Such a scoring auction has a scoring rule that corresponds to the buyer’s preferences

and uses a second score format.5 It is both robust, in the sense that it does not depend on the

parameters of the environment, and transparent.

Theorem 2 also clarifies why scoring auctions cannot in general implement the optimal solution.

First, qhH and qlH differ generically in the optimal mechanism. Moreover, the solution requires

xhH > xFBhH in several cases. This said, scoring auctions have two potential advantages over the

efficient auction. First, they allow for distortion in production. Second, they allow some distor-

tion in allocation probabilities in the same direction as the optimal procedure. The next section

investigates these properties numerically.

5To ensure that the scoring auction generates as much utility to the buyer as possible, type-specific down-payments

must be included. These down-payments are an artifact of the discrete type space. They maintain incentive compat-

ibility and increase the buyer’s utility.
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4.2 Computational Results

Having identified the constraints that scoring auctions place on allocations, we next turn to the

question of their relative performance. We interpret the difference between the expected utility

generated from the optimal mechanism and the expected utility from the efficient auction as the

surplus available to a strategic buyer, and ask to what extent scoring auctions capture this surplus.

We answer this question in two steps. First, we compute a tight upper bound to the performance

of scoring auctions by computing the expected utility generated by the optimal scoring auction.

Second, we analyze the performance of naïve scoring auctions, that is, scoring auctions that use

scoring rules that differ from the optimal scoring rule in an arbitrary way.

4.2.1 Bounds

To evaluate the performance of scoring auctions, we compute an upper bound to the expected utility

that scoring auctions generate by adding the constraints of Theorem 2 onto the initial problem and

solving the resulting program numerically. The resulting expected utility is then compared with the

expected utility from the efficient auction and the expected utility from the optimal mechanism.

Insert Figure 4 Here

Figure 4 shows the results for an environment where v(q) = 3
√
q, l = L = 1, h = 2, N = 2

and αk = 0.25. The value of ∆θ1 varies along the x-axis. The expected utlity from the optimal

mechanism lies above that from the optimal scoring auction which, in turn, dominates that from

the efficient auction. As the value of ∆θ1 increases, the expected utility decreases in all three

mechanisms. This is to be expected. When ∆θ1 increases, the maximum level of welfare decreases

because suppliers’ costs increase. Moreover, fixed costs become relatively more important as a

source of adverse selection. The kink at the point ∆θ1 = 0.5625 corresponds to the point when

the binding incentive compatibility constraint for type hL in the efficient mechanism switches from

IChL,lH to IChL,hH (thus ∆θ1 = ∆θ2q). The resulting increases in the weight of ∆θ1 in the buyer’s

expected utility explains the kink.6

We replicated this exercise for a range of environments by varying the values for the αk’s and some

of the other parameters of the model. Table 3 reports the results. The third column reports the

6As ∆θ1 tends to 0, the source of adverse selection reduces to one dimension, the marginal cost. In this case, Che

(1993) has shown that a scoring auction implements the optimal mechanism. The reason why the expected utility

from the optimal scoring auction does not converge to the expected utility of the optimal mechanism in our graph

is that there is some discontinuity in the optimal scoring auction at ∆θ1 > 0. As long as ∆θ1 > 0, scoring auctions

impose that lH generates a strictly higher score than hH. Thus xlH ≥ xFBlH > xhH = xFBhH (Theorem 2). This leaves

some informational rent to lH and increases the rents of hL and lL relative to the case where xlH = xhH . When

∆θ1 = 0, suppliers lH and hH are essentially the same. The optimal scoring auction will thus set xlH = xhH and

leave no rent to supplier lH.
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average captured surplus over the full range of values that ∆θ1 can take. The fourth column reports

the maximum percentage of the surplus that the optimal scoring auction captures together with

the corresponding value of ∆θ1. The fifth column does the same for the worst relative performance

of the optimal scoring auction. Finally, columns 6 and 7 report the percentage of ∆θ1 values for

which the performance of the optimal scoring auction is greater than 80% (column 6) or within 10

percentage points of its worst performance (column 7). For the core set of experiments (experiments

1 through 20), v(q) = aqb with a = 3 and b = 0.5, l = L = 1, h = 2, N = 2. The bottom part of

the table considers other values for a, b, L and H. (We keep N = 2 in all our experiments because

this is where the actual choice of mechanisms is likely to matter most). Figure 5 shows the relative

performance of the optimal scoring auction as ∆θ1 changes for selected probability configurations.

Insert Table 3 Here, Insert Figure 5 Here

The results are the following. First, in every experiment, there exists a value of ∆θ1 for which the

optimal scoring auction does as well as the optimal mechanism. Second, the point at which this

occurs seems somewhat persistent across environments. Third, the optimal scoring auction captures

on average more than two thirds of the surplus from being strategic, even though this proportion

can dip down to 20% for some values of ∆θ1 and some environments. Fourth, the optimal scoring

auction does poorly when the fixed cost and the marginal cost are negatively correlated. We now

investigate each of these points in more detail.

In every experiment, there exists a value of ∆θ1 for which the optimal scoring auction does as well

as the optimal mechanism. Given Theorem 2, this must happen at parameter values such that there

are binding incentive compatibility constraints directed to both lH and hH from low marginal cost

suppliers in the optimal scheme (otherwise there is no chance that the qualities provided by suppliers

lH and hH are the same in the optimal scheme). Inspection of Table 1 and 2 suggests that the

only candidates consistent with implementation with a scoring auction are solutions 1.1.c., 1.2.a,

1.2.b or 1.2.c. (recall that scoring auctions require xhH = xFBhH ). Closer inspection of the numerical

solution suggests that the maximum performance of the optimal scoring auction happens when the

optimal mechanism corresponds to solutions either 1.2.a, or 1.2.c.

An inspection of Figure 5 and the results in Table 3 suggest the optimum is reached at a similar

region in each set of simulations (in particular this point is always less than 0.5625, the point when

the binding incentive compatibility constraint for type hL in the efficient mechanism switches from

IChL,lH to IChL,hH) . This begs question of why there and not elsewhere? The parameter setting

in figure 5 where the probabilities are (35, 35, 15, 15) suggests that it is possible for the optimum

revenue to be generated to the right of the dip in revenue. To investigate this we ran a set of

experiments for the probabilities (40, 40, 10, 10) and (45, 45, 5, 5) - experiments 17 and 18 . In this

setting the solution corresponds to solution 1.1.d in table 1. In experiment 17, at∆θ1 = 0.93375, the

optimal scoring auction captures 99.03% of the available strategic surplus, whereas in experiment
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17, at ∆θ1 = 1.02375, this is raised to 99.89%. While it appears that the scoring auction does well

in these regions it falls short of the optimu mechanism because of the restriction that xhH = xFBhH
in the scoring auction.

It has been noted that the point at which the optimal scoring auction does as well as the optimal

scheme is constant across cases 1-5 and 10-15. After further inspection, this is an artifact of the

common symmetric structure of these parameter settings. These settings are such that αlL = αhH

and αhL = αlH . A comparison with experiments 6 and 19 illustrates this point: In experiment 6

the probability are such that αlL = αhL > αlH = αhH resulting in a move in the location of the

optimum; experiment 19 makes a similar perturbation, with the additional shock that αlH < αhH .

The optimal scoring auction does very well overall. It captures, on average, more than two thirds

of the surplus, and in ten of the 13 core experiments reported in Table 3, it captures more than

80% of the surplus for the majority of the values ∆θ1 can take. This excellent performance seems

attributable to the relative flexibility scoring auctions leave in terms of allocation.

Table 3 and Figure 5 also indicate that scoring auctions perform less well in some environments.

This poor performance tends to happen around the point where there is a kink in the expected

utility of the efficient auction. This coincides with the point at which both incentive compatibility

constraints out of type hL are close to being binding in the efficient mechanism (one must bind,

and the other is ‘close’ to binding). As a result, those IC constraints leave little scope for rent

extraction before they bind. Given that the scoring auction is less flexible in the face of these

constraints than the optimal mechamism it is not surprising that its relative performance suffers.

Similarly, negative correlation between the marginal cost and the fixed costs decreases the perfor-

mance of the optimal scoring auction (see experiments 4, 5 and 15). Intuitively, negative correlation

moves the environment further from the one-dimensional environment for which scoring auctions

are known to do well (Che, 1993). The weight of types lH and hL is large in the total expected

utility of the buyer, and so the gains from distorting quality tends to make qhH far from being first-

best. In light of this, it is noteworthy that positive correlation does not unambiguously generate

strong performances from the scoring auction. In experiments 2 and 3, where the extent of positive

correlation is increasing, the scoring auction appears to be doing increasingly well. However, in ex-

periment 14, this trend does not continue. What is happening here is that the extra flexibility in the

optimal mechanism is able to exploit the environment as it moves toward the one-dimensional case

far sooner than the scoring auction. The relative performance of the scoring auction in experiment

14 reflects a reconfiguration of the optimal mechanism in the face of the changing environment,

rather than any significant change in the scoring auction itself.

4.2.2 Simple manipulations of the scoring rule

While consideration of the optimal scoring auction is fruitful, it remains an upper bound. Moreover,

the optimal scoring auction also depends finely on the parameters of the environment. For this
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reason, we also investigate the performance of “naïve scoring auctions.” Naïve scoring auctions are

scoring auctions that use simple scoring rules that differ from the true preferences of the buyer in

an arbitrary way (but in the same direction as recommended by the optimal scheme.

Suppose the buyer’s utility is given by v (q) = aqb. We consider the expected utility generated by

a scoring auction with scoring rule a∗qb− p and a∗ = (0.9)a or a = (0.95)a. Thus the winner is the

supplier who generates the highest value for maxq{a∗qb − θ1i − θ2iq} and she receives the value of
the second highest score.7

Insert Figure 6 Here, Insert Table 4 Here

Figure 6 shows the proportion of the strategic surplus captured by the naïve scoring auction when

a∗ = (0.95)a and αk = 0.25. At first, the proportion of surplus is at 14% and then increases up to

38%. At this point the binding IC constraints change in the naïve scoring auction, IChL,hH ceases

to bind and IChL,lh starts binding. This causes a sharp drop in the proportion of surplus extracted

by the naïve scoring auction (a phenomenon similar to the drop in the performance of the optimal

scoring auction at that point). The next major shift is the dramatic increase in the proportion

of surplus captured when ∆θ1 ' 1. The reason this happens is because the naïve scoring auction
distorts the probabilities of winning at this point (by giving priority to type lH over type hL).

Because the virtual welfare (as measured using to the buyer’s true utility function) generated by

type lH is also higher than the virtual welfare generated by type hL at this point, this increases

expected utility sharply. Note that this reversal in winning probabilities (or more precisely the

flexibility of the optimal scoring auction to pick a range of xlH , xhL consistent with requirement 2

of Theorem 2) explains why the optimal scoring auction’s performance improves from ∆θ1 ' 0.5625
onwards.

Table 4 summarizes the results of this exercise repeated for the parameters of the core experiments.

The qualitative results in Figure 6 are replicated in all experiments. Table 4 reports the range of

performance for the naïve scoring auction, when it allocates the contract in the same way as the

efficient auction does (column 4), and when it allocates the contract differently by giving priority to

type lH over type hL. The results show that the naïve scoring auction does particularly well when

it distorts the allocation probabilities. This suggests that distortions in the allocation probabilities

are more important than distortions in qualities for rent extraction purposes.

5 Sequential procedures

We now turn to sequential procedures. Sequential procedures are mechanisms that approach sup-

pliers at most once. Several practical procedures belong to this category including many models

of negotiation. These include a procedure in which the buyer negotiates with a single supplier and
7As before some adjustments need to be made to account for the discreteness of the types space.
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walks out if the supplier does not offer him a certain level of utility, a procedure whereby the buyer

makes sequential take-it-or-leave-it price offers (as in Manelli and Vincent, 1995) or a procedure

where the buyer pre-selects a single supplier and offers him a menu of optimal screening contracts

(as in Wang, 1998).

5.1 Theoretical properties

Our purpose here is to get a sense of the costs and benefits of sequential procedures relative to

the efficient auction and the optimal procedure. To do this, we characterize the optimal sequential

procedure, i.e. the mechanism that maximizes the buyer’s expected utility conditional on approach-

ing suppliers at most once. This optimal sequential procedure provides an upper bound to what

sequential procedures can achieve because it gives all bargaining power to the buyer.

The optimal sequential procedure solves a simple dynamic programming problem. The buyer

approaches suppliers one at a time and offers them a menu of optimal screening contracts that takes

into account the number of remaining suppliers.8 Because suppliers are approached only once, their

dominant strategy is to accept the best offer that meets their individual rationality constraint. If

a supplier refuses, the buyer turns to the next supplier. To ensure that we can compare our results

with the results of the previous sections, we require that the contract is allocated with probability

one which implies that the offers made in the last round must be acceptable by all types of suppliers.9

The next Lemma shows that, in any round, we can without loss of generality consider a menu of

two contracts, one targeted at the low marginal cost suppliers, and the other targeted at the high

marginal cost suppliers. The intuition is that contracts of the form (p, q) are unable to screen over

suppliers’ fixed cost, θ1.

Lemma 5: In any round, the buyer offers at most two contracts.

Proof: Towards a contradiction, suppose the buyer offers three contracts and, without loss of
generality, suppose that one, (plL, qlL), is targeted at lL and another, (phL, qhL) is targeted at hL.

Incentive compatibility requires:

plL − θ1 − θ2qlL ≥ phL − θ1 − θ2qhL

phL − θ1 − θ2qhL ≥ plL − θ1 − θ2qlL

Thus plL − θ2qlL = phL − θ2qhL and the contracts lie on an isoprofit locus for suppliers hL and

lL, {(p, q) : plL − θ2qlL = phL − θ2qhL}. Since the buyer has strictly convex preferences, there is a
unique contract on this locus that maximizes his utility. Q.E.D.

Let (pn1 , q
n
1 ) and (p

n
2 , q

n
2 ) denote the menu of contracts offered when n suppliers remain, with the

convention that qn1 ≤ qn2 . In the last round, the buyer’s optimization problem is given by
8In that sense, the optimal sequential procedure combines the features of Wang (1998)’s single-buyer single-supplier

optimal negotiation and those of Manelli and Vincent (1995)’s sequential model of negotiation.
9As for the optimal procedure, such requirement can be perfectly consistent with optimality if the buyer values

the good sufficiently highly. In that case, exclusion in the last period is suboptimal.
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max(p1,q1),(p2,q2)(αlH + αhH)(v(q1)− p1) + (αhL + αlL)(v(q2)− p2)

subject to suppliers’ IR and IC constraints. Following standard arguments, supplier hH’s IR

constraint is binding, i.e. p1 = θ1 + θ2q1, and only the downward IC constraint is binding, i.e.

p2 − θ2q2 = p1 − θ2q1. Substituting for p1 and p2 in the objective function yields:

max(p1,q1),(p2,q2)(αlH + αhH)(v(q1)− θ1 − θ2q1) + (αhL + αlL)(v(q2)− θ1 − θ2q2 −∆θ2q1)

This establishes Lemma 6:

Lemma 6: The optimal take-it-or-leave-it offer in the last round is given by (p11, q
1
1), where

p11 = θ1 − θ2q
1
1 and q11 = argmax{v(q)− θ2q − (αhL+αlL)

(αlH+αhH)
q∆θ2}, and (p12, q12) = (p11 + θ2(q − q11), q).

The resulting continuation value is given by (αlH+αhH)WhH(q
1
1)+(αhL+αlL)(W

FhH
hL (q)−∆θ2q11).

Let Vn denote the continuation value of a buyer facing n remaining bidders. We are now ready to

characterize the optimal sequential procedure:

Theorem 3 (characterization of the optimal sequential procedure): The optimal sequential
procedure is such that the buyer offers the menu of contracts defined in Lemma 6 in the last round

and, when n > 1, one of the four following pairs of contracts, depending on which one yields the

largest continuation value (conditional on the condition in the third column being satisfied):

Kn Offers (pn1 , q
n
1 ) and (p

n
2 , q

n
2 ) Vn

lL (θ1+θ2q,q) αlLW
FB
lL +(1− αlL)V n−1

lL,lH (θ1+θ2q
∗
1, q

∗
1) αlL(W

FB
lL −∆θ2q∗1)+

(θ1+θ2q+∆θ2q
∗
1,q) αlHWlH(q

∗
1) + (αhL+αhH)V n−1

q∗1=argmax {v(q)−θ2q− αlL
αlH
∆θ2q} Condition: ∆θ1 −∆θ2q∗1 ≥ 0

lL,hL (θ1+θ2q,q) (αlL+αhL)W
FB
hL +(αlH+αhH)V n−1

lL,lH,hL (θ1+θ2q
∗∗
1 , q∗∗1 ) (αlL+αhL)(W

FB
lL −∆θ2q1)

(θ1+θ2q+∆θ2q
∗∗
1 ,q) αlHWlH(q

∗∗
1 ) + αhHVn−1

q∗∗1 =argmax {v(q)−θ2q−
(αlL+αhL)

αlH
∆θ2q} Condition: ∆θ1 −∆θ2q∗∗1 ≤ 0

(The first column in the table indicates the set of supplier types who will accept the buyer’s offer when n

suppliers remain, and the third column indicates the buyer’s continuation value, Vn).

(Suppliers of types lH and hH accept the contract (pn1 , q
n
1 ) if it satisfies their IR constraint, and

likewise, suppliers of types lL and hL accept contract (pn2 , q
n
2 ) if it satisfies their IR constraint).

Proof: See Appendix

Note that q∗∗1 < q∗1, so that Kn = {lL, lH} and Kn = {lL, lH, hL} cannot happen for the same
parameter values.

The optimal sequential procedure has two potential advantages over the efficient auction. First,

it can distort production. Second, it can distort the probabilities of winning. For example, a first
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period offer that is only acceptable to suppliers lL and lH distorts the probabilities that lH wins,

xlH , upwards and distorts xhL downwards relative to the probabilities in the efficient auction, as

is sometimes required in the optimal procedure. However, this comes at the cost of a distortion

in the probabilities of allocating the contract to types lL and hH. Indeed, it is easy to check that

xlL < xFBlL , unless the optimal offer in all rounds but the last is only acceptable to type lL (and

recall from Theorem 1 that xlL = xFBlL always in the optimal procedure). In addition, xhH > xFBhH
in all cases except if Kn = {lL, lH, hL} for all n > 1.

These costs and benefits of the optimal sequential procedure are best illustrated for the case of two

suppliers. To do this, we rewrite the expected utility from the efficient auction as
P

pkVWk where

pk is the probability that the mechanism allocates the contract to a type k supplier and VWk is

the associated virtual welfare. The next table summarizes the values that these variables take in

the efficient auction (using Lemma 3):

Table 5: Virtual welfares and probabilities in the efficient auction

Virtual welfares Probabilities

∆θ1 −∆θ2q > 0 ∆θ1 −∆θ2q < 0 pk = Nαkx
FB
k

WFB
lL WFB

lL 1− (1− αlL)
2

WFB
hL −

αlL
αhL
∆θ1 WFB

hL −
αlL
αhL
∆θ1 (1− αlL)

2−(1− αlL−αhL)
2

WFB
lH WFB

lH +αlL+αhL
αlH

∆θ1−αlL+αhL
αlH

∆θ2q (1− αlL−αhL)
2−(1− αlL−αhL−αlH)

2

WFB
B − αlH

αhH
∆θ1−αhL+αlL

αhH
q WFB

hH −
αlH+αhL+αlL

αhH
∆θ1 α2hH

Similarly, the expected utility from the optimal sequential procedure can be written as
PepkgVW k

where epk is the probability that the optimal sequential mechanism allocates the contract to supplier
k and gVW k is the "resulting" virtual welfare.10 The idea then is to compare the pk’s and epk’s and
the VWk’s with the gVW k’s. The first example illustrates the advantage of being able to distort

qualities.

Example 1: The optimal sequential procedure always does better than the efficient
auction when ∆θ1 is sufficiently small.

When ∆θ1 is small, the main source of adverse selection is marginal cost and suppliers lL and

hL, and lH and hH respectively, are very much alike. Consider the strategy that consists

in making an offer that is only acceptable to suppliers lL and hL in the first period. Using

10We write “resulting” because the virtual welfare associated with a given type is not uniquely pinned down in this

sequential mechanism. We exploit this flexibility in the remaining discussion.
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Lemma 6 and Theorem 3, the resulting expected utility is given by:

V2 = (αhL + αlL)W
FB
hL + (αlH + αhH)V1

= αlL(2− αhL − αlL)W
FB
lL

+αhL(2− αhL − αlL)

µ
WFB

hL −
αlL
αhL
∆θ1

¶
+(αlH + αhH)

2

µ
WhH(q

1
1)−

(αhL + αlL)

(αlH + αhH)
∆θ2q

1
1

¶
where we have grouped types lH and hH. Comparing this expression with the second column

of Table 5 suggests that VWlL = gVW lL and VWhL = gVWhL. Moreover, phL + plL = 1 −
(1 − αhL − αlL)

2 = ephL + eplL = (αhL + αlL)(2 − αhL − αlL). Thus, when ∆θ1 is very small,

plLVWlL + phLVWhL ' eplLgVW lL + ephLgVWhL since VWhL ' VWlL. Turning to the utility

contribution of types lH and hH in the efficient auction, we get, using Table 5 and after some

simplifications

αlH(αlH + 2αhH)W
FB
lH + α2hHW

FB
hH − (αlH + 2αhH)(αhL + αlL)∆θ2q

+((αlH + αhH)(αhL + αlL)− αlHαhH)∆θ1

= (αlH + αhH)
2

∙
WFB

hH −
(αlH + 2αhH)(αhL + αlL)

(αlH + αhH)2
∆θ2q

¸
+(αlH + αhH)(1− αhH)∆θ1

The first term of this expression is strictly less than (αlH+αhH)2
³
WhH(q

1
1)− αhL+αlL

αlH+αhH
∆θ2q

1
1

´
given the way q11 is constructed (optimal level of distortion) and the fact that

(αlH+2αhH)(αhL+αlL)
(αlH+αhH)2

>
αhL+αlL
αlH+αhH

. The second term becomes negligible as ∆θ1 decreases. Thus for ∆θ1 small enough,

the optimal sequential procedure dominates the efficient auction because it is able to distort

qualities.

Another way to view example 1 is to note that as ∆θ1 converges to zero, the environment converges

essentially to the "standard" one-dimensional environment, where the optimal procedure is such

that lL and hL win over hH and lH and qualities are distorted. The sequential procedure replicates

these features when K2 = {lL, hL}. In fact, the expected utility from the optimal sequential

procedures converges to the expected utility from the optimal mechanism as ∆θ1 decreases (see

Table 6 below for numerical evidence on this).

The next example illustrates the advantage provided by the ability to distort allocation probabilities:

Example 2: For large values of ∆θ1, the optimal sequential procedure can do better
than the efficient auction. Consider the period 1 strategy that offers a contract to types
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lL and lH only. The resulting expected utility for the buyer is given by:

V2 = αlL(W
FB
lL −∆θ2q∗1) + αlHWlH(q

∗
1) + (1− αlH − αlL)V1

= αlL(2− αlH − αlL)W
FB
lL

+αhL(1− αlH − αlL)(W
FB
hL −

αlL
αhL
∆θ1)

+αlH(2− αlH − αlL)

µ
1

(2− αlH − αlL)
WlH(q

∗
1) +

(1− αlH − αlL)

(2− αlH − αlL)
WlH(q

1
1)

¶
+αhH(1− αlH − αlL)

µ
WhH(q

1
1)−

αlH
αhH

∆θ1 −
(αhL + αlL)

αhH
∆θ2q

1
1 −

αlL
αhH(αhH + αhL)

∆θ2q
∗
1

¶
=

X
k

epkgVW k

Comparing this with the probabilities and the levels of virtual welfare in Table 5, it is clear

that VWlL = gVW lL, V WhL = gVWhL, V WlH > gVW lH and VWhH ≶ gVWhH . Moreover,

the sequential procedure essentially places lH in front of hL in the order of priority in the

allocation, resulting in the following ordering of probabilities: plL > eplL, phL >> ephL, plH <<eplH and phH < ephH . When αlL
αhL
∆θ1 is large enough, VWhL << VWlH , gVW lH . Thus, this

allocation can increase expected utility.

Figure 7 illustrates an environment when both of these scenarios occur.

Insert Figure 7 Here

5.2 Computational results

The previous analysis has identified conditions in the environment that favor sequential mecha-

nisms over the efficient auction. Another question concerns the relative performance of sequential

mechanisms across a wide range of environments. Table 6 reports the proportion of the difference

between the expected utility in the optimal mechanism and the expected utility from the efficient

auction (i.e. the surplus available from being strategic) that the optimal sequential procedure cap-

tures. In the table, v(q) takes the form aqb, where a = 3 and b = 0.5. In all experiments, l = L = 1,

H = 2 and N = 2. Negative values indicate that the optimal sequential mechanism does worse

than the efficient auction.

Insert Table 6 Here

The results are the following. On average (i.e. across all possible values of ∆θ1), the optimal

sequential procedure does worse, and often much worse, than the efficient auction. The poor

performance of sequential mechanisms is confirmed by the small fraction of values for ∆θ1 where
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the optimal sequential mechanism captures at least 80% of the surplus (second to last column) and

where it does better than the efficient auction (last column).

There are two exceptions to the poor performance of sequential procedures. First, and as suggested

by example 1, the optimal sequential procedure does very well and in fact as well as the optimal

mechanism when ∆θ1 = 0 (fourth column in the table).

Second, the optimal sequential mechanism does better overall when there is strong positive corre-

lation between types (experiment 4 in the table). The reason is related to example 2 above: when

costs are highly correlated, αlL
αhL

is high, and the virtual welfare associated with type hL tends to

be lower than the virtual welfare associated with lH. Thus, a contract only acceptable to types

lH and lL in the first period reverses the order of priority of types hL and lH and can increase

expected utility. Note, however, that this is not the end of the story. Indeed, the optimal sequential

procedure does poorly in experiments 17 through 19, even though the ratio αlL
αhL

is high there too.

The reason is that a first period offer acceptable to types lL and lH also increases the probability

that a type lH wins over a type lL. Experiments 17 through 19 illustrate that this is particularly

costly in terms of expected utility when αlH > αlL.

6 Concluding remarks

In this paper, we have asked how a buyer should optimally structure its buying process when sup-

pliers’ private information is multidimensional and quality is contractable, and how well commonly

used procedures such as scoring auctions and sequential procedures perform. We have answered the

second question by combining a theoretical analysis of the restrictions that such simpler procedures

impose on allocations, with numerical analyses of their performance relative to the benchmark of

the optimal buying mechanism.

Our main results are that scoring auctions do well and that sequential procedures do badly, both

relative to the optimal mechanism and relative to the efficient auction. In each case, we have identi-

fied the underlying reason and environments which represent exceptions to this general result. Our

interpretation of both sets of results is that utility maximization is more about “getting allocation

probabilities right” than distorting qualities. This is the main reason why scoring auctions do well

and sequential procedures do so poorly. Because the scoring auction’s “right kind of flexibility in

terms of allocation probabilities” and the generic misallocation of contracts in sequential proce-

dures are intrinsic features of these procedures and do not depend on the number of bidders, we

are confident that the bottom line of our numerical results extends to more than two suppliers (Of

course, as the number of suppliers goes to infinity it is straightforward to show that the expected

utility from all procedures converge to the same value which is WFB
D - full extraction). From a

practical perspective, our advice to professional buyers is: use a scoring auction, manipulate it

slightly if you can commit, else just announce your true preferences regarding the price - quality
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trade-off.

An a priori restrictive assumption in our analysis is the binary structure of private information

and it is worthwhile to comment on it here. First, we note that the main results concerning the

optimal procedure (like the fact that it depends on the number of bidders, the fact that it involves

both productive and allocative inefficiencies, and the fact that suppliers with the same marginal

cost for quality generically supply different quality levels) are all driven by the endogeneity of the

binding incentive compatibility constraints. For this reason, we expect them to hold in more general

environments. Second, the generic misallocation of the sequential procedure can only become worse

in richer informational environments, whereas scoring auctions continue to allocate the contract

efficiently, conditional on the announced scoring rule. Thus, if our interpretation according to

which getting the allocation right is the first order effect in procurement, then the dominance of

scoring auctions is likely to extend.
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Appendix

Lemma 1: Consider the feasibility constraints

N
X
k∈K

αkxk ≤ 1− (1−
X
k∈K

αk)
N for all subsets K of {hH, lH, hL, lL}

and define an n-type constraint as a feasibility constraint with the relevant subset K having n

elements. The following statements hold:

i. At most one one-type constraint binds, at most one two-type constraint binds and at most

one three-type constraint binds.

ii. These binding constraints are nested, in the sense that the type in the binding one-type

constraint must belong to the binding two-type constraint, and so on.

Proof of Lemma 1: The claim relies on the fact that the function f(t) = tN for N ≥ 2 is strictly
convex. There are two generic cases to rule out: two constraints binding with no type in common,

and two non nested constraints binding with some type in common.

Case 1: No overlap. Suppose, towards a contradiction, that the constraint for lH and the constraint

for {hH, hL} bind. Then, from (4), N (αlHxlH + αhHxhH + αhLxhL) = 2−(1−αlH)N−(1−αhH−
αhL)

N > 1− (1−αlH−αhH−αhL)N since 1+(1−αlH−αhH−αhL) = (1−αlH)+(1−αhH−αhL)
and (1 − αlH) and (1 − αhH − αhL) lie in (1 − αlH − αhH − αhL, 1). That is, (4) is violated for

{lH, hH, hL}. All cases with no overlap are proved in this way.
Case 2: Some overlap. Suppose, towards a contradiction that the constraint for {lH, hH}, and
that for {hH, hL} is binding. Since (4) holds for hH, this means that

N (αlHxlH + αhHxhH + αhLxhL) ≥ 1− (1− αlH − αhH)
N − (1− αhH − αhL)

N + (1− αhH)
N

> 1− (1− αlH − αhH − αhL)
N by convexity

This contradicts (4) for {lH, hH, hL}. All cases with some overlap are proved in this way.
This proves that binding constraints are nested and that they cannot be more than one constraint

of a type to bind. Q.E.D.

Lemma 3 (Binding constraints in the efficient auction): When ∆θ1 > ∆θ2q, IClH,hH ,

IChL,hH and IClL,hL bind in the buyer-optimal efficient mechanism. When ∆θ1 < ∆θ2q IClH,hH ,

IChL,hH and IClL,hL bind.

Proof of Lemma 3: Let Uk,j be the expected utility of a type k pretending she is of type j. To

satisfy incentive compatibility, while minimizing suppliers’ rents, suppliers’ expected utilities must

be set such that Uk = maxj 6=k Uk,j . Let UhH = 0 (we can check ex post that this will satisfy supplier

hH’s incentive compatibility constraints).

Given the parameters of the model, we first argue that UhL = max{UhL,hH , UhL,lH}, i.e., that
imitating lL is dominated for supplier hL. Indeed, UhL,lL = UlL − xFBlL ∆θ1. If UlL = UlL,hL, we

get UhL,lL = UhL + (x
FB
hL − xFBlL )∆θ1 < UhL. If instead, UlL = UlL,lH , we have UhL,lL = UlH +
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xlH∆θ2q − xFBlL ∆θ1 < UlH + xFBlH ∆θ2q − xFBlH ∆θ1 = UhL,lH ≤ UhL (we can rule out UlL = UlL,hH

since it is dominated for supplier lL).

Second, we argue that UlH = UlH,hH . The first alternative for supplier lH is that he imi-

tates hL. Her expected payoff in this case is UlH,hL = UhL + xFBhL ∆θ1 − xFBhL q∆θ2 where UhL =

max{UhL,hH , UhL,lH}. We consider each case in turn. (a) If UhL = UhL,hH ,the requirement of

UlH,hL < UlH,hH is equivalent to xFBhL (∆θ1−∆θ2q)− xFBhH (∆θ1−∆θ2q) < 0. The first term is neg-

ative since, by assumption, WlH(q) < WhL(q). The second term may be positive or negative, but

even when it is negative, xFBhL (∆θ1 −∆θ2q) < xFBhH (∆θ1 −∆θ2q) < 0 since q > q and xFbhH < xFBhL .

(b) If UhL = UhL,lH , UlH,hL < UlH,hH is equivalent to xFBhL (∆θ1 −∆θ2q)− xFBlH (∆θ1 −∆θ2q) < 0.
This holds by exactly the same reasoning.

The second alternative is UlH,lL = UlL−xFBlL ∆θ2q.When UlL = UlL,lH , UlH,lL = UlH +xFBlH ∆θ2q−
xFBlL ∆θ2q < UlH . When UlL = UlL,hL, UlH,lL = UhL + xFBhL ∆θ1 − xFBlL ∆θ2q < UlH,hL = UhL +

xFBhL ∆θ1 − xFBhL ∆θ2q. We conclude that UlH = UlH,hH .

Finally, we show that UlL = UlL,hL.When UhL = UhL,lH , UlL,hL = xFBhL ∆θ1−xFBlH ∆θ1+xFBlH q∆θ2+

xFBhH∆θ1 > UlL,lH = xFBlH q∆θ2+xFBhH∆θ1 since x
FB
hL > xFBlH .When UhL = UhL,hH , the claim follows

from the fact that xFBhL ∆θ1−xFBlH ∆θ2q > xFBlH (∆θ1−∆θ2q) > xFBhH (∆θ1−∆θ2q) (the last inequality
being implied by UhL,hH > UhL,lH). This leads us to:

UlH = UlH,hH = xFBhH∆θ1

UhH = 0

UhL = max{UhL,hH , UhL,lH} = max{xFBhH q∆θ2,−xFBlH (∆θ1 −∆2q) + xFBhH∆θ1}
UlL = UlL,hL = xFBhL ∆θ1 + UhL

In practice, this generates two cases depending on the sign of ∆θ1 −∆2q. When ∆θ1 −∆2q > 0,

UhL,hH > UhL,lH . When ∆θ1 −∆2q < 0, UhL,lH > UhL,hH . Q.E.D.

Lemma 4: The first order conditions of the maximization problem (1) subject to (2), (3), (4) and

(5) are necessary and sufficient for a global maximum.

Proof of Lemma 4: Consider the following change of variables: z1k = xk, z2k = xkqk. LeteF (z1k, z2k, Uk) = N
P

k=lH,hH,hL,lL αk(z1kWk(
z2k
z1k
)− Uk). The problem becomes:

max
z1k,z2k,Uk

eF (z1k, z2k, Uk) s.t.

Uk ≥ Uj + z1j(θ1j − θ1k) + z2j(θ2j − θ2k) for all k, j ∈ {hH, lH, hL, lL}
Uk ≥ 0 for all k ∈ {hH, lH, hL, lL}

N
X
k∈K

αkz1k ≤ 1− (1−
X
k∈K

αk)
N for all subsets K of {hH, lH, hL, lL}

N
X

k∈{hH,lH,hL,lL}
αkz1k = 1
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The constraints are linear in the control variables so the constraint qualification holds and the ob-

jective function is concave.11 The first order conditions are thus necessary and sufficient for a global

maximum. To prove that the first order conditions of the original problem are also necessary and

sufficient, we need to check that the first order conditions of the two problems are equivalent. To

see this, let G(xk, qk, Uk) gather all constraint terms of the Lagrangian of the original problem, andeG(z1k, z2k, Uk) gather the constraint terms of the Lagrangian of the transformed problem. We must

show that (x∗k, q
∗
k, U

∗
k ) solves the first order conditions of maxxk,qk,Uk F (xk, qk, Uk)+G(xk, qk, Uk) if

and only if (x∗k, x
∗
kq
∗
k, U

∗
k ) solves the first order conditions ofmaxz1k,z2k,Uk eF (z1k, z2k, Uk)+ eG(z1k, z2k, Uk).

The first order conditions with respect to Uk are identical. The first order condition with respect

to qk, Fqk(x
∗
k, q

∗
k, U

∗
k ) +Gqk(x

∗
k, q

∗
k, U

∗
k ) = 0, takes the form

Nαkx
∗
kW

0
k(q

∗
k)−

X
λlx

∗
k(θ2k − θ2l) = 0

(where λl are the Lagrangian multipliers of the constraints). This is equivalent to the first order

conditions of the transformed problem with respect to z2k,

NαkW
0
k(
z2k
z1k
)−

X
λl(θ2k − θ2l) = 0 (8)

as long as x∗k > 0 for all k, a consequence of the non exclusion condition (5). Finally, the first order

condition with respect to xk, Fxk(x
∗
k, q

∗
k, U

∗
k ) +Gxk(x

∗
k, q

∗
k, U

∗
k ) = 0 takes the form:

NαkWk(q
∗
k)−

X
λl[(θ1k − θ1l) + q∗k(θ2j − θ2l)]−N

X
K st k∈K

γKαk = 0 (9)

The first order condition of the transformed problem takes the form:

NαkWk(
z2k
z1k
)−Nαk

z2k
z1k

W 0
k(
z2k
z1k
)−

X
λl(θ1j − θ1l)−N

X
K st k∈K

γKαk = 0

This is equivalent to (9) as soon as (8) holds. QED

Theorem 2: An allocation can be implemented with a scoring auction if and only if (1) qlH = qhH ,

qhL = qlL with qlH , qhH < qhL, qlL, (2) αlHxlH + αhLxhL = αlHx
FB
lH + αhLx

FB
hL , xhH = xFBhH and

xlL = xFBlL , (3) ∆θ1 − ∆θ2qhL ≤ 0 when xhL > xminhL and (4) ∆θ1 − ∆θ2qlH ≥ 0 whenever the

allocation is such that xlH > xFBlH .

Proof of Theorem 2: Let Sk(q) = ev(q) − θ1k − θ2kq. We first prove the necessary conditions.

Recall from the discussion in the main text that, in a scoring auction, suppliers select their offers

to maximize the score they generate, given their profit target, {ev(q)− θ1i− θ2iq−π}. The solution
only depends on suppliers’ marginal cost, which establishes condition (1) given that θ2lH = θ2hH >

11The hessian is block diagonal with each block given by

⎡⎢⎢⎣
αk

z22k
z3
1k
W 00 −αk z2kz2

1k
W 00 0

−αk z2kz2
1k
W 00 αk

W 00

z1k
0

0 0 0

⎤⎥⎥⎦
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θ2hL = θ2lL. Condition (2) follows from the fact that lL can always generate a strictly higher score

than either lH and hL for all choices of the scoring rule ev(.). Similarly, both lH and hL can always

generate a strictly higher score than hH so they must win against a hH type.

When xhL > xminhL , ShL(qhL) ≥ SlH(qlH), else lH should have priority over hL in the allocation.

This implies that

ev(qhL)− h− LqhL ≥ ev(qlH)− l −HqlH , that is,

∆θ1 −∆θ2qhL ≤ ev(qhL)− ev(qlH)−H(qhL − qlH)

In addition, incentive compatibility requires that lH generates a higher score by choosing qlH than

qhL, i.e. ev(qhL)− ev(qlH)−H(qhL − qlH) ≤ 0

Combining both inequalities yields condition (3). Similarly, when xlH > xFBlH , SlH(qlH) ≥ ShL(qhL),

else hL should have priority in the allocation. This implies ∆θ1−∆θ2qlH +L(qhL− qlH)+ev(qlH)−ev(qhL) ≥ 0. In addition, hL must be generating a higher score by choosing qhL over qlH , i.e.

L(qhL − qlH) + ev(qlH)− ev(qhL) ≤ 0. Combining both inequalities yields condition (4).
To prove sufficiency, we construct a scoring rule that implements the intended allocation in a second

score auction (in a second score auction, it is a dominant strategy to submit bids generating scores

Sk(qk) = maxq{ev(q)− θ1k − θ2kq}). Consider

ev(q) = υ(q)1{q≤qlH} + υ(qlH)1{q>qlH} + 1{q≥qhL}

For this scoring auction to implement the outcome, two conditions must be satisfied. First, suppliers

must be choosing the assigned qualities when they maximize their scores. Second, the ranking of

the scores must (weakly) correspond to the assigned ranking of types in the allocation.

Given the shape of this scoring rule, the two relevant choices are qlH and qhL. lH prefers qlH to qhL
if and only if υ(qlH)− l−HqlH ≥ υ(qlH)+ε− l−HqhL i.e. ε ≤ H(qhL−qlH) (hH’s preferences yield
the same condition). hL prefers qhL to qlH if and only if υ(qlH)+ε−h−LqhL ≥ υ(qlH)−h−LqlH ,
i.e. ε ≥ L(qhL − qlH) (lL’s preferences yield the same condition). Hence, suppliers choose their

assigned qualities if ε satisfies the following inequalities:

L(qhL − qlH) ≤ ε ≤ H(qhL − qlH), (10)

which is possible by condition (1). Next, hL generates a higher score if and only if ShL(qhL) =

υ(qlH) + ε− h− LqhL ≥ SlH(qlH) = υ(qlH)− l −HqlH i.e.

ε ≥ ∆θ1 −HqlH + LqhL = ∆θ1 −∆θ2qhL +H(qhL − qlH) (11)

lH generates a higher score otherwise. Inequalities (10) and (11) are always compatible if ∆θ1 −
∆θ2qhL ≤ 0 holds. When the solution is such that xlH > xFBlH , we need SlH(qlH) ≥ ShL(qhL) :

ε ≤ ∆θ1 −HqlH + LqhL = ∆θ1 −∆θ2qlH + L(qhL − qlH)
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instead. It is compatible with (10) if ∆θ1 −∆θ2qlH ≥ 0. Q.E.D.

Theorem 3 (characterization of the optimal sequential procedure): The optimal sequential
procedure is such that the buyer offers the menu of contracts defined in Lemma 6 in the last round

and, when n > 1, one of the four following pairs of contracts, depending on which one yields the

largest continuation value (conditional on the condition in the third column being satisfied):

Kn Offers (pn1 , q
n
1 ) and (p

n
2 , q

n
2 ) Vn

lL (θ1+θ2q,q) αlLW
FB
lL +(1− αlL)V n−1

lL,lH (θ1+θ2q
∗
1, q

∗
1) αlL(W

FB
lL −∆θ2q∗1)+

(θ1+θ2q+∆θ2q
∗
1,q) αlHWlH(q

∗
1) + (αhL+αhH)V n−1

q∗1=argmax {v(q)−θ2q− αlL
αlH
∆θ2q} Condition: ∆θ1 −∆θ2q∗1 ≥ 0

lL,hL (θ1+θ2q,q) (αlL+αhL)W
FB
hL +(αlH+αhH)V n−1

lL,lH,hL (θ1+θ2q
∗∗
1 , q∗∗1 ) (αlL+αhL)(W

FB
lL −∆θ2q1)

(θ1+θ2q+∆θ2q
∗∗
1 ,q) αlHWlH(q

∗∗
1 ) + αhHVn−1

q∗∗1 =argmax {v(q)−θ2q−
(αlL+αhL)

αlH
∆θ2q} Condition: ∆θ1 −∆θ2q∗∗1 ≤ 0

(The first column in the table indicates the set of supplier types who will accept the buyer’s offer when n

suppliers remain, and the third column indicates the buyer’s continuation value, Vn).

(Suppliers of types lH and hH accept the contract (pn1 , q
n
1 ) if it satisfies their IR constraint, and

likewise, suppliers of types lL and hL accept contract (pn2 , q
n
2 ) if it satisfies their IR constraint).

Proof: Since suppliers are only made an offer once, they accept this offer whenever it contains a
contract that satisfies their IR constraint. By design, the contracts will be such that (pn1 , q

n
1 ) (resp.

(pn2 , q
n
2 )) is the contract chosen by the high (resp. low) marginal cost suppliers.

Let Kn be the set of supplier types who accept one of the offers when n suppliers remain. Given

suppliers’ cost structure, Kn ∈ {{lL}, {lL, lH}, {lL, hL}, {lL, lH, hL}, {lH, hH, hL, lL}}. We first
argue that Kn 6= {lH, hH, hL, lL}, for n > 1, i.e. some exclusion is optimal. By offering the single

contract (θ1 + θ2q, q) that excludes all suppliers but lL, and the last round contract forever after

(Lemma 6), the buyer guarantees himself an expected utility of αlLWFB
lL + (αlH + αhH + αhL)V1

> V1, his continuation value if Kn = {lH, hH, hL, lL}. We now examine the optimal offers for the
other three inclusion sets.

Kn = {lH, lL}: lH’s IR constraint is binding, p1 = θ1 + θ2q1 and lL’s IC constraint is binding,

p2 = p1−θ2q1+θ2q2. The optimal qualities solve αlH(v(q1)−θ1−θ2q1)+ αlL(v(q2)−θ1−Lq2−∆θ2q1),
thus q∗1 = argmax{v(q)− θ2q− αlL

αlH
∆θ2q}. For this solution to be feasible we need in addition that

hL is indeed excluded, i.e. that p1 − θ1 − θ2q
∗
1 ≤ 0, i.e. ∆θ1 −∆θ2q∗1 ≥ 0.

Kn = {hL, lL}: Only one contract is offered in this case: (θ1 + θ2q, q). For this solution to be

feasible, lH’s IR constraint must be violated, i.e. ∆θ1−∆θ2q ≤ 0, which is automatically satisfied
in our model.
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Kn = {lH, hL, lL}: As before the binding IC constraint is from lL and hL to lH (this will hold

as long as q1 ≤ q2), hence p2 − θ2q2 = p1 − θ2q1. We need to distinguish between two scenarios

depending on which, from lH or hL’s IR constraints, is binding. Case 1: lH’s IR constraint is

binding at the optimum, i.e., p1 = θ1 + θ2q1. Substituting into the buyer’s utility function, the

resulting qualities solve αlH(v(q1)− θ1 − θ2q1)+ (αhL + αlL)(v(q2)− θ1 − θ2q2 −∆θ2q1). The last
condition to check is that hL’s IR constraint is indeed satisfied i.e. ∆θ1 − ∆θ2q∗∗1 ≤ 0. Case 2:
hL’s IR constraint is binding at the optimum, i.e. p2 = θ1 + θ2q2. Hence the resulting qualities

must solve αlH(v(q1)− θ1 − θ2q1)+ (αhL + αlL)(v(q2)− θ1 − θ2q2), that is, q1 = q2 = q : the buyer

offers a single contract. lH’s IR constraint is satisfied if ∆θ1 − ∆θ2q ≥ 0. (This is ruled out by
assumption). Q.E.D.

33



Table 1: Probabilities of winning and quality levels when ∆θ1 −∆θ2q ≥ 0
Solution Probabilities of Winning qlL qhL qlH qhH

Condition: xFBhH [∆θ1 −∆θ2q2hH ] ≤ xFBlH [∆θ1 −∆θ2q]
1.1.a xk = xFBk q q q q2hH
1.1.b xlL = xFBlL > xlH = xmaxlH > xhL = xminhL > xhH = xFBhH q q q q2hH
1.1.c xlL = xFBlL > xmaxlH ≥ xlH > xhL ≥ xminhL > xhH = xFBhH q q (q2lH , q) (q2hH , q)

1.1.d xlL = xFBlL > xlH = xmaxlH > xminhL = xhL > xhH > xFBhH q q (q2lH , q) (q2hH , q)

1.1.e xlL = xFBlL > xlH > xhL = xhH > xFBhH q q (q2lH , qhH) (q2hH , q)

Condition: xFBhH [∆θ1 −∆θ2q2hH ] > xFBlH [∆θ1 −∆θ2q]
1.2.a* xk = xFBk q q (q2lH , q) (q2hH , q)

1.2.b* xlL = xFBlL > xFBhL > xhL > xlH > xFBlH > xhH = xFBhH q q (q2lH , q) (q2hH , q)

1.2.c* xlL = xFBlL > xFBhL > xhL = xlH > xFBlH > xhH = xFBhH q q (q2lH , q) (q2hH , q)

Other relevant solutions are 1.1.b, 1.1.c, 1.1.d and 1.1.e
Additional conditions as well as exact values for the variables in the individual solutions are available in Asker and Cantillon (2005)

as well as in a separate appendix available on our webpages.

* Under the condition that ∆θ1−∆θ2q≥ 0 we can tighten the bound on qhH so that qhH ∈ (q2hH , qlH)

Table 2: Probabilities of winning and quality levels when ∆θ1 −∆θ2q < 0
Solution Probabilities of Winning (x’s) qlL qhL qlH qhH

Condition: xFBhH [∆θ1 −∆θ2q] ≥ xFBlH [∆θ1 −∆θ2q2lH ]
2.1.a xk = xFBk q q q2lH q

2.1.b xlL = xFBlL > xFBhL > xhL = xlH > xFBlH > xhH = xFBhH q q q2lH q

2.1.c xlL = xFBlL > xhL = xFBhL > xFBlH > xlH > xhH > xFBhH q q (q2lH , qhH) (q2hH , q)

2.1.d xlL = xFBlL > xFBhL > xlH = xhL > xFBlH > xhH > xFBhH q q (q2lH , qhH) (q2hH , q)

2.1.e xlL = xFBlL > xlH > xhL = xhH > xFBhH q q (q2lH , qhH) (q2hH , q)

Condition: xFBhH [∆θ1 −∆θ2q] < xFBlH [∆θ1 −∆θ2q2lH ]
The relevant solutions are 1.2.a, 1.2.b, 1.2.c, 2.1.c, 2.1.d and 2.1.e
Additional conditions as well as exact values for the variables in the individual solutions are available in Asker and Cantillon (2005)

as well as in a separate appendix available on our webpages.
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Figure 1: binding constraints in the efficient auction
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Figure 2: Binding IC constraints at the solution when ∆θ1 −∆θ2q ≥ 0
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Figure 3: Binding IC constraints at the solution when ∆θ1 −∆θ2q < 0
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Probabilities: Pr(lH) = 25, Pr(hH)= 25, Pr(hL)= 25, Pr(lL)= 25
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Figure 5: Proportion of (Optimal - Efficient Auction)
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Table 3: Proportion of the (opt. mech. - efficient auction) expected utility captured by the optimal scoring auction

Probabilities Average Max ∆θ1 at Min ∆θ1 at % of ∆θ1’s such that proportion is:

maximum minimum >80% of opt. mech. < minimum +0.1

Core Parameter Values

1 25 25 25 25 0.825 1.00 0.248 0.389 0.585 74.1 4.5

2 20 30 20 30 0.874 1.00 0.248 0.739 0.574 86.6 19.4

3 15 35 15 35 0.901 1.00 0.248 0.756 0.000 97.5 7.0

4 30 20 30 20 0.761 1.00 0.248 0.284 0.686 62.2 13.4

5 35 15 35 15 0.685 1.00 0.248 0.191 0.799 52.7 22.4

6 20 20 30 30 0.812 1.00 0.180 0.423 0.596 68.2 5.0

7 15 15 35 35 0.796 1.00 0.124 0.449 0.630 47.3 7.0

8 30 30 20 20 0.835 1.00 0.315 0.372 0.574 74.1 3.5

9 35 15 15 35 0.839 1.00 0.383 0.376 0.563 75.6 3.5

10 20 30 30 20 0.779 1.00 0.248 0.465 0.709 44.8 14.9

11 15 35 35 15 0.778 1.00 0.248 0.558 0.833 41.3 26.9

12 30 20 20 30 0.892 1.00 0.248 0.670 0.518 83.6 13.4

13 35 15 15 35 0.948 1.00 0.248 0.809 0.000 100 20.4

Extensions

14 10 40 10 40 0.823 1.00 0.248 0.593 1.125 56.7 25.8

15 40 10 40 10 0.604 1.00 0.248 0.127 0.810 45.7 31.8

16 10 10 40 40 0.786 1.00 0.068 0.442 0.698 40.8 6.5

17 40 40 10 10 0.836 1.00 0.450 0.358 0.563 60.2 4.5

18 45 45 5 5 0.826 1.00 0.506 0.209 0.000 50.2 2.0

19 15 25 30 30 0.817 1.00 0.153 0.535 0.038 51.2 7.5

20 16 23 41 20 0.752 1.00 0.180 0.463 0.821 39.3 13.4

Robustness: a = 1

21 25 25 25 25 0.825 1.00 0.028 0.389 0.065 74.1 4.5

22 15 35 15 35 0.901 1.00 0.028 0.756 0.000 97.5 7.0

23 35 15 35 15 0.685 1.00 0.028 0.191 0.088 52.7 22.4

24 15 15 35 35 0.796 1.00 0.014 0.449 0.070 47.3 7.0

25 35 35 15 15 0.839 1.00 0.043 0.376 0.063 75.6 3.5

Robustness: b = 0.7

26 25 25 25 25 0.737 1.00 0.285 0.429 2.078 49.3 24.9

Robustness: ∆θ2 = 2

27 25 25 25 25 0.751 1.00 0.180 0.409 0.765 53.2 19.9

Robustness: l = 2

38 25 25 25 25 0.827 1.00 0.248 0.389 0.585 74.6 4.0

Notes: Each experiments sets the probabilites of each type (ordered αlH , αhH , αhL, αlL), then computes the expected

utility for the optimal mechanism, the efficient auction and the optimal scoring auction for 201 values of ∆θ1 covering

the full range of the parameter values allowed by the model.
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Table 4: Percentage of the (optimal mechanism - efficient auction) expected utility

captured by the simple scoring rule corresponding to an adjusted efficient auction

Probabilities Average No Distortion to Allocation Distortion to Allocation

Max Min Max Min

a∗ = (0.95) a

1 25 25 25 25 0.223 38.3 -19.5 78.1 72.9

2 20 30 20 30 0.225 39.8 -7.8 76.5 71.2

3 15 35 15 35 0.218 36.6 -1.6 71.9 68.5

4 30 20 30 20 0.237 36.3 -32.3 79.3 63.1

5 35 15 35 15 0.242 34.0 -49.3 80.5 38.0

6 20 20 30 30 0.286 30.0 -20.4 73.8 66.1

7 15 15 35 35 0.339 20.5 -25.5 68.7 58.7

8 30 30 20 20 0.174 46.4 -23.3 81.9 79.2

9 35 15 15 35 0.114 53.8 -37.9 85.0 84.4

10 20 30 30 20 0.208 40.2 -10.5 68.6 56.3

11 15 35 35 15 0.186 41.9 -2.6 55.5 33.8

12 30 20 20 30 0.254 35.8 -19.7 85.5 76.5

13 35 15 15 35 0.277 25.0 -17.4 88.5 79.0

a∗ = (0.9) a

1 25 25 25 25 0.195 36.2 1.4 82.3 80.6

2 20 30 20 30 0.194 32.1 2.2 80.2 78.2

3 15 35 15 35 0.189 28.3 3.3 75.1 74.6

4 30 20 30 20 0.187 36.3 0.5 84.3 75.4

5 35 15 35 15 0.170 36.8 -3.4 81.8 69.2

6 20 20 30 30 0.170 29.6 1.0 78.5 76.0

7 15 15 35 35 0.145 23.8 0.3 74.8 71.5

8 30 30 20 20 0.222 44.2 1.5 86.1 85.4

9 35 35 15 15 0.253 54.6 1.4 90.3 89.8

10 20 30 30 20 0.199 36.2 3.2 73.2 68.9

11 15 35 35 15 0.200 36.3 6.3 60.7 52.9

12 30 20 20 30 0.185 29.6 0.3 88.3 81.6

13 35 15 15 35 0.170 21.4 -1.2 87.0 82.4
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Probabilities: Pr(lH) =25, Pr(hH)=25, Pr(hL)=25, Pr(lL)=25, a*= (0.95)a
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Figure 6: Performance of nave scoring auctions
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Table 6: Proportion of the (optimal mechanism - efficient auction) expected utility captured by the

optimal sequential procedure∗

Probabilities Average Max ∆θ1 Min ∆θ1 % ∆θ1 % ∆θ1

at max at min s.t. >80% s.t. >0%

1 25 25 25 25 -152.7% 100% 0 -504.4% 0.5625 6.9 20.8

2 20 30 20 30 -78.2% 100% 0 -279.6% 0.5625 7.9 23.8

3 15 35 15 35 -7.2% 100% 0 -83.6% 0.5625 7.9 35.6

4 10 40 10 40 55.9% 100% 0 39.2% 0.5625 8.9 100

5 30 20 30 20 -238.7% 100% 0 -663.9% 0.66375 5.9 18.8

6 35 15 35 15 -365.0% 100% 0 -942.2% 0.7875 5.0 15.8

7 40 10 40 10 -591.8% 100% 0 -1,446.7% 0.9 5.0 13.9

8 20 20 30 30 -126.4% 100% 0 -404.0% 0.5625 5.9 22.8

9 15 15 35 35 -107.6% 100% 0 -356.2% 0.5625 5.9 21.8

10 10 10 40 40 -95.5% 100% 0 -284.4% 0.5625 5.0 18.8

11 30 30 20 20 -198.6% 100% 0 -746.5% 0.5625 6.9 18.8

12 35 35 15 15 -280.2% 100% 0 -1.302.9% 0.5625 6.9 14.9

13 40 40 10 10 -394.1% 100% 0 -1,961.4% 0.5625 6.0 9.9

14 20 30 30 20 -147.2% 100% 0 -384.1% 0.66375 7.9 25.7

15 15 35 35 15 -108.2% 100% 0 -276.6% 0.7875 10.9 32.7

16 10 40 40 10 -46.1% 100% 0 -164.7% 0.9 15.8 40.6

17 30 20 20 30 -129.3% 100% 0 -411.4% 0.5625 5.9 16.8

18 35 15 15 35 -93.9% 100% 0 -244.8% 0.5625 5.0 13.9

19 40 10 10 40 -61.4% 100% 0 -142.% 0.5625 4.0 13.9
∗Each experiment sets the value of the αk’s (ordered αlH , αhH , αhL, αlL) and computes the expected utility
from the optimal mechanism, the optimal sequential auction and the efficient auction for all the values for
∆θ1 allowed by the model. Each experiment samples 101 equally spaced values for ∆θ1
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Proofs: Not For Publication
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Appendix Z: Proof of Theorem 1

Set-up of the Optimal Program

For future reference, this appendix reproduces the optimization problem of the buyer with UhH = 0

(Lemma 2) and with the subset of the IC constraints that happen to bind at the optimum.

max
{xk,qk,Uk}

αlH [xlHWlH(qlH)− UlH ]+αhHxhHWhH(qhH)+αhL [xhLWhL(qhL)− UhL]+αlL [xlLWlL(qlL)− UlL]

subject to:

UlH ≥ xhH∆θ1 (IC 1)

UhL ≥ UlH − xlH [WlH (qlH)−WhL (qlH)] (IC 2)

UhL ≥ xhHqhH∆θ2 (IC 3)

UlL ≥ UlH + xlHqlH∆θ2 (IC 4)

UlL ≥ UhL + xhL∆θ1 (IC 5)

UlL ≥ UhH + xhH∆θ1 + xhHqhH∆θ2 (IC 6)

N
P
k∈K

αkxk ≤ 1− (1−
P
k∈K

αk)
N for all subsets K of {lH, hH, hL, lL} (feasibility)

(We omit the non exclusion constraint). The associated Lagrangian is given by:

αlH [xlHWlH(qlH)− UlH ] + αhHxhHWhH(qhH) + αhL [xhLWhL(qhL)− UhL] + αlL [xlLWlL(qlL)− UlL](1)

+λ1 [UlH − xhH∆θ1] + λ2 [UhL − UlH + xlH (WlH (qlH)−WhL (qlH))]

+λ3 [UhL − xhHqhH∆θ2] + λ4 [UlL − UlH − xlHqlH∆θ2] + λ5 [UlL − UhL − xhL∆θ1]

λ6 [UlL − xhH∆θ1 − xhHqhH∆θ2]−
P

γK

∙
N
P
k∈K

αkxk − 1 + (1−
P
k∈K

αk)
N

¸
(where λi is the Lagrangian multiplier associated with IC constraint i, and γK is the multiplier

associated with feasibility constraint K). Figure 13 provides a graphical representation of these IC

constraints together with their associated multipliers. A dotted line means that a constraint may

bind at the optimum. A full line means it always binds.
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Figure 13: Potentially binding constraints at the solution
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The Kuhn-Tucker conditions of this program are standard. For future reference, we only reproduce

those with respect to Uk :

λ1 − λ2 − λ4 = αlH (2)

λ2 + λ3 − λ5 = αhL (3)

λ4 + λ5 + λ6 = αlL (4)

Characterization of the Optimal Buying Mechanism

Preliminaries

We first define the notation that we will be using for some of the xk variables when they take

specific values. When xlH takes its maximum value conditional on lL keeping priority in the

contract allocation, we will denote it xmaxlH . Formally, xmaxlH is defined by the equation

N
¡
αlHx

max
lH + αlLx

FB
lL

¢
= 1− (αhL + αhH)

N

By Border (1991), this implies the following allocation: When there is a type lL, give the contract

to lL, if not, give priority to a type lH if there is one. Conversely, xminhL corresponds to the expected

probability of winning for hL when lH and lL have priority over hL (but hL maintains priority

over hH). Formally,

N
¡
αlHx

max
lH + αhLx

min
hL + αlLx

FB
lL

¢
= 1− αNhH

Finally, x is defined such that xlH = xhL and they have priority over hH in the allocation, that is

N
¡
(αlH + αhL)x+ αlLx

FB
lL

¢
= 1− αNhH

The proof of Theorem 1 uses the following result repeatedly:

Lemma 7: Suppose UlH = xhH∆θ1. (1) Suppose further that UhL,lH ≥ UhL,hH . Then, xhL > xlH

if and only if UlL,hL > UlL,lH . (2) Suppose now that UhL,lH ≤ UhL,hH . Then UlL,hL ≥ UlL,lH when

xhL ≥ xlH .

Proof: The result follows directly from a comparison of UlL,lH and UlL,hL (when UhL,lH ≥ UhL,hH) :

UlL,lH = xlHqlH∆θ2 + xhH∆θ1 UlL,hL = xhL∆θ1 − xlH∆θ1 + xlHqlH∆θ2 + xhH∆θ1

When UhL,hH ≥ UhL,lH , UlL,hL = xhL∆θ1 + xhHqhH∆θ2. Since UhL,hH ≥ UhL,lH is equivalent to

xhH [WlH(qhH) −WhL(qhH)] ≤ xlH [WlH(qlH) −WhL(qlH)], the condition implies UlL,hL ≥ UlL,lH

when xhL > xlH . QED.
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Lemma 8: Suppose that IC hL,hH is satisfied. Then xhL ≥ xhH =⇒ IC lL,hH is satisfied.

Proof: IChL,hH satisfied means that UlL,hL
defn
= UhL + xhL∆θ1 ≥ UhH + xhH∆θ2qhH + xhL∆θ1.

On this other hand, UlL,hH = UhH + xhH∆θ2qhH + xhH∆θ1. Clearly, UlL,hH ≤ UlL,hL as long as

xhL ≥ xhH . QED

We are now ready to prove theorem 1. The proof proceeds by progressively partioning the space of

parameters into sets of parameters for which the solution shares the same binding IC and feasibility

constraints. The logic of the proof is pretty simple, even if the mechanics can be involved. For this

reason an exhaustive exposition of the proof of part I, scenario 1 is presented. The arguments in

the rest of the proof are presented more briefly where they mirror those in part I, scenario 1.

Proof of part I of Theorem 1: WlH (q)−WhL (q) > 0 i.e. ∆θ1 > q∆θ2

The binding constraints in the buyer-optimal efficient mechanism are IClH,hH , IChL,hH and IClL,hL.

The buyer’s resulting expected utility is given by

αlHxlHWlH(qlH) + αhHxhH [WhH(qhH)−
αlH
αhH

∆θ1 −
αhL + αlL

αhH
qhH∆θ2] (5)

+αhLxhL[WhL(qhL)−
αlL
αhL
∆θ1] + αlLxlLWlL(qlL)

(where, again, we have highlighted the virtual welfares associated with each type). Keeping the

probabilities fixed at xk = xFBk , optimizing the q’s in (5) requires that only qhH be adjusted away

from the efficient level and set equal to

q2hH = argmax{WhH(qhH)−
αlH
αhH

∆θ1 −
αhL + αlL

αhH
qhH∆θ2} (6)

This reduces the informational rents of hL and lL. From Lemma 7(2), we know that UlL,hL ≥ UlL,lH

as long as UhL,hH ≥ UhL,lH . Hence, we need to consider only two scenarios:

Scenario 1: At q2hH , UhL,hH ≥ UhL,lH , that is,

xFBhH [WlH(q
2
hH)−WhL(q

2
hH)] ≤ xFBlH [WlH(q)−WhL(q)] (7)

In this case, all IC constraints remain satisfied as we decrease qhH to q2hH .

We now consider the optimization of the probabilities of winning. From (5) and the model assump-

tions, the virtual welfare associated with lL is the largest. Moreover, the virtual welfare associated

with lH is larger than that associated with hH. Thus, we need to consider three cases depending

on the relative ranking of the virtual welfare of hL with respect to the virtual welfares of hH and

lH.
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1. VWhL ≥ VWlH ≥ VWhH :WhL(q)− αlL
αhL
∆θ1 ≥WlH(q) > WhH(q

2
hH)−

αlH
αhH
∆θ1−αhL+αlL

αhH
q2hH∆θ2

[Solution 1.1.a]

The optimal probabilities of winning are xk = xFBk since the ranking of the virtual welfares

corresponds to the ranking of the first best welfares. All IC constraints are satisfied given

the arguments above. The x’s and q’s are optimized given the binding constraints; qlH = q,

qhH = q2hH and qhL = qlL = q.

2. VWlH > VWhL ≥ VWhH :WlH(q) > WhL(q)− αlL
αhL
∆θ1 ≥WhH(q

2
hH)−

αlH
αhH
∆θ1−αhL+αlL

αhH
q2hH∆θ2

In this case, type lH generates a higher level of virtual welfare than type hL. Thus, the

buyer would rather give the contract to supplier lH than to supplier hL, i.e. he would

like to change the order of priority in the allocation. Increasing xlH while decreasing xhL

concurrently (keeping αlHxlH + αhLxhL + αlLx
FB
lL constant) does not initially affect any of

the virtual welfare and it increases the buyer’s expected utility. This process continues until

either a new IC constraint binds or we have reach xlH = xmaxlH .

We now argue that the only potentially new binding constraint is IClL,lH . To see this consider

the following:

(a) hL’s IC constraints: Given that UhL,lH = UlH − xlH [∆θ1 − ∆θ2q] and that UlH is not

affected by the process, the incentives for hL to imitate lH have actually decreased.

IChL,lL remain satisfied as well since IClL,hL is binding and xlL > xhL.

(b) lH’s IC constraints: Because UlH,hL = UhL + xhL(∆θ1 −∆θ2q2hH) and UlH,lL = UhL +

xhL∆θ1 − xlL∆θ2q, the incentives for lH to imitate hL and lL have decreased (UhL =

xhH∆θ1q
2
hH is not affected by the process).

(c) hH’s IC constraints: hH continues to have no incentive to imitate hH, hL or lL given

that IClH,hH and IChL,hH are binding, and UhH,lL is not affected by the process.

(d) lL’s IC constraint: By Lemma 8, IClL,hH is not affected by the process. By Lemma 7(2),

IClL,lH remains satisfied as long as xlH ≤ xhL, but it could start binding afterwards.

Thus, we continue to increase xlH at the cost of xhL until either xlH = xmaxlH or IClL,lH starts

binding, whichever comes first.

(a) xlH = xmaxlH first. [Solution 1.1.b]

This means that UlL,hL ≥ UlL,lH even when xlH reaches its maximum. This corresponds

to the solution because there are no more opportunities to increase the buyer’s expected

utility: the q’s are optimized given the binding IC constraints, the x’s are optimized
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given the virtual welfare and the feasibility constraints. The solution is thus: qlH = q,

qhH = q2hH , qhL = qlL = q and xlL = xFBlL > xlH = xmaxlH > xhL = xminhL > xhH = xFBhH .

By the argument just above, all IC constraints are satisfied.

(b) IClL,lH starts binding. [Solution 1.1.c]

At that point, UlL,lH = UlL,hL, that is, xFBhH [WlH(q
2
hH)−WhL(q

2
hH)] = xhL∆θ1−xlHq∆θ2

(note that by Lemma 7(2), this happens at xlH > xhL).

We now argue that we should be looking for a solution where both IClL,hL and IClL,lH

are binding. Indeed, if only IClL,lH binds, the virtual welfare associated with hL isWFB
hL

which is greater than the virtual welfare associated with lH. Thus the buyer would want

to set xhL back to xFBhL , but this would bring us back to the starting point.

Thus the buyer further increases his expected utility by increasing xlH and decreasing

xhL while keeping αlHxlH+αhLxhL+αlLxFBlL constant and xFBhH [WlH(qhH)−WhL(qhH)] =

xhL∆θ1 − xlHq∆θ2. This requires that we adjust qhH (specifically we need to increase

qhH).

A change in qhH corresponds to a change in the value of the Lagrangian multiplier on the

IClL,lH constraint. Using the expressions in (1) to (4), we can rewrite the expressions

for lH and hH’s virtual welfares as follows:

VWlH = max
qlH

{WlH(qlH)−
λ4
αlH

qlH∆θ2} (8)

VWhH = max
qhH

{WhH(qhH)−
αlH + λ4
αhH

∆θ1 −
αhL + αlL − λ4

αhH
∆θ2qhH} (9)

where λ4 is the Lagrangian multiplier on the IClL,lH constraint.

Thus, practically, we increase xlH and decrease xhL concurrently to keep αlHxlH +

αhLxhL + αlLx
FB
lL constant. This implies a new value for qhH and qlH to ensure that

xFBhH [WlH(qhH)−WhL(qhH)] = xhL∆θ1 − xlHqlH∆θ2. These correspond to a new value

for λ4 through (9). Specifically, λ4 increases.

This process increases the virtual welfare associated with hL, WhL(q)− αlL−λ4
αhL

∆θ1, and

decreases the virtual welfare associated with lH and hH (see (8) and (9)).

It continues until we have either reached the upper bound to xlH , x
max
lH , or the virtual

welfares associated with lH and hL become equal:

max
qlH

{WlH(qlH)−
λ∗4
αlH

qlH∆θ2} =WhL(q)−
αlL − λ∗4
αhL

∆θ1

whichever comes first. Thus λ4 ∈ (0, λ∗4) ⊂ (0, αlL) as required by (4).
This defines the solution: xlL = xFBlL > xmaxlH ≥ xlH > xhL ≥ xminhL > xhH = xFBhH ,

qlL = qhL = q and qlH and qhH defined by (8) and (9), qlH , qhH < q. The x’s are
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optimized given the virtual welfares and the feasibility constraints. The q’s are optimized

given the binding constraints.

All IC constraints remain satisfied. The arguments for this are the same as those we made

above, except for IChL,lH , which follows because xFBhH [WlH(qhH)−WhL(qhH)]
UlL,hL=UlL,lH

=

xhL∆θ1 − xlHqlH∆θ2 < xlH [WlH(qlH)−WhL(qlH)] when xlH > xhL.

3. VWlH ≥ VWhH > VWhL : WlH(q) > WhH(q
2
hH) −

αlH
αhH
∆θ1 − αhL+αlL

αhH
q2hH∆θ2 > WhL(q) −

αlL
αhL
∆θ1.

In this case, the ideal ordering of types in the allocation is lL Â lH Â hH Â hL. The

buyer increases his expected utility by decreasing xhL, first to the benefit of xlH (that is,

keeping αlHxlH+αhLxhL+αlLx
FB
lL constant), and then to the benefit of xhH (that is, keeping

N(αlHx
max
lH + αhLxhL + αlLx

FB
lL + αhHxhH) = 1).

This process initially does not affect any of the virtual welfares until a new IC constraint

binds. By the same arguments as in point 2 above, we can establish that the first binding

constraint is IClL,lH .When it binds xhH [∆θ1−∆θ2q2hH ] = xhL∆θ1−xlH∆θ2q. At this point,

xlH > xhL > xhH (the first inequality comes from Lemma 7(2)).

Once this happens, any further improvement requires that we keep UlL,hL = UlL,lH (otherwise,

if UlL,hL < UlL,lH , IClL,hL ceases to bind, the virtual welfare associated with hL bounces back

to WFB
hL and thus we get back to the starting point). We are thus in a similar situation as

in point 2 above. Any further change in the x’s requires some changes in the q’s and thus

in the value of the multiplier on the IC constraints. Using the expressions in (1) to (4), the

resulting virtual welfares associated with lH, hH and hL are:

VWlH = max
qlH

{WlH(qlH)−
λ4
αlH
∆θ2qlH} (10)

VWhH = max
hH
{WhH(qhH)−

(αlH + λ4)

αhH
∆θ1 −

(αhL + αlL − λ4)

αhH
∆θ2qhH} (11)

VWhL =WhL(q)−
αlL − λ4
αhL

∆θ1 (12)

where λ4 ∈ (0, αlL) is such that UlL,hL = UlL,lH i.e. xhH [WlH(qhH)−WhL(qhH)] = xhL∆θ1−
xlHqlH∆θ2 for the current value of xhL (xlH and xhH are well-defined once xhL is defined

given that lH has priority hH is also clear). Practically, a decrease in xhL is associated with

an increase in qhH , a decrease in qlH and an increase in λ4. This decreases VWlH and VWhH

and increases VWhL.

The difference relative to Solution 1.1.c is what ends this process. Here, the process ends
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when either a new IC constraint binds or the relative ranking of virtual welfare changes.1

The only new IC constraint that can bind is IClL,hH . This happens at xhL = xhH . Thus we

need to distinguish the following cases depending on which event happens first:

(a) We have reached VWlH ≥ VWhH = VWhL and xlH = xmaxlH . Then this is the solution.

The buyer is indifferent between hH and hL. The qualities are given by the value of

λ4 that solves for VWhH = VWhL in (11) and (12), qlL = qhL = q and xlL = xFBlL ,

xlH = xmaxlH > xminhL ≥ xhL > xhH ≥ xFBhH . [Solution 1.1.d]

(b) We have reached VWlH ≥ VWhH = VWhL at xlH < xmaxlH . Then the buyer can further

increase his expected utility by decreasing xhL and increasing xlH keeping UlL,lH =

UlL,hL. This further decreases VWlH and VWhH and increases VWhL. The process stops

when either VWlH = VWhL or xlH = xmaxlH , whichever comes earlier. At the solution

the q’s are defined from (11) and (12) for the value of λ4 at which the process stops,

qlL = qhL = q and xlL = xFBlL , xmaxlH ≥ xlH > xhL ≥ xminhL and xhH = xFBhH . This

corresponds to Solution 1.1.c. above.

(c) We have reached VWlH = VWhH > VWhL. (note that this implies that qlH < qhL given

(10) and (11)). The buyer further increases his expected utility by decreasing xhL and

adjusting xlH and xhH in a way that preserves VWlH = VWhH and UlL,lH = UlL,hL.
2

Thus λ4 is fixed and the virtual welfares are not affected. This process continues until

xhL = xhH (< xlH) at which point UlL,hH starts binding. At this stage we have:

UlL,lH = xhH∆θ1 + xlHqlH∆θ2 = UlL,hH = xhH∆θ1 + xhHqhH∆θ2

= UlL,hL = xhL∆θ1 + xhHqhH∆θ2

Using the expressions in (1) to (4), the virtual welfares are given by

VWlH = max
qlH

{WlH(qlH)−
λ4
αlH
∆θ2qlH} (13)

VWhH = max
qhH

{WhH −
αlH + λ4
αhH

∆θ1 −
αhL + αlL − λ4

αhH
∆θ2qhH} (14)

VWhL = WhL(q)−
αlL − λ4 − λ6

αhL
∆θ1 (15)

where λ4 and λ6 are the multipliers on the IClL,lH and IClL,hH constraint respectively.

1No feasibility constraint binds in the process. Indeed, the only potential feasibility constraint would involve xhH

hitting its maximum but this never occurs before xhH = xhL.
2The feasibility constraints on the x’s are N(αlLxFBlL +αlHxlH +αhHxhH) ≤ 1−αNhL and N(αlLx

FB
lL +αlHxlH +

αhLxhL + αhHxhH) = 1
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There exists a value for λ4 and λ6 such that VWlH = VWhH = VWhL and UlL,lH =

UlL,hL = UlL,hH and N(αlHxlH + αhLxhL + αlLx
FB
lL + αhHxhH) = 1. Indeed, we have

five equations and five unknowns: λ4, λ6, xlH , xhL and xhH (from (15) and the fact

VWlH = VWhL, we know that αlL−λ4−λ6 > 0, thus αhL+αlL−λ4 in (14) is ensured

to be positive which is required by the non negative constraint on the multipliers).

These values for λ4 and λ6 correspond to the solution. At the solution, xlH > xhH = xhL

(implied by UlL,lH = UlL,hL = UlL,hH), qlH < qhL < q and qhL = qhH = q. The buyer is

indifferent among lH, hH and hL and the x’s are thus optimized. The q’s are optimized

given the binding constraints and the value of the multipliers. No new constraint binds in

the process. The argument for this is identical as the one in point 2, except for IChL,lH ,

which follows because xFBhH [WlH(qhH)−WhL(qhH)]
UlL,hL=UlL,lH

= xhL∆θ1 − xlHqlH∆θ2 <

xlH [WlH(qlH)−WhL(qlH)] when xlH > xhL. [Solution 1.1.e]

(d) We have reached xhH = xhL. At this point, IClL,hH starts binding. The rest of the

argument is as in point c above: There exists a value for λ4 and λ6 such that VWlH =

VWhH = VWhL and UlL,lH = UlL,hL = UlL,hH and N(αlHxlH + αhLxhL + αlLx
FB
lL +

αhHxhH) = 1. The solution is thus Solution 1.1.e.

Scenario 2: At q2hH , UhL,hH < UhL,lH , that is, xFBhH [WlH(q
2
hH) − WhL(q

2
hH)] > xFBlH [WlH(q) −

WhL(q)].

In this case, IChL,lH becomes binding as we decrease qhH . To reduce hL and lL’s rents further,

one now needs to decrease qlH at the same time as qhH in such a way that UhL,hH = UhL,lH , i.e.,

xFBhH [WlH(qhH)−WhL(qhH)] = xFBlH [WlH(qlH)−WhL(qlH)]. (Note that this implies that qlH > qhH .)

Formally, using (1) to (4) in Appendix A, we let qlH and qhH solve:

VWlH = max
qlH

{WlH(qlH) +
λ∗2
αlH

[WlH(qlH)−WhL(qlH)]} (16)

VWhH = max
qhH

{WhH(qhH)−
αlH + λ∗2
αhH

∆θ1 −
(αhL + αlL − λ∗2)

αhH
∆θ2qhH} (17)

for the value of λ∗2 ∈ (0, αhL + αlL) such that xFBhH [WlH(qhH) − WhL(qhH)] = xFBlH [WlH(qlH) −
WhL(qlH)] (λ2 is the multiplier on IChL,lH). Such value for λ2 always exists. When λ∗2 = 0,

qlH = q and qhH = q2hH so that xFBhH [WlH(q
2
hH) −WhL(q

2
hH)] > xFBlH [WlH(q) −WhL(q)] from the

definition of scenario 2. When λ∗2 = αhL + αlL, qlH < qhH = q and xFBhH [WlH(q) − WhL(q)] <

xFBlH [WlH(q
2
lH)−WhL(q

2
lH)]).

Relative to the BOEM, only the rents of hL and lL have decreased. The IC constraint of hL is

taken care of by construction, and UlL,hL ≥ UlL,lH from Lemma 7(1). Hence, all IC constraints

remain satisfied.
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We now optimize over the x’s. Notice that VWlH = maxqlH{WlH(qlH)+
λ∗2
αlH
[WlH(qlH)−WhL(qlH)]} >

WlH(q) > VWhH . Hence, we need to consider three cases depending on the relative ranking of the

virtual welfare associated with hL.

1. VWhL ≥ VWlH > VWhH : WhL(q) − αlL
αhL
∆θ1 ≥ maxqlH{WlH(qlH) +

λ∗2
αlH
[WlH(qlH) −

WhL(qlH)]} [Solution 1.2.a]

The optimal probabilities are thus xk = xFBk . The values of qlH and qhH are defined in (16)

and (17) and q > qlH > qhH > q2hH , qhL = qlL = q.

2. VWlH > VWhL ≥ VWhH : maxqlH{WlH(qlH) +
λ∗2
αlH
[WlH(qlH) − WhL(qlH)]} > WhL(q) −

αlL
αhL
∆θ1 ≥ WhH(q

2
hH) −

αlH
αhH
∆θ1 − αhL+αlL

αhH
q2hH∆θ2 (note that the condition is on VWhH

evaluated at λ2 = 0).

At the current value of λ2, the buyer prefers to give the contract to lH over hL. As we

progressively increase xlH at the expense of xhL, while keeping xFBhH [WlH(qhH)−WhL(qhH)] =

xlH [WlH(qhL) −WhL(qhL)], we decrease λ2 (i.e. increase qlH and decrease qhH - from (16)

and (17)). This decreases VWlH and increases VWhH .

This process continues until the relative ordering of virtual welfares changes or the binding

IC constraints change (at least of one these two events happen before we reach the feasibility

constraint xlH = xmaxlH ). Specifically, the two IC constraints we need to worry about are

IChL,lH which stops binding when λ2 = 0, and IClL,lH which starts binding when xlH = xhL.

This yields three cases depending on which event happens first:

(a) VWlH = VWhL first (note that given the assumption of this case, VWhL ≥ VWhH

always): We have then reached the solution. At the solution, the probabilities of winning

are: xlL = xFBlL > xFBhL > xhL > xlH > xFBlH > xhH = xFBhH where xlH and xhL are defined

implicitly by xFBhH [WlH(qhH)−WhL(qhH)] = xlH [WlH(qlH)−WhL(qlH)] for the values of

qhH and qlH that solve (16) and (17) at the current value of λ2 (qhH < qlH). The x’s are

optimized given the virtual welfares. The q’s are optimized given the binding constraints

and the value of λ2. [Solution 1.2.b]

(b) λ2 = 0 first. IChL,lH ceases to bind and qhH = q2hH and qlH = q. As xlH further increases

and xhL decreases, the buyer increases his expected utility. None of the virtual welfares

are affected in the process, and thus this continues until we either reach xlH = xmaxlH

or IClL,lH starts binding (this happens when xFBhH [WlH(q
2
hH)−WhL(q

2
hH)] = xhL∆θ1 −

xhL∆θ2q.).
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In the first case, we are as in Solution 1.1.b: xlL = xFBlL > xlH = xmaxlH > xhL = xminhL >

xhH = xFBhH , qhH = q2hH and qlH = q. The x’s are optimized given that, by assumption,

VWhL ≥ VWhH .

In the second case, we are as in Solution 1.1c. Thus, xlL = xFBlL > xmaxlH ≥ xlH >

xhL ≥ xminhL > xhH = xFBhH , qlL = qhL = q and qlH and qhH defined by (8) and (9), qlH ,

qhH < q.

(c) xlH = xhL first. At this point, IClL,lH starts binding. Based on the expressions from

(1), reworked using the equalities (2) to (4), the associated virtual welfares are given by:

VWlH = max
qlH

{WlH(qlH)−
(αhL + αlL − λ3)

αlH
∆θ2qlH +

αhL + λ5 − λ3
αlH

∆θ1} (18)

VWhH = max
qhH

{WhH(qhH)−
λ3
αhH

∆θ2qhH −
αlH + αhL + αlL − λ3

αhH
∆θ1} (19)

VWhL = WhL(q)−
λ5
αhL
∆θ1 (20)

There exist values for λ3 and λ5 such that (1) x[WlH(qlH)−WhL(qlH)] = xFBhH [WlH(qhH)−
WhL(qhH)] and (2) VWlH = VWhL. To see this, note that the progressive adjustment

of xlH until xlH = xhL implies that there exists a value for λ3 that satisfies condition

(1). Once λ3 is fixed, there is a value of λ5 that ensures condition (2). Indeed for any

feasible λ3, when λ5 = 0, the virtual welfare of hL is greater. When λ5 = αlL and

λ2 = αhL+αlL−λ3, this follows from the fact that we have assume that VWlH > VWhL

when IClL,lH becomes binding.

Note that λ2 = αhL − λ3 + λ5. If the implied λ2 is positive, this is the solution: xlL =

xFBlL > xFBhL > xhL = x = xlH > xFBlH > xhH = xFBhH and the q’s solving (18) through

(20) above for the values of λ3 and λ5 that satisfy conditions (1) and (2) (in particular,

qlH > qhH). The x’s are optimized given the virtual welfares: the buyer is indifferent

between lH and hL and VWlH > VWhH follows from the comparison between (18) and

(19) when qlH > qhH . The q’s are optimized given the binding constraints and the value

of the multipliers. [Solution 1.2.c]

If the implied λ2 is strictly negative, then IChL,lH ceases to bind at some point. We are

then in the same situation as in Solution 1.1.c. At the solution, xlL = xFBlL > xmaxlH ≥
xlH > xhL ≥ xminhL > xhH = xFBhH , qlL = qhL = q and qlH and qhH defined by (8) and (9),

qlH , qhH < q.

3. VWlH > VWhH > VWhL :WhL(q)− αlL
αhL
∆θ1 < WhH(q

2
hH)−

αlH
αhH
∆θ1− αhL+αlL

αhH
q2hH∆θ2 (note

that the condition is on VWhH evaluated at λ2 = 0).
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In this case, we ideally want to decrease xhL, first to the benefit of xlH (then, possibly to

the benefit of xhH). Doing this while keeping xFBhH [WlH(qhH)−WhL(qhH)] = xlH [WlH(qlH)−
WhL(qlH)], requires that we decrease λ2 (cf. (16) and (17)). This decreases VWlH and in-

creases VWhH , but given the condition on this case, the ordering of virtual welfares is not

affected. Thus, this process continues until, either we reach λ2 = 0 (and thus IChL,lH ceases

to bind) or xlH = xhL (and thus IClL,lH starts binding).

(a) We reach xlH = xhL when λ2 > 0 : This implies that IClL,lH becomes binding in the

process. Optimizing from now on with constraints IClH,hH , IClL,lH , IClL,hL, IChL,lH

and IChL,hH binding requires that we keep xlH = xhL. The virtual welfares are given

by (18), (19) and (20). Like in part 1, scenario 2, case 2c, we proceed by first looking

for values of λ3, λ5 and q’s such that (1) x[WlH(qlH) −WhL(qlH)] = xFBhH [WlH(qhH) −
WhL(qhH)], i.e. UlL,hL = UlL,lH and UhL,hH = UhL,hH and (2) VWlH = VWhL.

If the implied λ2 is positive, then this is the solution (solution 1.2.c) because condition

(1) implies that qlH > qhH , which in turn ensures that VWlH = VWhL > VWhH . The

x’s are optimized, and so are the q’s.

If the implied λ2 is negative, then we are as in part I, scenario 1, case 3: the binding

constraints are IClL,lH , IClL,hL, IClH,hH and IChL,hH . This leads to solutions 1.1.c, 1.1.d

or 1.1.e.

(b) We reach λ2 = 0 when xlH ≤ xhL. We can continue to increase xlH at the expense

of xhL, and afterwards if necessary increase xhH at the expense of xhL until IClL,lH

starts binding. (IChL,lH no longer binds because increasing xlH beyond xhL means that

xhH [WlH(qhH) −WhL(qhH)] < xlH [WlH(qlH) −WhL(qlH)]). The case then reduces to

part 1, scenario 1, case 3, implying one of solutions 1.1.c, 1.1.d or 1.1.e apply.

Proof of part II of Theorem 1: WlH (q)−WhL (q) < 0 i.e. ∆θ1 < q∆θ2

The binding constraints in the buyer-optimal efficient mechanism are IClH,hH , IChL,lH and IClL,hL.

The buyer’s resulting expected utility is given by

αlHxlH [WlH(qlH) +
αhL + αlL

αlH
∆θ1 −

αhL + αlL
αlH

qlH∆θ2] + αhHxhH [WhH(qhH)−
αlH + αhL + αlL

αhH
∆θ1]

+αhLxhL[WhL(qhL)−
αlL
αhL
∆θ1] + αlLxlLWlL(qlL) (21)

Keeping the probabilities fixed at xk = xFBk , optimizing the q’s requires that qlH be set equal to

q2lH = argmax{WlH(qlH) +
αhL + αlL

αlH
∆θ1 −

αhL + αlL
αlH

qlH∆θ2} (22)
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This reduces the informational rents of hL and lL. By Lemma 7(1), we know that UlL,hL > UlL,lH

as long as UhL,lH ≥ UhL,hH . Hence, we need to consider only two scenarios, depending on whether

IChL,hH binds at q2LH :

Scenario 1: At q2lH , UhL,lH ≥ UhL,hH , i.e., xFBlH [WlH(q
2
lH)−WhL(q

2
lH)] ≤ xFBhH [WlH(q)−WhL(q)]

In this case, all IC constraints remain satisfied as we decrease qlH to q2lH . Note that WlH(q
2
lH) −

WhL(q
2
lH) ≡ ∆θ1 −∆θ2q2lH < 0. We now consider the optimization of the probabilities of winning.

From (21), the virtual welfare associated with lL is the largest. This leaves four cases depending

on the relative ranking of lH, hH and hL:

1. VWhL ≥ VWlH ≥ VWhH : [WhL(q)− αlL
αhL
∆θ1] ≥ [WlH(q

2
lH)+

αhL+αlL
αlH

∆θ1−αhL+αlL
αlH

q2lH∆θ2] ≥
[WhH(q)− αlH+αhL+αlL

αhH
∆θ1] [Solution 2.1.a]

The optimal probabilities of winning are xk = xFBk since the ranking of the virtual welfares

corresponds to the ranking of the first best welfares. All IC constraints are satisfied. The x’s

and q’s are optimized given the binding constraints.

2. VWlH > VWhH ≥ VWhL : [WlH(q
2
lH)+

αhL+αlL
αlH

∆θ1−αhL+αlL
αlH

q2lH∆θ2] > WhH(q)−αlH+αhL+αlL
αhH

∆θ1 ≥
[WhL(q)− αlL

αhL
∆θ1] ; or

VWlH > VWhL ≥ VWhH : [WlH(q
2
lH)+

αhL+αlL
αlH

∆θ1−αhL+αlL
αlH

q2lH∆θ2] > [WhL(q)− αlL
αhL
∆θ1] ≥

WhH(qhH)− αlH+αhL+αlL
αhH

∆θ1

The buyer would like to increase xlH at the expense of xhL. Doing this does not affect the

supplier hL’s IC constraint: UhL,lH ≥ UhL,hH corresponds to xlH [WlH(q
2
lH) −WhL(q

2
lH)] ≤

xFBhH [WlH(q) −WhL(q)] and WlH(q
2
lH)−WhL(q

2
lH) < 0. Moreover, as long as xhL > xlH , the

change in xlH does not affect lL’s IC constraint either (Lemma 7(1)). Thus, changing xlH

does not initially affect the virtual welfares.

When we reach xlH = xhL = x, IClL,lH starts binding since UlL,hL = xhL∆θ1 − xlH∆θ1 +

xlHq
2
lH∆θ2 + xhH∆θ1 and UlL,lH = xlHq

2
lH∆θ2 + xhH∆θ1. Define λ∗5 ∈ (0, αlL), the value of

λ5 that equalizes the virtual welfares associated with lH and hL:

WlH(q
2
lH) +

(αhL + λ∗5)

αlH
∆θ1 −

αhL + αlL
αlH

∆θ2q
2
lH =WhL(q)−

λ∗5
αhL
∆θ1 (23)

(from (1) to (4)). Such a value for λ5 exists. When λ5 = 0, the virtual welfare associated with

hL is larger. When λ5 = αlL, the virtual welfare of lH is bigger by assumption. Note that

this process does not affect the virtual welfare associated with hH, which remains unchanged.

(a) [Solution 2.1.b] If at λ∗5, V WlH = VWhL > VWhH , then the solution is qlH = q2lH ,

qhH = q and qhL = qlL = q and xlL = xFBlL , xhH = xFBhH , and xlH = xhL = x. All IC
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constraints are satisfied. The q’s and the x’s are optimized given the binding constraints

(in particular, the buyer is indifferent between lH and hL, but strictly prefer these to

hH).

(b) If at λ∗5, V WlH = VWhL < VWhH , the buyer prefers hH to lH or hL. He increases his

expected utility by raising xhH while keeping UlL,lH = UlL,hL, that is, xlH = xhL, and

λ5 = λ∗5. This process does not initially affect any of the virtual welfares until IChL,hH

starts binding (this happens at xhL = xlH > xhH given that qlH = q2lH < qhH = q when

UhL,hH ≤ UhL,lH).

From then on, IClH,hH , IClL,lH , IClL,hL, IChL,lH and IChL,hH are all binding. The ex-

pressions for the resulting virtual welfares are given by:

VWlH = max
qlH

{WlH(qlH)−
(αhL + αlL − λ3)

αlH
∆θ2qlH +

αhL + λ5 − λ3
αlH

∆θ1} (24)

VWhH = max
qhH

{WhH(qhH)−
λ3
αhH

∆θ2qhH −
αlH + αhL + αlL − λ3

αhH
∆θ1} (25)

VWhL = WhL(q)−
λ5
αhL
∆θ1 (26)

The buyer increases his expected utility by continuing to increase xhH at the cost of xhL

and xlH , while satisfying: (1) UlL,lH = UlL,hL (thus xlH = xhL), (2) UhL,hH = UhL,lH ,

that is xlH [WlH(qlH)−WhL(qlH)] = xhH [WlH(qhH)−WhL(qhH)], and (3) VWlH = VWhL.

This requires an increase in λ3 and a decrease in λ5, i.e. a rise in qlH and a decrease in

qhH (nonetheless, q2lH < qlH < qhH remains as long as VWlH ≤ VWhH as is apparent

from (24) and (25)).3

This process stops when either VWhH = VWlH = VWhL or we hit a non negativity

constraint for the multiplier λ2 = αhL + λ5 − λ3.

i. [Solution 2.1.d] Suppose VWhH = VWlH = VWhL at a point where λ2 ≥ 0.

Then we have reached the solution. The q’s are defined from (24) and (25) for

the values of λ3 and λ5 that equalize the virtual welfares (note that this implies

that qlH < qhH , so that, in turn, UhL,hH = UhL,lH implies xlH > xhH as required

for incentive compatibility). The x’s are such that xlL = xFBlL , and xFBlH > xlH =

xhL > xhH > xFBhH with N(αlLx
FB
lL + αlHxlH + αhLxhL + αhHxhH) = 1.4 All IC

constraints are satisfied. The q’s are optimized given the binding constraints. The

3Formally, we have four equations (the three constraints mentioned in the text, plus the feasibility constraint

N(αlLx
FB
lL +αlHxlH +αhLxhL +αhHxhH) = 1) and five unknowns: xhH , xhL, xlH and λ3 and λ5 (the q’s are

determined on the basis of the λ’s by (24) and (25)). Thus any value for xhH pins down the other variables.
4No other feasibility constraint for the probabilities of winning binds, except for the one-type constraint for xlL.
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x’s are optimized given the resulting virtual welfares (the buyer is indifferent among

lH, hL and hH).

ii. [Solution 2.1.e] Suppose λ2 reaches zero at a point where VWhH > VWlH =

VWhL.

Let λ∗∗5 , the value of λ5 at this point. We also have q2lH < qlH < qhH and xlH =

xhL > xhH at this point. The buyer further increases his utility by increasing xhH

at the cost of xlH and xhL, while keeping UlL,lH = UlL,hL and VWlH = VWhL (i.e.

λ5 = λ∗∗5 and the q’s are fixed at qlH < qhH).
5 This process at first does not affect

the virtual welfares (since λ5 is fixed, we keep having VWhH > VWlH = VWhL),

until IClL,hH starts binding.6 At this stage we have:

UlL,lH = xhH∆θ1 + xlHqlH∆θ2 = UlL,hH = xhH∆θ1 + xhHqhH∆θ2

= UlL,hL = xhL∆θ1 + xhHqhH∆θ2

thus xhL = xhH < xlH . To keep increasing the buyer’s welfare while satisfying all

three constraints out of lL requires that we keep xhL = xhH . Thus we increase

both xhL and xhH at the expense of xlH (this will indeed increase the buyer’s

utility since VWhH > VWlH = VWhL), and adjust the q’s as needed, that is, we

increase qlH and decrease qhH . We do this until VWlH = VWhL = VWhH . We

have then reached the solution. At the solution, qlH < qhH and xlL = xFBlL , and

xFBlH > xlH > xhL = xhH > xFBhH with N(αlLxFBlL +αlHxlH+αhLxhL+αhHxhH) = 1.

3. VWhL > VWhH > VWlH : [WhL(q)− αlL
αhL
∆θ1] > [WhH(q)− αlH+αhL+αlL

αhH
∆θ1] > [WlH(q

2
lH)+

αhL+αlL
αlH

∆θ1 − αhL+αlL
αlH

q2lH∆θ2] ; or

VWhH > VWhL > VWlH : WhH(q)− αlH+αhL+αlL
αhH

∆θ1 > [WhL(q)− αlL
αhL
∆θ1] > [WlH(q

2
lH) +

αhL+αlL
αlH

∆θ1 − αhL+αlL
αlH

q2lH∆θ2]

In this case, the buyer would like to increase xhH at the expense of xlH . As we increase xhH

and decrease xlH , we reach a point where xlH [WlH(q
2
lH)−WhL(q

2
lH)] = xhH [WlH(q)−WhL(q)],

that is, IChL,hH starts binding.

A candidate solution is defined by the value of λ2 ∈ (0, αhL + αlL) that equates VWlH and

5The exact way in which xlH and xhL are decreased is determined by UlL,lH = UlL,hL, i.e. xlHqlH∆θ2+xhH∆θ1 =

xhL∆θ1 + xhHqhH∆θ2 and the feasibility constraint N(αlLxFBlL + αlHxlH + αhLxhL + αhHxhH) = 1.
6This is the only constraint that can bind in the process. No new constraint can bind out of lH since UlH = xhH∆θ1

increases and alternatives decrease. No new constraint can bind out of hL because ∆θ1 −∆θ2qhH < 0 given that

qhH > qlH > q2lH and VWhH ≥ VWlH .
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VWhH :

max
qlH

{WlH(qlH)+
λ∗2
αlH
∆θ1−

λ∗2
αlH
∆θ2qlH} = max

qhH
{WhH(qhH)−

αlH + λ∗2
αhH

∆θ1−
αhL + αlL − λ∗2

αhH
∆θ2qhH}

(27)

(from (1) to (4)). Such value for λ2 exists since the virtual welfare of lH is larger than that

of hH at λ2 = 0, and smaller at λ2 = αhL + αlL by assumption. By inspection of (27), this

happens at αhL+αlL−λ∗2
αhH

<
λ∗2
αlH

that is, the resulting q’s are such that q2lH < qlH < qhH . Finally,

we require that UhL,lH = UhL,hH , that is, xlH [WlH(qlH) − WhL(qlH)] = xhH [WlH(qhH) −
WhL(qhH)] which implies that xlH > xhH as required by incentive compatibility.

This process only affected VWhL and VWhH . If VWhL > VWhH = VWlH at this point, then

this is indeed the solution. The other variables are set such that xlL = xFBlL , xhL = xFBhL ,

and qhL = qlL = q. The q’s are optimized given the values of the multipliers and the binding

constraints. The x’s are optimized given the resulting virtual welfares. All IC constraints are

satisfied (IClL,lH satisfied given Lemma 7(1)). [Solution 2.1.c]

If VWhL < VWhH = VWlH , the buyer can further increase his expected utility by increasing

xhH and xlH at the cost of xhL. He does so while keeping λ2 = λ∗2 so that VWhH = VWlH . The

exact way in which xhH and xlH are increased is pinned down by xlH [WlH(qlH)−WhL(qlH)] =

xhH [WlH(qhH)−WhL(qhH)]. This process does not affect the virtual welfare, until xhL = xlH

at which point IClL,lH starts binding. We are now in a situation where IClH,hH , IClL,lH ,

IClL,hL, IChL,lH and IChL,hH are all binding and VWhL < VWhH = VWlH . From then on,

the virtual welfares are those defined in (24) - (26). Let λ∗5 such that VWlH = VWhL.

Since there is no change in λ3, the q’s are not affected (qlH < qhH) and the x’s implicitly

defined by xlH = xhL and UhL,hH = UhL,lH are not affected either. Thus we are exactly

in the same situation as in 2(b) above, and the proof thus proceeds along the same lines:

we look for a solution where IClH,hH , IClL,lH , IClL,hL, IChL,lH and IChL,hH are binding and

VWhL = VWhH = VWlH , or IClH,hH , IClL,lH , IClL,hL, IClL,hH and IChL,hH are binding and

VWhL = VWhH = VWlH . [Solution 2.1.d or 2.1.e]

4. VWhH > VWlH > VWhL : WhH(q) − αlH+αhL+αlL
αhH

∆θ1 > [WlH(q
2
lH) +

αhL+αlL
αlH

∆θ1 −
αhL+αlL

αlH
q2lH∆θ2] > [WhL(q)− αlL

αhL
∆θ1]

Given the ordering of virtual welfares, the buyer is first tempted to increase xhH at the

expense of xhL.7 Two things can happen in the process: (1) IClL,lH starts binding (this

happens at xFBlH = xhL because UlL,lH = xlH∆θ2q
2
lH + xhH∆θ1 and UlL,hL = xhL∆θ1 −

xlH∆θ1 + xlH∆θ2q
2
lH + xhH∆θ1), (2) IChL,hH starts binding (this happens at a point where

7That is, keeping the equality N(αlLxFBlL + αlHx
FB
lH + αhLxhL + αhHxhH) = 1.
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xhH < xFBlH since xhH [WlH(q) −WhL(q)] = xFBlH [WlH(q
2
lH) −WhL(q

2
lH)] at that point, and

WlH(q
2
lH)−WhL(q

2
lH) < 0 from the definition of scenario 1). We examine each case in turn.

(a) IClL,lH binds first (xFBlH = xhL)

Let λ∗5, the value of λ5 that equalizes VWlH and VWhL. This was defined in (23). We now

have VWhH > VWlH = VWhL. Thus the buyer can increase his welfare by increasing

xhH . The rest of the solution is as described in 2(b) above. [Solution 2.1.d or Solution

2.1.e].

(b) IChL,hH binds first:

This happens at xhL > xFBlH > xhH (the first inequality comes from the fact that

IChL,hH binds first; the second inequality comes from the fact that qlH < qhH = q at

the point where IChL,hH starts binding). Increasing further xhH at the expense of xhL,

while keeping xFBlH [WlH(qlH) −WhL(qlH)] = xhH [WlH(qhH) −WhL(qhH)] requires that

we decrease qhH and increase qlH . This corresponds to a rise in λ3, a decrease in VWhH

and an increase in VWlH . This process stops when either VWlH = VWhH or xlH = xhL

whichever comes first (note at this stage xlH = xhL > xhH and IClL,lH starts binding).

If VWlH = VWhH first, we can continue to increase the buyer’s utility by decreasing

xhL, this time to the benefit of both lH and hH while keeping VWlH = VWhH and

UhL,hH = UhL,lH (note that this implies qlH < qhH and xhL > xhH). This process

continues until xhL = xlH at which point IClL,lH starts binding.

Thus, in both events, we reach a point where IClH,hH , IClL,lH , IClL,hL, IChL,lH and

IChL,hH are all binding. From then on, the virtual welfares are those defined in (24) -

(26). Let λ∗5 such that VWlH = VWhL. Since there is no change in λ3, the q’s are not

affected (qlH < qhH) and the x’s implicitly defined by xlH = xhL and UhL,hH = UhL,lH

are not affected either. Thus we are exactly in the same situation as in 2(b) above,

and the proof thus proceeds along the same lines: we look for a solution where IClH,hH ,

IClL,lH , IClL,hL, IChL,lH and IChL,hH are binding and VWhL = VWhH = VWlH , or

IClH,hH , IClL,lH , IClL,hL, IClL,hH and IChL,hH are binding and VWhL = VWhH =

VWlH . [Solution 2.1.d or 2.1.e]

Scenario 2: At q2lH , UhL,hH > UhL,lH that is, xFBlH [WlH(q
2
lH)−WhL(q

2
lH)] > xFBhH [WlH(q)−WhL(q)]

In this case, IChL,hH becomes binding as we decrease qlH towards q2lH . To decrease the rents of

hL and lL, we now need to decrease qlH and qhH , holding UhL,hH = UhL,lH . The optimal q’s are

57



Not For Publication

defined by:

q∗lH = argmax
qlH

{WlH(qlH) +
λ∗2
αlH
∆θ1 −

λ∗2
αlH
∆θ2qlH}

q∗hH = argmax
qhH

{WhH(qhH)−
αlH + λ∗2
αhH

∆θ1 −
αhL + αlL − λ∗2

αhH
∆θ2qhH}

where λ∗2 ∈ (0, αhL + αlL) is chosen such that xFBlH [WlH(q
∗
lH) − WhL(q

∗
lH)] = xFBhH [WlH(q

∗
hH) −

WhL(q
∗
hH)]. Note that the sign of WlH(q

∗
lH) − WhL(q

∗
lH) = ∆θ1 − ∆θ2q∗lH is not pinned down

a priori so that qlH and qhH cannot be ranked. No other new constraint binds in the process

(Lemma 7(1)).

We now consider the optimization of the probabilities of winning. We need to consider five cases:

1. VWhL ≥ VWlH ≥ VWhH : WhL(q) − αlL
αhL
∆θ1 ≥ WlH(q

∗
lH) +

λ∗2
αlH
∆θ1 − λ∗2

αlH
∆θ2q

∗
lH ≥

WhH(q
∗
hH)−

αlH+λ
∗
2

αhH
∆θ1 − αhL+αlL−λ∗2

αhH
∆θ2q

∗
hH .

The optimal probabilities of winning are xk = xFBk . This corresponds to Solution 1.2.a

except that qlH and qhH cannot be ranked a priori.

2. VWlH > VWhL ≥ VWhH : WlH(q
∗
lH) +

λ∗2
αlH
∆θ1 − λ∗2

αlH
∆θ2q

∗
lH > WhL(q) − αlL

αhL
∆θ1 ≥

WhH(q
∗
hH)−

αlH+λ
∗
2

αhH
∆θ1 − αhL+αlL−λ2

αhH
∆θ2q

∗
hH

VWlH > VWhH > VWhL : WlH(q
∗
lH) +

λ∗2
αlH
∆θ1 − λ∗2

αlH
∆θ2q

∗
lH > WhH(q

∗
hH) −

αlH+λ
∗
2

αhH
∆θ1 −

αhL+αlL−λ∗2
αhH

∆θ2q
∗
hH > WhL(q)− αlL

αhL
∆θ1

The buyer would like to increase xlH at the expense of xhL. Doing this while keeping UhL,hH =

UhL,lH requires that we adjust the q’s and thus λ2. Specifically, if ∆θ1−∆θ2q∗lH > 0, we need

to decrease λ2, otherwise, we need to increase it. In both cases, VWlH goes down and VWhH

goes up. This process continues until either a new IC constraint binds or the relative ranking

of the virtual welfare changes. Since xlH > xFBlH > xhH , the only IC constraint to worry about

is IClL,lH . This gives us three cases to consider depending on which event happens first:

(a) VWlH = VWhL ≥ VWhH : We have reached the solution: xlL = xFBlL , xhH = xFBhH and

xFBhL > xhL > xlH > xFBlH with N(αlLxFBlL +αlHxlH +αhLxhL) = 1−αNhH , qlL = qhL = q

and qlH and qhH determined by the value of λ2 that equates VWhH = VWlH . This

corresponds to Solution 1.2.b.

(b) VWlH = VWhH > VWhL : Note that this means that qlH < qhH and ∆θ1−∆θ2qlH < 0

since xlH [WlH(qlH)−WhL(qlH)] = xFBhH [WlH(qlH)−WhL(qlH)]. The buyer continues to

increase his expected utility by decreasing xhL, this time, to the benefit of both xlH and

xhH , doing so while keeping VWlH = VWhH and UhL,lL = UhL,lH . Thus λ2 is fixed and
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so are qlH and qhH . Therefore xlH > xhH . This process continues until xhL = xlH at

which point IClL,lH starts binding. From then on, the virtual welfares are those defined

in (24) - (26). (note that λ2 = αhL + λ5 − λ3). Let λ∗5 such that VWlH = VWhL. Since

there is no change in λ3, the q’s are not affected (qlH < qhH) and the x’s implicitly

defined by xlH = xhL and UhL,hH = UhL,lH are not affected either. Thus we are exactly

in the same situation as in scenario 1, 2(b) above (VWhH > VWlH = VWhL), and the

proof thus proceeds along the same lines. [Solution 2.1.d or 2.1.e]

(c) xhL = xlH , i.e. IClL,lH starts binding. From then on, IClH,hH , IClL,lH , IClL,hL, IChL,lH

and IChL,hH are all binding. The virtual welfares are those defined in (24) - (26). (note

that λ2 = αhL+λ5−λ3). Let λ∗5 such that VWlH = VWhL. Since there is no change in λ3,

the q’s are not affected and the x’s implicitly defined by xlH = xhL and UhL,hH = UhL,lH

are not affected either. If VWlH = VWhL > VWhH , we have reached the solution:

xlL = xFBlL , xFBhL > xlH = xhL = x > xFBlH , xhH = xFBhH , qlH , qhH < q and qlL = qhL = q.

All IC constraints are satisfied and the q’s and x’s are optimal given the resulting virtual

welfares. [Solution 1.2.c]

If VWlH = VWhL < VWhH , we can conclude that qlH < qhH and ∆θ1 − ∆θ2qlH < 0

since xlH [WlH(qlH)−WhL(qlH)] = xFBhH [WlH(qlH)−WhL(qlH)].We are thus in the same

situation as in scenario 1, 2(b) above. [Solution 2.1.d or 2.1.e]

3. VWhL > VWhH > VWlH :WhL(q)− αlL
αhL
∆θ1 > WhH(q

∗
hH)−

αlH+λ
∗
2

αhH
∆θ1−αhL+αlL−λ∗2

αhH
∆θ2q

∗
hH >

WlH(q
∗
lH) +

λ∗2
αlH
∆θ1 − λ∗2

αlH
∆θ2q

∗
lH .

(Note that this implies q∗lH < q∗hH and∆θ1−∆θ2q∗lH < 0 given that xFBlH [WlH(q
∗
lH)−WhL(q

∗
lH)]

= xFBhH [WlH(q
∗
hH)−WhL(q

∗
hH)]). The buyer wants to increase xhH at the expense of xlH . This

requires adjusting λ2 to maintain the equality xlH [WlH(qlH)−WhL(qlH)] = xhH [WlH(qhH)−
WhL(qhH)]. Specifically, λ2 decreases, qlH increases and qhH decreases, until VWhH = VWlH .

This occurs at xlH > xhH . Indeed, at xlH = xhH , qlH = qhH thus αhL+αlL−λ2
αhH

∆θ2qhH =
λ2
αlH
∆θ2qlH implying that VWhH < VWlH . The solution is thus xlL = xFBlL , xhL = xFBhL and

xFBlH > xlH > xhH > xFBhH and qlH < qlH < qhH < q. This corresponds to solution 2.1.c

4. VWhH ≥ VWlH ≥ VWhL : WhH(q
∗
hH) −

αlH+λ
∗
2

αhH
∆θ1 − αhL+αlL−λ∗2

αhH
∆θ2q

∗
hH ≥ WlH(q

∗
lH) +

λ∗2
αlH
∆θ1 − λ∗2

αlH
∆θ2q

∗
lH ≥WhL(q)− αlL

αhL
∆θ1

Note that this implies that q∗lH < q∗hH and ∆θ1 −∆θ2q∗lH < 0. Define λ∗∗2 ∈ (0, λ∗2) such that

max
qhH

{WhH(qhH)−
αlH + λ∗∗2

αhH
∆θ1−

αhL + αlL − λ∗∗2
αhH

∆θ2qhH} = max
qlH

{WlH(qlH)+
λ∗∗2
αlH
∆θ1−

λ∗∗2
αlH
∆θ2qlH}

(28)
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This implies q∗lH < qlH < qhH < q∗hH and VWlH = VWhH > VWhL.

>From there, the buyer can increase his expected utility by increasing xhH and xlH at the cost

of xhL. He does so while keeping λ2 = λ∗∗2 so that VWhH = VWlH . The exact way in which

xhH and xlH are increased is pinned down by xlH [WlH(qlH)−WhL(qlH)] = xhH [WlH(qhH)−
WhL(qhH)]. This process does not affect the virtual welfare, until xhL = xlH at which point

IClL,lH starts binding. We are now in a situation where IClH,hH , IClL,lH , IClL,hL, IChL,lH and

IChL,hH are all binding and VWhL < VWhH = VWlH . From then on, the virtual welfares are

those defined in (24) - (26) (note that λ2 = αhL+λ5−λ3). Let λ∗5 such that VWlH = VWhL.

Since there is no change in λ3, the q’s are not affected (qlH < qhH) and the x’s implicitly

defined by xlH = xhL and UhL,hH = UhL,lH are not affected either. Thus we are exactly in

the same situation as in 2(b) above. [Solution 2.1.d or 2.1.e]

5. VWhH > VWhL > VWlH : WhH(q
∗
hH) −

αlH+λ
∗
2

αhH
∆θ1 − αhL+αlL−λ∗2

αhH
∆θ2q

∗
hH > WhL(q) −

αlL
αhL
∆θ1 > WlH(q

∗
lH) +

λ∗2
αlH
∆θ1 − λ∗2

αlH
∆θ2q

∗
lH

We are again in a situation where q∗lH < q∗hH and ∆θ1 −∆θ2q∗hH < 0. The buyer would like

to increase xhH at the expense of xlH . Doing so while keeping xlH [WlH(qlH)−WhL(qlH)] =

xhH [WlH(qhH) −WhL(qhH)] requires an adjustment in λ2, leading to VWlH decreasing and

VWhH increasing. This process continues until we reach λ∗∗2 which corresponds to VWlH =

VWhH (as defined in (28)). Since ∆θ1−∆θ2q∗hH < 0, the corresponding qualities and x’s are

such that q∗lH < qlH < qhH < q∗hH and xhH < xlH .

We now need to distinguish two cases depending whether VWhL > VWlH = VWhH or

VWlH = VWhH > VWhL.

(a) VWhL > VWlH = VWhH : Then we have reached the solution: xlL = xFBlL , xhL = xFBhL

and xFBlH > xlH > xhH > xFBhH , qlL = qhL = q and q∗lH < qlH < qhH < q∗hH as defined by

(28). This corresponds to Solution 2.1.c.

(b) VWlH = VWhH > VWhL : the buyer further increases his expected utility by increases

xlH and xhH at the expense of xhL while keeping VWhH = VWlH (that is keeping

λ2 and the q’s fixed) and UhL,lH = UhL,hH (thus xhH < xlH). This process does not

affect the virtual welfares until xhL = xlH and IClL,lH starts binding. We are now in

a situation where IClH,hH , IClL,lH , IClL,hL, IChL,lH and IChL,hH are all binding and

VWhL < VWhH = VWlH . From then on, the virtual welfares are those defined in (24)

- (26) (note that λ2 = αhL + λ5 − λ3). Let λ∗5 such that VWlH = VWhL. Since there is

no change in λ3, the q’s are not affected (qlH < qhH) and the x’s implicitly defined by

xlH = xhL and UhL,hH = UhL,lH are not affected either. Thus we are exactly in the same
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situation as in 2(b) above, and the proof thus proceeds along the same lines. [Solution

2.1.d or 2.1.e]
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