104 research outputs found

    Similarity-based non-singleton fuzzy logic control for improved performance in UAVs

    Get PDF
    As non-singleton fuzzy logic controllers (NSFLCs) are capable of capturing input uncertainties, they have been effectively used to control and navigate unmanned aerial vehicles (UAVs) recently. To further enhance the capability to handle the input uncertainty for the UAV applications, a novel NSFLC with the recently introduced similarity-based inference engine, i.e., Sim-NSFLC, is developed. In this paper, a comparative study in a 3D trajectory tracking application has been carried out using the aforementioned Sim-NSFLC and the NSFLCs with the standard as well as centroid composition-based inference engines, i.e., Sta-NSFLC and Cen-NSFLC. All the NSFLCs are developed within the robot operating system (ROS) using the C++ programming language. Extensive ROS Gazebo simulation-based experiments show that the Sim-NSFLCs can achieve better control performance for the UAVs in comparison with the Sta-NSFLCs and Cen-NSFLCs under different input noise levels

    ADONiS - Adaptive Online Non-Singleton Fuzzy Logic Systems

    Get PDF
    Non-Singleton Fuzzy Logic Systems (NSFLSs) have the potential to capture and handle input noise within the design of input fuzzy sets. In this paper, we propose an online learning method which utilises a sequence of observations to continuously update the input Fuzzy Sets (FSs) of an NSFLS, thus providing an improved capacity to deal with variations in the level of input-affecting noise, common in real-world applications. The method removes the requirement for both a priori knowledge of noise levels or relying on offline training procedures to define input FS parameters. To the best of our knowledge, the proposed ADaptive, ONline Non-Singleton (ADONiS) Fuzzy Logic System (FLS) framework represents the first end-to-end framework to adaptively configure non-singleton input FSs. The latter is achieved through online uncertainty detection applied to a sliding window of observations. Since real-world environments are influenced by a broad range of noise sources, which can vary greatly in magnitude over time, the proposed technique for combining online determination of noise levels with associated adaptation of input FSs provides an efficient and effective solution which elegantly models input uncertainty in the FLS's input FSs, without requiring changes in any other part (e.g. antecedents, rules or consequents) of the FLS. In this paper, two common chaotic time series (Mackey-Glass, Lorenz) are used to perform prediction experiments to demonstrate and evaluate the proposed framework. Results indicate that the proposed adaptive NSFLS framework provides significant advantages, particularly in environments that include high variation in noise levels, which are common in real-world applications

    Comparing the Performance Potentials of Singleton and Non-singleton Type-1 and Interval Type-2 Fuzzy Systems in Terms of Sculpting the State Space

    Get PDF
    This paper provides a novel and better understanding of the performance potential of a nonsingleton (NS) fuzzy system over a singleton (S) fuzzy system. It is done by extending sculpting the state space works from S to NS fuzzification and demonstrating uncertainties about measurements, modeled by NS fuzzification: first, fire more rules more often, manifested by a reduction (increase) in the sizes of first-order rule partitions for those partitions associated with the firing of a smaller (larger) number of rules—the coarse sculpting of the state space; second, this may lead to an increase or decrease in the number of type-1 (T1) and interval type-2 (IT2) first-order rule partitions, which now contain rule pairs that can never occur for S fuzzification—a new rule crossover phenomenon —discovered using partition theory; and third, it may lead to a decrease, the same number, or an increase in the number of second-order rule partitions, all of which are system dependent—the fine sculpting of the state space. The authors' conjecture is that it is the additional control of the coarse sculpting of the state space, accomplished by prefiltering and the max–min (or max-product) composition, which provides an NS T1 or IT2 fuzzy system with the potential to outperform an S T1 or IT2 system when measurements are uncertain

    Intelligent adaptive control for nonlinear applications

    Full text link
    The thesis deals with the design and implementation of an Adaptive Flight Control technique for Unmanned Aerial Vehicles (UAVs). The application of UAVs has been increasing exponentially in the last decade both in Military and Civilian fronts. These UAVs fly at very low speeds and Reynolds numbers, have nonlinear coupling, and tend to exhibit time varying characteristics. In addition, due to the variety of missions, they fly in uncertain environments exposing themselves to unpredictable external disturbances. The successful completion of the UAV missions is largely dependent on the accuracy of the control provided by the flight controllers. Thus there is a necessity for accurate and robust flight controllers. These controllers should be able to adapt to the changes in the dynamics due to internal and external changes. From the available literature, it is known that, one of the better suited adaptive controllers is the model based controller. The design and implementation of model based adaptive controller is discussed in the thesis. A critical issue in the design and application of model based control is the online identification of the UAV dynamics from the available sensors using the onboard processing capability. For this, proper instrumentation in terms of sensors and avionics for two platforms developed at UNSW@ADFA is discussed. Using the flight data from the remotely flown platforms, state space identification and fuzzy identification are developed to mimic the UAV dynamics. Real time validations using Hardware in Loop (HIL) simulations show that both the methods are feasible for control. A finer comparison showed that the accuracy of identification using fuzzy systems is better than the state space technique. The flight tests with real time online identification confirmed the feasibility of fuzzy identification for intelligent control. Hence two adaptive controllers based on the fuzzy identification are developed. The first adaptive controller is a hybrid indirect adaptive controller that utilises the model sensitivity in addition to output error for adaptation. The feedback of the model sensitivity function to adapt the parameters of the controller is shown to have beneficial effects, both in terms of convergence and accuracy. HIL simulations applied to the control of roll stabilised pitch autopilot for a typical UAV demonstrate the improvements compared to the direct adaptive controller. Next a novel fuzzy model based inversion controller is presented. The analytical approximate inversion proposed in this thesis does not increase the computational effort. The comparisons of this controller with other controller for a benchmark problem are presented using numerical simulations. The results bring out the superiority of this technique over other techniques. The extension of the analytical inversion based controller for multiple input multiple output problem is presented for the design of roll stabilised pitch autopilot for a UAV. The results of the HIL simulations are discussed for a typical UAV. Finally, flight test results for angle of attack control of one of the UAV platforms at UNSW@ADFA are presented. The flight test results show that the adaptive controller is capable of controlling the UAV suitably in a real environment, demonstrating its robustness characteristics

    Towards Better Performance in the Face of Input Uncertainty while Maintaining Interpretability in AI

    Get PDF
    Uncertainty is a pervasive element of many real-world applications and very often existing sources of uncertainty (e.g. atmospheric conditions, economic parameters or precision of measurement devices) have a detrimental impact on the input and ultimately results of decision-support systems. Thus, the ability to handle input uncertainty is a valuable component of real-world decision-support systems. There is a vast amount of literature on handling of uncertainty through decision-support systems. While they handle uncertainty and deliver a good performance, providing an insight into the decision process (e.g. why or how results are produced) is another important asset in terms of having trust in or providing a ‘debugging’ process in given decisions. Fuzzy set theory provides the basis for Fuzzy Logic Systems which are often associated with the ability for handling uncertainty and possessing mechanisms for providing a degree of interpretability. Specifically, Non-Singleton Fuzzy Logic Systems are essential in dealing with uncertainty that affects input which is one of the main sources of uncertainty in real-world systems. Therefore, in this thesis, we comprehensively explore enhancing non-singleton fuzzy logic systems capabilities considering both capturing-handling uncertainty and also maintaining interpretability. To that end the following three key aspects are investigated; (i) to faithfully map input uncertainty to outputs of systems, (ii) to propose a new framework to provide the ability for dynamically adapting system on-the-fly in changing real-world environments. (iii) to maintain level of interpretability while leveraging performance of systems. The first aspect is to leverage mapping uncertainty from input to outputs of systems through the interaction between input and antecedent fuzzy sets i.e. firing strengths. In the context of Non-Singleton Fuzzy Logic Systems, recent studies have shown that the standard technique for determining firing strengths risks information loss in terms of the interaction of the input uncertainty and antecedent fuzzy sets. This thesis explores and puts forward novel approaches to generating firing strengths which faithfully map the uncertainty affecting system inputs to outputs. Time-series forecasting experiments are used to evaluate the proposed alternative firing strength generating technique under different levels of input uncertainty. The analysis of the results shows that the proposed approach can also be a suitable method to generate appropriate firing levels which provide the ability to map different uncertainty levels from input to output of FLS that are likely to occur in real-world circumstances. The second aspect is to provide dynamic adaptive behaviours to systems at run-time in changing conditions which are common in real-world environments. Traditionally, in the fuzzification step of Non-Singleton Fuzzy Logic Systems, approaches are generally limited to the selection of a single type of input fuzzy sets to capture the input uncertainty, whereas input uncertainty levels tend to be inherently varying over time in the real-world at run-time. Thus, in this thesis, input uncertainty is modelled -where it specifically arises- in an online manner which can provide an adaptive behaviour to capture varying input uncertainty levels. The framework is presented to generate Type-1 or Interval Type-2 input fuzzy sets, called ADaptive Online Non-singleton fuzzy logic System (ADONiS). In the proposed framework, an uncertainty estimation technique is utilised on a sequence of observations to continuously update the input fuzzy sets of non-singleton fuzzy logic systems. Both the type-1 and interval type-2 versions of the ADONiS frameworks remove the limitation of the selection of a specific type of input fuzzy sets. Also this framework enables input fuzzy sets to be adapted to unknown uncertainty levels which is not perceived at the design stage of the model. Time-series forecasting experiments are implemented and results show that our proposed framework provides performance advantages over traditional counterpart approaches, particularly in environments that include high variation in noise levels, which are common in real-world applications. In addition, the real-world medical application study is designed to test the deployability of the ADONiS framework and to provide initial insight in respect to its viability in replacing traditional approaches. The third aspect is to maintain levels of interpretability, while increasing performance of systems. When a decision-support model delivers a good performance, providing an insight of the decision process is also an important asset in terms of trustworthiness, safety and ethical aspects etc. Fuzzy logic systems are considered to possess mechanisms which can provide a degree of interpretability. Traditionally, while optimisation procedures provide performance benefits in fuzzy logic systems, they often cause alterations in components (e.g. rule set, parameters, or fuzzy partitioning structures) which can lead to higher accuracy but commonly do not consider the interpretability of the resulting model. In this thesis, the state of the art in fuzzy logic systems interpretability is advanced by capturing input uncertainty in the fuzzification -where it arises- and by handling it the inference engine step. In doing so, while the performance increase is achieved, the proposed methods limit any optimisation impact to the fuzzification and inference engine steps which protects key components of FLSs (e.g. fuzzy sets, rule parameters etc.) and provide the ability to maintain the given level of interpretability

    Development of Self-Learning Type-2 Fuzzy Systems for System Identification and Control of Autonomous Systems

    Full text link
    Modelling and control of dynamic systems are faced by multiple technical challenges, mainly due to the nature of uncertain complex, nonlinear, and time-varying systems. Traditional modelling techniques require a complete understanding of system dynamics and obtaining comprehensive mathematical models is not always achievable due to limited knowledge of the systems as well as the presence of multiple uncertainties in the environment. As universal approximators, fuzzy logic systems (FLSs), neural networks (NNs) and neuro-fuzzy systems have proved to be successful computational tools for representing the behaviour of complex dynamical systems. Moreover, FLSs, NNs and learning-based techniques have been gaining popularity for controlling complex, ill-defined, nonlinear, and time-varying systems in the face of uncertainties. However, fuzzy rules derived by experts can be too ad-hoc, and the performance is less than optimum. In other words, generating fuzzy rules and membership functions in fuzzy systems is a potential challenge especially for systems with many variables. Moreover, under the umbrella of FLSs, although type-1 fuzzy logic control systems (T1-FLCs) have been applied to control various complex nonlinear systems, they have limited capability to handle uncertainties. Aiming to accommodate uncertainties, type-2 fuzzy logic control systems (T2-FLCs) were established. This thesis aims to address the shortcomings of existing fuzzy techniques by utilisation of type-2 FLCs with novel adaptive capabilities. The first contribution of this thesis is a novel online system identification technique by means of a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) to accommodate the footprint-of-uncertainties (FoUs). This development is meant to specifically address the shortcomings of type-1 fuzzy systems in capturing the footprint-of-uncertainties such as mechanical wear, rotor damage, battery drain and sensor and actuator faults. Unlike previous type-2 TS fuzzy models, the proposed method constructs two fuzzifiers (upper and lower) and two regression coefficients in the consequent part to handle uncertainties. The weighted least square method is employed to compute the regression coefficients. The proposed method is validated using two benchmarks, namely, real flight test data of a quadcopter drone and Mackey-Glass time series data. The algorithm has the capability to model uncertainties (e.g., noisy dataset). The second contribution of this thesis is the development of a novel self-adaptive interval type-2 fuzzy controller named the SAF2C for controlling multi-input multi-output (MIMO) nonlinear systems. The adaptation law is derived using sliding mode control (SMC) theory to reduce the computation time so that the learning process can be expedited by 80% compared to separate single-input single-output (SISO) controllers. The system employs the `Enhanced Iterative Algorithm with Stop Condition' (EIASC) type-reduction method, which is more computationally efficient than the `Karnik-Mendel' type-reduction algorithm. The stability of the SAF2C is proven using the Lyapunov technique. To ensure the applicability of the proposed control scheme, SAF2C is implemented to control several dynamical systems, including a simulated MIMO hexacopter unmanned aerial vehicle (UAV) in the face of external disturbance and parameter variations. The ability of SAF2C to filter the measurement noise is demonstrated, where significant improvement is obtained using the proposed controller in the face of measurement noise. Also, the proposed closed-loop control system is applied to control other benchmark dynamic systems (e.g., a simulated autonomous underwater vehicle and inverted pendulum on a cart system) demonstrating high accuracy and robustness to variations in system parameters and external disturbance. Another contribution of this thesis is a novel stand-alone enhanced self-adaptive interval type-2 fuzzy controller named the ESAF2C algorithm, whose type-2 fuzzy parameters are tuned online using the SMC theory. This way, we expect to design a computationally efficient adaptive Type-2 fuzzy system, suitable for real-time applications by introducing the EIASC type-reducer. The proposed technique is applied on a quadcopter UAV (QUAV), where extensive simulations and real-time flight tests for a hovering QUAV under wind disturbances are also conducted to validate the efficacy of the ESAF2C. Specifically, the control performance is investigated in the face of external wind gust disturbances, generated using an industrial fan. Stability analysis of the ESAF2C control system is investigated using the Lyapunov theory. Yet another contribution of this thesis is the development of a type-2 evolving fuzzy control system (T2-EFCS) to facilitate self-learning (either from scratch or from a certain predefined rule). T2-EFCS has two phases, namely, the structure learning and the parameters learning. The structure of T2-EFCS does not require previous information about the fuzzy structure, and it can start the construction of its rules from scratch with only one rule. The rules are then added and pruned in an online fashion to achieve the desired set-point. The proposed technique is applied to control an unmanned ground vehicle (UGV) in the presence of multiple external disturbances demonstrating the robustness of the proposed control systems. The proposed approach turns out to be computationally efficient as the system employs fewer fuzzy parameters while maintaining superior control performance

    Odor Localization using Gas Sensor for Mobile Robot

    Get PDF
    This paper discusses the odor localization using Fuzzy logic algorithm. The concentrations of the source that is sensed by the gas sensors are used as the inputs of the fuzzy. The output of the Fuzzy logic is used to determine the PWM (Pulse Width Modulation) of driver motors of the robot. The path that the robot should track depends on the PWM of the right and left motors of the robot. When the concentration in the right side of the robot is higher than the middle and the left side, the fuzzy logic will give decision to the robot to move to the right. In that condition, the left motor is in the high speed condition and the right motor is in slow speed condition. Therefore, the robot will move to the right. The experiment was done in a conditioned room using a robot that is equipped with 3 gas sensors. Although the robot is still needed some improvements in accomplishing its task, the result shows that fuzzy algorithms are effective enough in performing odor localization task in mobile robot

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects

    An Explainable Artificial Intelligence Approach Based on Deep Type-2 Fuzzy Logic System

    Get PDF
    Artificial intelligence (AI) systems have benefitted from the easy availability of computing power and the rapid increase in the quantity and quality of data which has led to the widespread adoption of AI techniques across a wide variety of fields. However, the use of complex (or Black box) AI systems such as Deep Neural Networks, support vector machines, etc., could lead to a lack of transparency. This lack of transparency is not specific to deep learning or complex AI algorithms; other interpretable AI algorithms such as kernel machines, logistic regressions, decision trees, or rules-based algorithms can also become difficult to interpret for high dimensional inputs. The lack of transparency or explainability reduces the effectiveness of AI models in regulated applications (such as medical, financial, etc.), where it is essential to explain the model operation and how it arrived at a given prediction. The need for explainability in AI has led to a new line of research that focuses on developing Explainable AI techniques. There are three main avenues of research that are being explored to achieve explainability; first, Deep Explanations, which involves the modification of existing Deep learning models to add explainability. The methods proposed to do Deep explanations generally provide details about all the input features that affect the output, generally in a visual format as there might be a large number of features. This type of explanation is useful for tasks such as image recognition, but in other tasks, it might be hard to distinguish the most important features. Second, Model induction, which involves methods that are model agnostic, but these methods might not be suitable for use in regulated applications. The third method is to use existing interpretable models such as decision trees, fuzzy logic, etc., but the problem with them is that they can also become opaque for high dimensional data. Hence, this thesis presents a novel AI system by combining the predictive power of Deep Learning with the interpretability of Interval Type-2 Fuzzy Logic Systems. The advantages of such a system are, first, the ability to be trained via labelled and unlabelled data (i.e., mixing supervised and unsupervised learning). Second, having embedded feature selection abilities (i.e., can be trained by hundreds and thousands of inputs with no need for feature selection) while delivering explainable models with small rules bases composed of short rules to maximize the model’s interpretability. The proposed model was developed with data from British Telecom (BT). It achieved comparable performance to the deep models such as Stacked Autoencoder (SAE) and Convolution Neural Networks (CNN). In categorical datasets, the model outperformed the SAE by 2%, performed within 2-3% of the CNN and outperformed Multi-Layer Perceptron (MLP) and IT2FLS by 4%. In the regression datasets, the model performed slightly worse than the SAE, MLP and CNN models, but it outperformed the IT2FLS with a 15% lower error. The proposed model achieved excellent interpretability in a survey where it was rated within 2% of the highly interpretable IT2FLS. It was also rated 20% and 17% better than Deep learning XAI tools LIME and SHAP, respectively. The proposed model shows a small loss in performance for significantly higher interpretability, making it a suitable replacement for the other AI models in applications with many features where interpretability is paramount
    • …
    corecore